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The Hubbard Model with nearest-neighbor hopping and one type of orbital is applied to small
clusters, with emphasis on an octahedron (six sites). The complete eigenvalue spectrum is calculat-
ed. A rather complicated dependence of the spin of the ground state on occupation number,
geometry, and model parameters is found. Thermodynamic properties are computed with use of a
canonical ensemble. Results are reported for the specific heat, spin susceptibility, and spin-spin

correlation functions.
I. INTRODUCTION

The Hubbard Hamiltonian has, for many years, been
used to define a mathematical model of great interest in
the study of the magnetic and electrical properties of
solids, particularly transition metals and their com-
pounds.! There are many versions of this Hamiltonian,
the simplest one being

H=t3 CiTUCja+U2ni1nil . oy
i

i,j,o

The first term describes electron hopping between
nearest-neighbor lattice sites i,j, on which there are a set
of orthogonaal nondegenerate orbitals to which the
creation and destruction operators C,L,C,-a (o denotes
spin) refer. The second term describes a short-range in-
teraction between electrons of opposite spin on the same
site (n;, is the number operator for electrons of spin up on
site /). The model can be extended in a natural way to in-
clude more than one orbital per site, to allow hopping be-
tween more distant sites and between different orbitals,
and to allow for electrostatic interactions between elec-
trons on different sites. However, detailed consideration
will be given here only to the simplest case, as specified in
Eq. (1), and in addition, we consider only the case of a
repulsive electron-electron interaction U ( U > 0).

Even in the simplest case, definitive results have been
difficult to obtain. Some exact results are available for
one-dimensional systems. Lieb and Wu? obtained an ex-
act expression for the ground-state energy of a one-
dimensional system in the ‘“half-filled”-band case. The
ground state is antiferromagnetic although it lacks long-
range order, and insulating for any nonzero U. The excit-
ed states of this system were studied by Ovchinnikov,?
who described spin-wave states and quasi-ionic states.
The magnetic susceptibility at 7=0 was calculated by
Takahashi.* Shiba® extended the calculation of Lieb and
Wu to arbitrary electron concentrations and determined
the magnetic susceptibility at T=0. Coll® worked out the
excited states for arbitrary concentrations. Takahashi’
gave formal expressions for thermodynamic functions at
finite temperatures in terms of some integral equations.
We are not aware of specific computations based on the
work of Ref. 7.

In the case of three-dimensional systems, there has been
great interest in the question of the existence of a fer-
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romagnetic ground state. Conventionally one describes
systems in terms of two parameters. The first is the ratio
of the electron interaction U to the hopping integral z. As
we shall mainly be concerned with large values of this
quantity, we will work with its reciprocal, denoted z,

z=t/U.

The second is the ratio p of the number of electrons, n, to
the number of sites N. It was shown many years ago, that
ferromagnetism is not possible when p is sufficiently
small regardless of how large U is.® Likewise, it can be
shown that the ground state will not be ferromagnetic for
a system with exactly one electron for each site.®

Much controversy has arisen over the question as to
whethet the Hamiltonian of Eq. (1) ever has a ferromag-
netic ground state. Nagaoka showed that in the case of a
half-filled band with one extra electron or one hole, the
ground state is ferromagnetic for certain lattice structures
in the limit that U tends to infinity.' The validity of
Nagaoka’s argument for systems with a finite density of
holes or extra electrons in which a thermodynamic limit
must be taken has, however, been questioned.!! We will
not be able to answer this question here precisely for in-
finite systems, but we will see that in finite systems the
ground state has greater than the minimum spin in certain
cases, and that the reasons for this are easy to understand.

This work attempts to explore ground-state and ther-
modynamic properties of the Hubbard model from a dif-
ferent point of view. We have obtained exact numerical
results for several small clusters (four, five, and six sites).
All the eigenvalues and eigenvectors of the Hamiltonian
of Eq. (1) can easily be computed for these systems, so
that thermodynamic functions can be obtained. The re-
sults obtained resemble, in a qualitative way, correspond-
ing properties of bulk materials. Our study generates
physical understanding of the relation between small and
large systems, as well as leading to plausible inferences
about properties of large systems for which exact calcula-
tions have so far not been possible.

The application of the Hubbard model to finite systems
(clusters) also has a considerable history. The first study
of this type of which we are aware was reported by
Linderberg and Ohrn,'? who considered states of the ben-
zene molecule. Approximate solutions were obtained us-
ing Hubbard’s Green’s-function decoupling method. Heil-
man and Lieb!? later obtained exact solutions for this
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model (a regular hexagon). Shiba and Pincus'* broadened
the scope of cluster investigations by calculating thermo-
dynamic properties (magnetic susceptibility, internal ener-
gy, entropy, specific heat, and spin correlation functions)
of small chains or rings with one electron per site (the
half-filled band). This calculation uncovered interesting
features, an important example being a two-peak structure
in the specific heat, which survive when the number of
sites in the chain or ring is allowed to become infinite.
Cabib and Kaplan'® and Shiba'® extended this work fur-
ther by making calculations for the same kinds of systems
using the canonical ensemble.

More recently, attention has been devoted to systems
with geometries other than rings or chains, and to excita-
tions. Newman, Chan, and Ng'” classified the eigenstates
for the square and tetrahedron according to symmetry
and calculated correlation functions for these systems as
functions of ¢/U. Falicov and Victora'® analyzed the
eigenstates for a regular tetrahedron. Subsequently they
have extended this model through a more realistic descrip-
tion of d bands and applied it to the description of the
photoemission spectrum of nickel.!® Oles, Ole$, and Chao
described ground-state and thermodynamic properties for
a tetrahedron.?® Kawabata has studied the ground state
for an eight-site cubic array?! containing from two to
eight electrons. He found that in certain cases (n=4 and
n=17) the ground state has the maximum possible spin for
sufficiently large U; while for n=35, an intermediate spin
state (“weak ferromagnetism”) was lowest for all values of
U. For other occupancies (n=2, 3, and 6) the ground
state is either a singlet (even #n) or a doublet (odd n). Ishii
and Sugano?? studied the ground state of four-site systems
(tetrahedron, square, and rhombus) including second
neighbor interactions. Ole§ et al. have computed one-
and two-hole excitation spectra for rings of four and eight
sites.??

We previously reported results for the ground-state spin
of three four-site clusters (square, tetrahedron, and
rhombus) and four five-site systems (pentagon, truss,
square-based pyramid, and bipyramid) as a function of the
number of electrons and the parameters of the Hamiltoni-
an.>* We also compared ground-state energies as a func-
tion of the site arrangement to determine the preferred
geometry. Some thermodynamic functions including the
spin susceptibility and the specific heat were determined.

In a gross, qualitative sense, the results we obtain for
systems of different geometries are rather similar (for ex-
ample, two peaks in the specific heat are found in almost
all cases). We shall therefore emphasize here principally
the octahedron (for which we are unaware of previous re-
sults) with lesser attention to a few other systems. We be-
lieve the resemblance between clusters and solids is
greatest for highly symmetric clusters with a three-
dimensional structure. Further, we will concentrate pri-
marily on intermediate values of U/t (many examples
have U/t=10). The octahedron is interesting in that for
six electrons we find many properties similar to those of
bulk antiferromagnets while for n=5 we find both a
high-spin ground state (similar to saturated ferromagne-
tism) for sufficiently large U, and an intermediate-spin
ground state (unsaturated ferromagnetism) in a small

range of intermediate values. These results are presented
in Sec. III. Our methods are described in Sec. II. Section
IV contains a brief summary.

II. METHOD

The Hamiltonian (1) is conveniently considered on a
basis of states |#;,) diagonal in all the occupation num-
bers

nia|ﬁia>:ﬁialﬁia> ’ (2)

where “~ denotes the eigenvalue. Then U occurs only on

the diagonal and ¢ on the off-diagonal terms. The eigen-
values can then be expressed as
E =Ue(t/U), (3a)
or
=te'(U/1), (3b)

where (3a) is convenient if | U | > |7 |, and (3b) is used
for |t | < |U |. There is an electron-hole symmetry. Let
E, denote the energy of a system of N sites and n elec-

trons. We have

E, (—t)=E,(t)+(N —n)U , (4a)
where

n'=2N—n . (4b)

Hence it suffices to calculate E,(¢) for all relevant n and
positive t; the values for negative ¢ can then be obtained
from Eq. (4a). Note that if n =N, the energies are even
functions of .

We constructed a computer program to diagonalize the
Hamiltonian within subspaces of fixed values of S, (or
nt—nl). Since we desired to study different geometric
structures with the same program, we did not form sym-
metrized combinations of basis states. For systems of no
more than six sites, neglect of symmetry does not make
the computer time excessively long. The program was
checked by comparison of the results with those of
Falicov and Victora'® for a tetrahedron.

All the eigenvalues and eigenvectors were obtained. We
used these quantities to calculate the spin susceptibility X
in a canonical ensemble:

fm (5a)

Here n, =n, the number of electrons, if the number of
electrons is equal to or less than the number of sites; oth-
erwise 7y —2N —n. Thus, the maximum possible spin of
the cluster is 3n,. The index j denotes an eigenstate and

m; is given by

mij=5(nt—nl);, (5b)

so that m; represents the azimuthal spin quantum number
S, in units of # for the jth eigenstate. The quantity Z is
the partition function
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Z= ze—BE] >
B=1/kgT , (6)

kg being Boltzmann’s constant, and T is the temperature.
The specific heat is

2
1 2> —BE; 1 —BE;
=m ?Eje j-—’z[?ﬁ‘je 4 (7)
The correlation functions are defined as follows. Let
Ly(N=%5G | (nyy—nu Nny —ny) | j) (8)

in which u and v denote sites. Then we form the thermal
average, denoted

“PELLG) - 9)

(LT =— s

In the systems considered in our calculations so far, the

symmetry is high enough so that L, depends only on the

distance between sites. Then we refer to L, the thermal

average correlation function for a single site; L, is the

first-neighbor correlation function; and L, is the second-
neighbor correlation function.

III. RESULTS AND DISCUSSION

We shall first list the major features of the results
which will be illustrated specifically below.

The ground state of the system shows various kinds of
magnetic behavior that can be qualitatively characterized
as saturated ferromagnetism, unsaturated ferromagnetism,
antiferromagnetism, or paramagnetism depending on the
geometry, occupancy, and Hamiltonian parameters of the
system. Most of this behavior can be qualitatively
predicted or explained by considering the spectrum of
single-particle levels. The arguments are qualitatively
similar to those of the band theory of ferromagnetism in
solids. However, in the case of one electron per site, the
ground state has the lowest possible spin (either a singlet
or a doublet, depending on whether the number of sites is
even or odd). As z=t/U increases from zero, the
ground-state correlation functions generally decrease in a
manner interpretable as showing a transition from local-
ized to itinerant behavior; however, occasionally there are
changes including changes of sign which may occur when
the spin of the ground state changes with z. When there
is one electron per site, the excitation spectrum for large
U clearly shows a Hubbard gap, with the low-lying excita-
tions being just spin rearrangements, and the higher states
involving electron transfer. The gap is not obvious for
small U. When the occupancy is different from one per
site, a gap is still present for large U, but the low-energy
excitations include both hoppings and spin rearrange-
ments. The Hubbard gap apparently disappears for a
smaller value of z than in the half-filled case.

The temperature-dependent magnetic susceptibility
resembles that of bulk systems, showing Curie or Curie-
Weiss behavior at high temperatures. However, no singu-
larities are possible for finite systems at finite tempera-
tures, and at sufficiently low temperature the susceptibili-

ty either goes to zero rapidly (if the ground state is a sing-
let) or becomes infinite according to a Curie law (if the
ground state has nonzero spin). For large enough U, the
specific heat usually has a two peak structure, but oc-
casionally there are three peaks. The magnitude of the
spin correlation functions decreases with increasing tem-
perature, rather gradually for the local moment, more
sharply for functions involving different sites. In some
systems, correlation functions change sign with increasing
temperature.
We will now be more specific.

A. Ground-state spin

Results for systems of four and five sites were given in
Ref. 24. As an example, the results for the tetrahedron
are summarized below in the case of positive ¢ (these are
entirely in agreement with the work of Falicov and Vic-
tora, Ref. 18). For two electrons per site, states with S=0
and S=1 are degenerate for all U/t. In the case of three
electrons per site, the ground state has maximum possible
spin, S =+ (we call this ferromagnetic) for all U/z. For
four electrons, the ground state always has S=0, and for
five and six electrons, the ground state always has
minimum spin (S =+ and S=0), respectively. In con-
trast, for a square we find that the ground state always is
of the minimum possible spin except when there are three
electrons, and z =t /U < 0.055.

The occurrence of the high-spin state for the tetrahe-
dron when n=3 has a simple explanation: the lowest
single-particle ground state is threefold-degenerate so that
three particles of parallel spin can be put in this state.
The electron repulsion term U in the Hamiltonian makes
no contribution to the energy of this state. However, in
the doublet state there is some repulsive interaction and
this state remains at higher energies. However, for the
square the lowest single-particle state is not degenerate,
but the first excited state is doubly degenerate. Therefore
the single-particle contribution to the energy of the three-
particle system is higher (by 2¢) when S =% than when

=+. Therefore, for small U/t, the low-spin state is
preferred, but when U/t is sufficiently large (~18) the
interaction contribution raises the doublet above the quar-
tet.

Let us now consider the two six-site systems, octahe-
dron and hexagon. The single-particle energies and de-
generacies are given in Table I. The spin of the ground
state is given for all occupancies in Table II. Most of
these results have at least a partial qualitative explanation
in terms of occupancy of single-particle levels.

Consider first the octahedron. The lowest single-
particle state is degenerate so two particles can be put in
the triplet state without any contribution from the repul-
sive interaction U to their energy. In the singlet state
there is a contribution and the triplet state is lower. This
much is similar to the case of three particles in the
tetrahedron. An additional particle must go into a
single-particle state of higher energy so that for n=3 the
doublet (which needs only the lowest single-particle state)
has a lower energy than the quartet. (However, this argu-
ment does not demand that the doublet should be the



3708

TABLE 1. Single-particle energies and degeneracies for oc-
tahedron and hexagon. The number in parentheses is the degen-
eracy.

Octahedron Hexagon
—2t (2) =2t (1)
0o 3 —t(2)
4 (1) t(2)
2t (1)

lowest state for all U which actually is the case). In the
case of n=4, all four particles can go into the lowest state
in the case of the singlet, and this is lowest. For n=>5, if
U is small, the doublet will be lowest in energy since only
one electron must be in the second single-particle state.
However, in this case as the interaction increases, first the
quartet, and later the sextet becomes stable. In other
words, there is a small region of unsaturated ferromagne-
tism from, roughly, U/t=9 to U/t=11, and for larger U
there is a saturated ferromagnet. For n=46, the lowest
state for small U corresponds to doubly occupied single-
particle states and the singlet state remains lowest for all
U. For n> 6, it is convenient to think of 12— n holes in a
filled band but with a negative sign for z. In this case, the
lowest single-particle state is nondegenerate. A favorable
case for spin alignment corresponds to four holes, in
which this state is doubly occupied and two spin aligned
holes are in the next (triply degenerate) state. Here, a
magnetic state is found but only for very large U (roughly
U/t>150). The single-particle arguments also indicate
that the low-spin state would be likely to be lowest for
two and three holes, but in the case of five holes it is
perhaps surprising that the quartet state is never lower
than the doublet.

TABLE II. Spin of the ground state for the octahedron and
hexagon as functions of occupation number and z=t/U. Re-
sults are given for t>0. For ? <0, results apply for occupation
numbers n'=12—n.

Octahedron Hexagon
n=2 S=1 all z S=0 all z
n=3 S=+ all z S=%, 2<0.097
S=+, z2>0.097
n=4 S§=0 all z S=1 all z
n=5 §=3, 2<0.089 S=7 all z
S=3, 0089 <z<0.113
S=+, z>0.113
n==6 S=0 all z S=0 all z
n=7 S——-% all z S:% all z
n=2=8 S=1, z<0.0065 S=1 all z
§=0, z>0.0065
n=9 S=+ all z S=3, 2<0.097
S=+, z>0.097
n=10 S=0 all z S=0 all z
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In the case of the hexagon, similar arguments apply. In
this case, the energies do not depend on the sign of 7. The
most favorable case for spin alignment is that of n=4 (or
8) with a doubly occupied lowest state and two aligned
spins in the doubly degenerate next highest state. Here
the triplet state is lowest for all U. An aligned state is
also obtained for U/t> 10 when n=3 or n=9.

These arguments, which emphasize the importance of
degeneracy, can be regarded as an application of Hund’s
rule to the cluster treated as a single “structured atom,”!®
in that when spin degeneracy is resolved by the formation
of multiplets, the state of maximum spin tends to be the
one of lowest energy. The reader should observe the close
relation between this discussion and the ordinary energy-
band theory of ferromagnetism. To appreciate this rela-
tion, make an analogy between a degeneracy of single-
particle states in the cluster and a sharp peak in the densi-
ty of states in an extended system. The occurrence of fer-
romagnetism in metals is favored by such a peak.

However, the present results do not support the simple
idea of band ferromagnetism that a high-spin state will al-
ways have the lowest energy if the repulsive interaction is
sufficiently strong. The situation is more complicated,
and both the occupancy and the geometry are important.
In the case of one electron per site (‘“half-filled band”) the
low-spin state is preferred in all the clusters we have stud-
ied as well as in an infinite system. Even in the case of
partial occupancy (less or greater than half full), in many
cases the low-spin state has the lowest energy. Some ex-
amples of this have been mentioned above, and a particu-
larly simple case occurs in the square with n=2, in which
the lowest singlet state has energy E = —(2V2)t as
U — o0, while for the triplet, one has E = —2z. Hence, no
matter how large U is the singlet state remains lower.

B. Ground-state correlation functions

The magnitude of the correlation functions, computed
in the ground state, tends to increase with U from an
itinerant to a localized limit. These functions may, how-
ever, change discontinuously if the ground state changes.
The results for the octahedron in the half-filled-band case
are shown in Fig. 1. For small z (z <0.165) we have a sit-
uation similar to antiferromagnetism in a bulk solid; a lo-
cal moment close to the maximum value (5 in the scale
used here), and relatively large first- and second-neighbor
correlation functions of nearly equal magnitude but oppo-
site sign (first neighbor negative, second neighbor posi-
tive). These functions slowly decrease as z increases.
However, at about z=0.165 there is a discontinuous
change to a situation with first- and second- neighbor
correlation functions smaller in magnitude; here the
second-neighbor function becomes negative and is close to
zero. There is only a small drop in the local moment.
The transition is due to a change in the spatial symmetry
of the ground state; nondegenerate for z <0.165, triply de-
generate for z>0.165. Because of the weaker first- and
second-neighbor correlations, it is plausible to regard the
transition as analogous to a metal-insulator transition in a
solid.

Corresponding results for the octrahedron with n=>5
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FIG. 1. Local moment (L, left-hand scale), and first- and
second-neighbor correlation functions (L,,L,, right-hand scale)
are shown for the ground state of the octahedron in the half-
filled-band case as a function of z =¢/U.

(half-filled band minus one particle) are shown in Fig. 2.
Here for small z we have a saturated “ferromagnetic”
state as z—0 with the maximum local moment and posi-
tive, large, and equal first- and second-neighbor correla-
tions. At z=0.089, there is a transition from the ground
sextet to a quartet state (unsaturated ferromagnetism),
with correlation functions smaller in magnitude and
second neighbors negative. Then for z=0.113, there is a
further transition to a doublet state (paramagnet) with a
large change in correlation functions (both first and
second neighbors negative, and second neighbors large in
magnitude).

In contrast, the low-spin doublet is the ground state for
all z for a hexagon with occupancy 5. Likewise, no transi-
tion occurs between different ground states in the hexagon
in the n=6 case. Our results for the spin correlation
functions in this case agree with those of Ramasesha and
So0s,% and are not shown here.

C. Excitation spectrum

Energy-level diagrams are shown in Fig. 3 for five and
six particles in an octahedron with U=10¢ (only levels
below 12¢ are shown). Consider the six-particle case first.
A sparse group of low-lying levels corresponding to spin
rearrangements is separated by a substantial gap (roughly
%U ) from a more dense manifold of higher energy states
above it. These higher states contain a substantial com-
ponent of doubly occupied sites.

The parameters of the n=5 case in this example are

1008

L 41006

4004

0.20 ] 1002

1000

0.5

0.10t 1-008

10

L 2 i It A A Q
008 040 0.20 030 040 0.50 0.60 0.80
Z

FIG. 2. Similar to Fig. 1 but with five particles (half-filled-
band minus 1).

such that the S =3 state lies lowest. Note that the set of
low-energy states is more numerous, presumably because
of the possibility of electron motion without double occu-
pancy. The “Hubbard gap” separating the lower and
higher states is smaller than in the case of n=6.

The excitation spectrum determines the thermodynam-
ics of the system. In particular, Fig. 3 leads us to expect a

S=0 S=I S=2 $=3 s 5% s

1201

100}

801

60

Niann (i

a0t

ENERGY

20r N

oo e

I'
I

-20f

I

-a0t

FIG. 3. Energy-level diagram (energies are in units of the
transfer integral ¢) for the octahedron with U= 10¢, and occu-
pancies n=6 (left) and n=5 (right). Levels are classified ac-
cording to spin. Spatial degeneracies are not shown explicitly.
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FIG. 4. The quantity (¢tX)~!, where ¢t is the transfer integral
and X is the spin susceptibility is plotted as a function of tem-
perature in the form of T/t for an octahedron with n=6 and
U /t=10. The dashed straight line shows a linear extrapolation
to an intercept for a negative temperature.

two-peak structure in the specific heat in which the low-
temperature peak is associated with the low-lying states,
and a broader high-temperature peak results from excita-
tion of the high-energy states. This structure is found in
our calculations, as will be described below.

D. Magnetic susceptibility

The reciprocal of the magnetic susceptibility is shown
as a function of temperature for several systems in Figs.
4-—7. We begin by considering the octahedron with n=6
and U/t=10. It will be observed that the high-
temperature portion of the curve is quite linear but that
the intercept is at a negative temperature —®y. In this
case ®y ~0.37¢. This type of Curie-Weiss behavior with

wXx)"

I
FIG. 5. Similar to Fig. 4 but for five electrons in a hexagonal

system with U /t=20.

20y
15 |
1ot
|
(t Xy
05 b
- P . L
00 02 04 06 08 10

FIG. 6. Similar to Fig. 4 but for a system (the tetrahedron
with n=3, U/t=10) with a high-spin ground state. The
dashed line is a linear extrapolation of the high-temperature
behavior.

negative Curie temperature is typical of bulk antifer-
romagnets, and in this respect the small cluster results
resemble bulk materials. However, a least-squares fit at
much higher temperatures gives a positive intercept. At
low temperature (i.e., below the minimum in X ~!) depar-
tures from behavior characteristic of bulk samples are
found. At T=0, the magnetic susceptibility for a finite
system with S=0 in the ground state must vanish, and
hence X ~! becomes infinite.

Figure 5 shows a similar plot for a hexagon with n=5
and U/t=20. The ground state has S :%. In this case,
the high-temperature behavior follows a Curie-Weiss law
with a positive (ferromagnetic) Curie temperature. At
lower temperatures, X! changes slope and shows a
roughly linear portion with a negative intercept of approx-
imately —0.2¢. The curve has a minimum, as would be
expected for an antiferromagnet, but the minimum is
weak. In this case we have an odd number of electrons,

X"

LAl " " i L 1

0]
00 02 04 0.6 08 1.0 1.2

"y
FIG. 7. Reciprocal susceptibility as a function of temperature

for the octahedron with n=5 and z=0.02. In this case, the
scale factor for temperature is U.
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~! must go to zero at T=0, as is

and in a finite system X
shown.

Examples of X ! calculated for a hexagon with n=6
also show Curie-Weiss behavior at sufficiently high tem-
peratures with a positive Curie temperature, although an-
tiferromagnetic spin correlations are found at low tem-
peratures. Two examples of Curie-Weiss behavior of the
susceptibility in systems with a high-spin ground state are
shown in Figs. 6 and 7. Figure 6 shows X~! for a
tetrahedron with n=3. In this case the high-temperature
behavior is quite linear and there is an intercept at a
(paramagnetic Curie) temperature. For low temperatures,
there is Curie-law behavior (rather than Curie Weiss)
which is again a consequence of the finite size of the sys-
tem.

Similar behavior is exhibited by the octahedron with
n=35 as shown in the example of Fig. 7 with z=0.02. In
this case the Curie-Weiss law is accurately obeyed only at
quite high temperature ( T =~ + U) and the intercept is also

large.

E. Specific heat

As remarked previously, the nature of the level spec-
trum leads us to expect a two-peak structure in the specif-
ic heat. This was first noticed by Shiba and Pincus'* in
their calculations for certain rings and chains (including
the hexagon studied here). We find this behavior to be
quite general. Figure 8 shows the specific heat for the oc-
trahedron with n=6 and U/t=10, the same case for
which the energy levels and magnetic susceptibility have
been shown above (Figs. 3 and 4). A second example is
shown in Fig. 9 (the hexagon with n=6 and U/t=10).
The relative positions and widths of the peaks depend on
the geometry, occupancy, and U/t ratio of the system.
Generally for small U /t, the first peak is less distinct, and
may occasionally be reduced to a bump or shoulder on the
high-temperature curve. In some circumstances, three
peaks may be found, as was noted by Cabib and Kaplan. '’
It is characteristic of a finite system that the specific heat
is zero at T=0.

25

00 ; ; .
(0] 2 4q 6 8
A
FIG. 8. Specific heat C (divided by Boltzmann’s constant
kp) is shown as a function of temperature 7, for the octahedron
with n=6 and U/t=10.

251

0.0 n L L L —

FIG. 9. Similar to Fig. 8 but for a hexagon with n=6 and
U/t=10.

F. Temperature dependence of the correlation functions

First, we consider the temperature dependence of the
local moment, L. Our scale is such [see Eq. (8)] that the
maximum value of this quantity is 4. Results for the oc-
tahedron with n=6 and U/t=10 are shown in Fig. 10.
The zero-temperature value for this quantity (0.237) is less
than the completely localized limit, indicating there is still
some itinerancy in this system, even though U/t is fairly
large. Note also that L, does not have its maximum
value at T=0, but rises for small 7 with a maximum near
T=1.1t. (Similar behavior was noted for the hexagon by
Shiba and Pincus'*). The explanation is that several of
the low-lying excited states of the system, particularly
those with S=1, 2, and 3 have larger local moments, i.e.,
are more localized than the ground state. As the tempera-
ture increases, the contributions from these states are
mixed in by the thermodynamic averaging process, and
L, increases. As the temperature increases further, con-
tributions from still higher, less-localized states become
more important, and L, falls towards the itinerant limit
[in this case 0.136 (Ref. 14)]. In the case of a high-spin
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o8 L . - .
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FIG. 10. Temperature dependence of the local moment L,
for the octahedron with n=6 and U /t=10.
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FIG. 11. Similar to Fig. 10 for an octahedron with n=5 and
U /t=10. Note that the temperature scale factor is U.

ground state (Fig. 11), we see only a gradual decrease
from a maximum at T=0 toward the itinerant limit.

The temperature dependence of other correlation func-
tions is more rapid, with these quantities approaching
zero at temperatures relatively much lower than that at
which the local moment is reduced to the itinerant limit.
This behavior was noticed by Shiba and Pincus, and we
find here that it is quite general. We show in Figs. 12 and
13 two examples corresponding to “ferromagnetism” for
the octahedron with n=35; the values of U/t being 50 and
10, respectively. The first case (Fig. 12) corresponds to
saturated ferromagnetism; there is only a rapid decay of
L. In the second case where the ground state corre-
sponds to unsaturated ferromagnetism, not only is the
zero-temperature value much smaller (as is seen in Fig. 2)
than in the saturated, but there is a low-temperature in-
crease by a factor of about 2, followed by a rapid decrease
leading to a change of sign, a minimum, and finally slow
decay to zero. The explanation of this complicated
behavior starts from the observation that at the lowest
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FIG. 12. First-neighbor correlation function L, for the oc-
tahedron with n=5 and U /t=50.
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FIG. 13. First-neighbor correlation function for the octahe-
dron with n=5 and U /t=10.

temperatures, the ground state with S =< is energetically
close to a higher spin state (S =< ) with a much larger
value of L,. These stronger correlations are included in
the thermodynamic average. As the temperature increases
still further, contributions from low-spin, antiferromag-
netic states are mixed in, causing the sign reversal. There-
after the mixture of a large number of states leads to can-
cellations and decay of the function.

First- and second-neighbor correlations functions for
the antiferromagnetic system, the octahedron with n=6
and U/t=10, are shown in Figs. 14 and 15, respectively.
These simply show rapid decay to zero from the T=0
value; the decay being somewhat more rapid in the case of
the second-neighbor function.

It is apparent from the examples shown and from simi-
lar ones we have calculated but do not exhibit explicitly
here, that the first- and second-neighbor correlations de-
cay sharply over a range of temperatures in which there
are only small changes in the value of the local moment.
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-006 Hi

-008 . L

FIG. 14. First-neighbor correlation function for the octahe-
dron with n=6 and U /t=10.
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FIG. 15. Second-neighbor correlation function for the oc-
tahedron and U /t=10.

The explanation is evident from the energy spectra shown
in Fig. 3. The local moment cannot decay substantially
until the temperature is high enough so that states with
appreciable double occupancies of sites can contribute.
This requires temperatures which are an appreciable frac-
tion of U. However, the low-energy excitations involve
spin rearrangements, and as soon as the temperature is
large enough for these states to be excited, the intersite
correlations become small. The correlations between sites
are quite sensitive to temperature; whereas local moment
formation is gradual with a much lower sensitivity to
temperature. This is, of course, characteristic of bulk sys-
tems as well, both from theoretical studies and experimen-
tal observations.

IV. SUMMARY

The principal conclusion of this work is that exact cal-
culations for the ground state and thermodynamic proper-
ties of small clusters show complex magnetic properties in
many respects typical of bulk materials. Specifically, we

3713

find behavior characteristic of paramagnetism, antifer-
romagnetism, saturated ferromagnetism, and unsaturated
ferromagnetism, illustrated in calculations of magnetic
susceptibilities, specific heats, and spin correlation func-
tions.

In a general way, as a sort of summary with respect to
all geometries, occupations, and parameters, low spin
(S§=0 or S =) is likely to characterize the ground state
of the Hubbard Hamiltonian. If there is one electron per
site the ground state will probably show spin correlations
typical of antiferromagnetism. For specific occupancies,
the ground state may have the maximum possible spin.
This situation is favored by the existence of degeneracies
in the spectrum of single-particle states. However, the ex-
istence of degeneracies is not required. Systems of low
symmetry in which the single-particle spectrum has no
degeneracies may have high-spin ground state for some
occupancies and sufficiently strong electron-electron
repulsion.

Many of the examples used in this paper to illustrate
the thermodynamic properties pertain to the octahedron.
We have shown examples illustrating Curie or Curie-
Weiss behavior of the magnetic susceptibility at high tem-
peratures: a two-peak structure in the specific heat and
the temperature dependence of the local moment and of
intersite spin correlation functions. Our results generally
have simple explanation in terms of the level structure. In
future work we will try to compare our cluster calcula-
tions for small systems with those obtained from quantum
Monte Carlo studies of larger systems. We are en-
couraged to believe that exact studies for small systems
offer a means of obtaining substantial physical insight
into the properties of large systems where more exact
analysis has either been impossible or has led to contro-
versial results.
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