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A wave-vector selection rule for photoemission from a semi-infinite periodic solid is derived. The
result serves as a model-independent definition of the bulk photoeffect. It is shown that the bulk
photocurrent density consists of two contributions. The first contribution may be identified with
wave-vector conserving (direct) electronic transitions. The second contribution is due to electronic
transitions which do not conserve the "normal" component of wave vector. In general, the two
types of transitions produce comparable contributions to the photocurrent density. To illustrate the
general results, they are applied to a modified Kronig-Penney model. These calculations illustrate
the bulk dependence of the photocurrent density and the relationship of the angle and energy-
resolved current density to the band structure. It is noted that for certain experimental configura-
tions, e.g., electron detector angles, it may not be possible to discriminate between bulk and surface
effects.

I. INTRODUCTION

The operational separation of the observed photoemis-
sion into bulk and surface contributions is a longstanding
problem. ' A closely related problem is the formulation
of the appropriate wave-vector selection rules applicable
to either the bulk or the surface photoeffects.

The purpose of this paper is to derive and discuss the
wave-vector selection rules applicable to a semi-infinite as
opposed to an infinite periodic solid. In particular, it will
be shown that the bulk photocurrent may be separated
into two terms. The first, which is due to ("direct") elec-
tronic photoexcitations which conserve the three-
dimensional wave vector k, is normally identified with the
entire bulk component of the photocurrent. However, we
shall demonstrate that the second term, which generally is
of comparable magnitude, is due to electronic excitations
which only conserve the component of the wave vector
parallel to the surface, and do not conserve the "normal"
component of the wave vector. It should be noted that
these selection rules apply generally to any semi-infinite,
as opposed to infinite, system. The selection rules are in
no way restricted to photoemission which we only chose
as a convenient particular example to illustrate their valid-
ity. The outline of the paper is as follows.

In Sec. II we derive the wave-vector selection rule. The
derivation is based on the scattering-theoretic formulation
of photoemission and includes a phenomenological elec-
tron extraction length.

In Sec. III, we illustrate the selection rule using a modi-
fied Kronig-Penney model. These calculations illustrate
the relationship between the experimental configuration
and the band structure to be studied, which, in this case, is
that of the modified Kronig-Penney model.

In Sec. IV, we present a general discussion which re-
lates our results to experimental data. This discussion is
followed by a summary of our conclusions.

II. THE WAVE-VECTOR SELECTION RULES

A. Introduction

In this section we derive the wave-vector selection rules
for a semi-infinite periodic solid. We assume the solid to
occupy the negative half-space z &0, and to be invariant
under a group of two-dimensional (lattice) translations of
the surface plane z =0. We shall apply the scattering-
theoretic formulation of photoemission, introduced by
Adawi and employed by several others. ' ' This formu-
lation is reviewed below.

B. Scattering theoretical formulation of photoemission

Consider a single electron bound in a semi-infinite
periodic solid, described by the 'unperturbed" Hamiltoni-
an Ho,

(Ho E)N(r;k, E)=0 . —
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The eigenfunctions N are labeled by the (reduced) wave
vector k, and the energy (band index). However, in view
of the absence of translational symmetry in the z direc-
tion, perpendicular to the surface, N is not an eigenfunc-
tion of the corresponding component of the (crystal)
momentum. Nevertheless, we can label our scattering
basis set by the z component of the (reduced) wave vector
of the single outgoing beam characterizing these so-called
incoming basis functions. We chose to work with the in-
coming rather than the outgoing scattering states because,
as we shall see below, the former are particularly suited to
the discussion of photoemission. Using the minimum
coupling formulation, the effect of the radiation field on
the electronic states

~
k,E) is described by the perturba-

tion,

&& 4&(r';k;, E; )d'r' . (3)

Here fico is the photon energy and Go(r, r';E) is the exact
Green function for the unperturbed Hamiltonian Ho,
which can be represented by means of the "bilinear for-
mula, "

C&„(r)cb„*(r')
Go(r, r';E) = g

For the following, it is helpful to state in some more de-
tail the forin of the eigenfunctions I &5„], of the field-free
Hamiltonian Ho, used in Eq. (4). Each one of these fun"-
tions consists of a single "outgoing" component traveling
away from the surface either in the solid or in the vacu-
urn. We refer to these two types as "outgoing Bloch" and
"time-reversed low-energy electron diffraction (LEED)"
states, respectively. Both types of wave functions include,
in addition, linear combinations of "incoming" waves,
traveling to the surface both in the solid and in vacuum.
These incoming waves assure the continuity of the corn-
plete wave function and of its normal derivative. For the
"outgoing Bloch" states, the index n represents the con-
tinuous wave vector k, ranging over the positive half of
the first Brillouin zone (k, (0), and the discrete energy-
band index. For the "time-reversed LEED" states, the in-
dex n represents the continuous two-dimensional wave
vector, kz, parallel to the surface and the continuous ener-
gy. Both types of wave functions conserve the reduced
two-dimensional wave vector, k, parallel to the surface,
and are eigenfunctions of the energy. Thus for z & 0, the
eigenfunctions of Ho include linear combinations of
Bloch waves of the form,

P(m) exp(ik'="' r)u(r;k~. ,E,k,'" (k,E)) .

mc

where A is the vector potential, and we neglect both the
solenoidal and diamagnetic contributions to the
photocurrent. ' ' ' To lowest order in H' we obtain the
following (first Born approximation of the) wave function
of the electron emitted with a wave vector kf and energy
Ef ——E+%co,

'4i(r;kf, E;+fico)= f Go(r, r', E;+fico)H'

Here, k'"'=(kz, k,'"') and ( n) labels the positive roots of

k, =k, (k,E), (6)

C. Derivation of the wave-vector selection rule

The wave-vector selection rules follow from Eq. (8).
The integration indicated in Eq. (8) extends over all space.
However, it is obvious that over the exterior half-space,
z &0, the integrand decreases exponentially with the dis-
tance from the surface, z. Thus, in the discussion of bulk
photoemission, we may restrict the integration to the
semi-infinite solid proper, i.e., z &0. We shall denote the
corresponding matrix element M~. From our discussion
of the eigenfunctions cia(r, E), we conclude that Ms con-
sists of a sum of terms,

Mz"' '~ exp i k,' ' —kf"' r uf A V+ik; u;d-'r .

This integral can be expressed as an integral over a unit
cell and a lattice sum over the semi-infinite solid. Thus, a
plane-wave component of the vector potential,

A(r) =aoe'q',

contributes to M~ a term,

Mii ~ ifiao g'exp——[i(k; —kf+Q) R„)F .
R„

(9b)

(10)

The primed sum is defined by Eq. (15) below. Here we
siinplified the notation by dropping the indices (m) and
(n) labeling the z- components of the wave vectors k; and
kf. The factor F is an integral over the unit cell corre-
sponding to R„=O,

F= f exp[i(k; —kf +Q).r]uf(r)(ik;+V)u; (r)13r, (11)
unit
cell

and R„ is a (lattice) vector in the lattice spanned by the
basis I ai, ai, a3 I, that is

3

R„= g a;n;, n; =integers .
i =1

(12a)

while u is a periodic function of r. In the vacuum, z & 0,
the eigenfunctions include in addition to the single outgo-
ing plane wave, also combinations of incoming plane
waves similar to the incoming Bloch waves specified by
Eqs. (5) and (6).

The preceding indicates that the wave function 4 on
the left-hand side of Eq. (3), tends to a simple form in the
asymptotic region, z »0. Specifically, the wave function
of a photoemitted electron observed infinitely far from the
solid-vacuum interface is

ik~ r
+(r;kf, Ef ) —e f Mf

Here the matrix element for photoemission is given by

M,f= f 4f*(r',Ef E;+——fico)H'(r')4;(r', E;)d r' . (8)

That is, the final electronic state detected in photoemis-
sion tends asymptotically to a plane wave whose ampli-
tude is given by the matrix element Mf.
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The basis vector a3 is chosen to be normal to the sur-
face plane and hence,

R+ =Peg +z&R3

Similarly, we represent the vectors

r =P+ X =X l a&+X2a2+za3 ~

(12b)

(12c)

Wave vectors are represented in terms of the basis
Ib, , b2, b3I, reciprocal to the basis Ia; I, i.e., a; bj
=2~5;J., and

k =k&+ kz =k l b l +k 2b2+ kz bz

Hence,

k r=k& p+2n. k,z . (14)

Thus, the primed lattice sum in Eq. (10) represents the
formal three-dimensional sum

00 8p 00 Pl 3

In the following we shall be concerned with the inter-
pretation of the "semi-infinite" sum over n3, for this sum

leads to the new selection rules which characterize the
bulk emission from a semi-infinite crystal as opposed to
the photoexcited current in an infinite solid. Physically, it
is convenient to view the semi-infinite solid as the limit of
a slab of effective ividth L, and a surface at z =0: As L
tends to infinity, an increasingly thick slab is being probed
by the physical effect being investigated. Tentatively we
may identify bulk effects, e.g., photoemission, as explicitly
width dependent. Furthermore, they must neither disap-
pear as L ~ op, nor saturate after a small number of unit
cells, n3 —L/Q3.

In photoemission the effective width of the emitting
solid is determined by two phenomenological parameters:
the photon absorption coefficient u, and the electronic ex-
traction length L, . The former is half the probability for
photon absorption in the layer extending from z to z+dz.
The latter is the mean free path for elastic emission of
photoexcited electrons. These parameters are, in princi-
ple, dependent on the directions of propagation of the
photon and electron, respectively. They are treated in the
extreme anisotropic limit, in which the photon absorption
and electron emission only depend on the component of
their respective motions normal to the surface. It is easily
seen that the above effects modify Eqs. (10) and (11) as
follows:

Mii ~(L„a)=i~.F(L„a)g g exp[i(kz, —k f+Q&) p„+2mi (k, ; —k, f+q, )z„+z„a3(L, +a)],
p z = —1

(16)

where

F(L„a)= J exp[i(k; —kf+Q). r+za3(L +ix)]
unit
cell

&& uf (r )(i k; +V )u; (r)d r .

Here, as stated in Eq. (13), the subscripts p and z of the
wave vectors denote their components parallel and normal
to the surface.

Evidently we may combine L, and a into an effective
extraction length or width I,

a
2mi(k, ; —k, f+q, )a +—=ix+e . (20)

Thus we can write the quantity B, introduced above, in
the form

tends to infinity, of the last factor on the right-hand side
of Eq. (19), which we denote B. In Eq. (19) and the fol-
lowing discussion, the wave vectors k; and kf are always
reduced (to the first Brillouin zone). Furthermore, we
simplify the notation, writing a for a3 ——

~
a3 ~, a/L =c

and

'=L, +a .

The more general case of a vectorial L with a nonvanish-
ing component parallel to the surface is treated in Appen-
dix A.

We are now ready to analyze the asymptotic width
dependence of the matrix element, which we reiterate, cor-
responds to the limit of vanishing optical attenuation and
arbitrarily large extraction lengths.

Perforining the sums indicated by Eq. (16), we obtain

Mii Q (L ):=—( 2ir ) i h5(kz, —kz f + Q&)ao.F(L )

a
exp 2mi(k, ; —k, ~+q~)a +——1

B(x,L)= —(e'"+'—1)

Hence, in the limit, as I tends to infinity,

B(x)= lim B(x,L)= lim
ib (x,e)

L~oo ~ 0+ X —l E

where the function b (x,e) tends to the limit,

lX
lim b( e)x=1+—+ .

p~0+ 2I

which is bounded at x =0.
We now apply to Eq. (22) the well-known relation,

oo

lim e "" '"dx = i lim (x ——ie)
~~0+ 0 g~0+

(21)

(22)

(23)

(19)

It remains to discuss the asymptotic L dependence, as L,

= —i P —
+ vari 5(x), (24)

1
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where P denotes the Cauchy principal part. Thus we ob-
tain

lim [exp(ix +e) —1] '=8(x)

= iP(b/x) pro(x—) . (25)

This result can also be stated as

lim [exp(ix +e) —1]=P[exp(ix) —1] '+n5(x) .
o+

We can now discuss the bulk contribution to the matrix
element for photoemission which is given by the "bulk
limit" of mz &(L). Thus, using Eqs. (19)—(25), we obtain

b[2vr(k, ; —k, f+q, )]
lim M~ ~(L) =(2m) ciao —i~F5(k; —kf +Q) —P F ' ' 6(kz, —kz f+Qz)

L. ~oo 2~(k, ; —k, f+q, )
(26)

D. Discussion of the bulk limit
of the matrix element and photocurrent

Equation (26) presents the contribution to the matrix
element for photoemission which persists when the elec-
tronic extraction length tends to infinity and the optical
absorption tends to zero. This corresponds to the limit of
significant photoexcitation arbitrarily far from the sur-
face, and of a reasonable probability for these excited pho-
toelectrons to be emitted across the surface into the vacu-
um. In the next section we shall demonstrate by means of
a model that the qualitative features of the "bulk limit" of
the matrix element already emerge for a relativeIy small
effective extraction length L. That is, we shall show that
the selection rules indicated by Eq. (26) represent a practi-
cal and useful "fingerprint" for bulk photoemission.

The characteristic feature of the "bulk limit" in Eq.
(26) is that it consists of two terms. The first term in-
volves a three-dimensional delta function in k, and
represents the contribution of the so-called direct transi-
tions.

The second term involves a principal part, which is al-
ways associated with the one-dimensional and one-sided
delta function defined in Eq. (24). ' The second factor of
this term is a two-dimensional delta function in the paral-
lel wave vectors kP. It imposes the conservation of the
components of the wave vectors parallel to the surface.
However, the photoinduced electronic transitions contri-
buting to this term do not conserve the component of the
wave vector normal to the surface. We refer to these tran-
sitions as "directlike. ""

It should be noted that quite generally the integrated
contributions of associated principal part and delta func-
tion distributions, such as presented in Eqs. (24) and (26),
are of comparable magnitude. ' Thus, we conclude that
the bulk contribution to the photocurrent is due to
"direct" and "directlike" electronic transitions. And, in
general, these two contributions are of comparable magni-
tude. Therefore, this suggests that in photoemission spec-
troscopy, the "direct" peaks are superposed on a back-
ground due to a "directlike" contribution which may be
misinterpreted as a surface contribution. It follows from

I

Eq. (7) that the photocurrent density is proportional to
~
M;r

~

. It is shown in Appendix 8 that

lim
~

M(L)
~

=
~

lim M(L)
~L~ oo L~ oo

Hence the preceding result, concerning the separate con-
tributions of direct and directlike transitions to the matrix
element, applies equally to the photocurrent. Here we
note that these two contributions are distinct and no
"cross terms" appear in the current.

III. ILLUSTRATION OF THE WAVE-VECTOR
SELECTION RULES

A. The model

In this section we apply numerical methods to analyze
the matrix element for a simple model. The purpose of
these calculations is to demonstrate that the selection rules
for bulk photoemission are indeed satisfied, and that they
are approximately satisfied even for small values of the ef-
fective electronic extraction length I. The calculation
utilizes the modified Kronig-Penney (KP) model for
which the potential V(r) is

0, z)0,
V( r) = ft 2P + (27)

2m a

Here, I' is a dimensionless potential. The lattice parame-
ter previously denoted

~
a3

~

is denoted "a." The surface
is located at b. The three-dimensional potential V(r) is
only a function of z, and hence, the Schrodinger equation
for this quasi-three-dimensional model is trivially separ-
able.

In the following, we also replace the single plane-wave
component of the vector potential, defined by Eq. (9),
with a more complete asymptotic representation of the
field associated with a single plane-wave incident from the
vacuum. That is, following Melnyk and Harrison, ' we
write

EraoTexp[ i (Q&.p+qrz—)]+eLaoL exp[ —i (Q .p+qiz)], z &0,A(r)=- P P

eiaoexp[ —i (Qz.p+qz)]+e~aoR exp[ —i (Qz.p qz)], z & 0 . —
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Here, c,z, c~, cz-, and cI are polarization vectors for the
incident, reflected, transmitted transverse and transmitted
longitudinal electromagnetic fields, respectively. The cor-
responding field amplitudes are ap, apR, apT, and apL.
The wave vectors for these fields are QI ——(Q~, q),
Q~=(Q, , —q» Q~=(Q, qr» and Qi=«, «)»e
wave vector for the transmitted transverse field, Qr, is
obtained from the dispersion relation,

'2

C5

CO

300

200

L/a3 = 25

C
~r(Qr ~) = — Qr. Qr (29) 100

The wave vector of the transmitted longitudinal wave is
obtained from

~l. (QI. ~) =O . (3O)
I

300 60o

The functions ez and eI are the dielectric functions for
the transverse and longitudinal fields derived, e.g. , by
Melnyk and Harrison. '

Thus, the matrix element for photoemission is given by

za I. —'

Mf(k;, E;;L)= f 4f(r, kf)e ' A p4;(r, k;)d r,
mc

(31)

DETECTOR ANGLE

FIG. 1. Angle-resolved energy distribution curves
(AREDC'sj at constant final state and photon energy for a
modified Kronig-Penney model, and several values of the effec-
tive electronic extraction length L/a3. The curves are labeled

by the appropriate L/a3.

where we have included the phenomenological effective
electronic extraction length, which allows us to study the
evolution of the bulk effect with increasing L. It should
be noted that in Eq. (31) the matrix element is an integral
over all space.

B. Numerical results

In the calculations discussed below we used the follow-
ing values for the parameters introduced in Sec. IIIA
above: a =5.65 a.u. , 6 =0.0 a.u. , P =0.30, Vp ——5.56 eV.
These values are characteristic for Na, for which the Fer-
mi energy is EF ——3.24 eV, the work function is /=2. 32
eV, and the plasma energy is Acoz ——5.75 eV. This modi-
fied KP model potential has been used previously by
Schaich and Ashcroft' in an illustration of their quadra-
tic response formulation of photoemission. The same
model was also used by Meyers and Feuchtwang in a dis-
cussion of band-gap photoemission. '

1. The direct transition

Wkp
E; =E; — =E~—Ace —csin 0,

2m
(32)

is scanned over the interval —4(E; (—2.6 eV. The
characteristic features of Fig. 1 are the following:

In Fig. 1 we present angle-resolved energy distribution
curves (AREDC's) for several values of the effective elec-
tronic extraction length L. These plots present the photo-
current per unit solid angle as a function of the angle be-
tween the detector axis and the surface normal. In the
following, we refer to this angle 0, as the detector angle.
The photon energy is Ace=4. 0 eV and the constant final
energy is EI——1.4 eV. ' That is, as 0 varies from 90 to
0' the initial "normal" energy,

(1) The featureless AREDC at low L, develops an in-
creasingly pronounced peak as L increases. This peak
completely dominates the AREDC for large values of

16

(2) The detector angle at which the peak occurs is in-
dependent of L.

These features of the AREDC can be interpreted in
terms of the electronic (bulk) energy band structure of the
modified KP model, presented in Fig. 2. In this figure we
also indicate several transitions which are labeled by the
detector angle 0, at which they are probed. The peak in
Fig. 1 occurs at 0=26 and corresponds to the only direct
transition observable for the particular set of parameters
considered. All the other transitions (two of which are in-
dicated in Fig. 2) which contribute to the AREDC are
"directlike", and not "direct. " The existence of at most a
single direct transition for any given constant photon and
final electron energies is characteristic of our separable
quasi-three-dimensional model.

The calculations were done for a photon angle of in-
cidence of 30 . The calculation is inherently sensitive to
the photon angle of incidence because of the Q depen-
dence of the field amplitudes T and L, in Eq. (28). In
contrast, the Q dependence in the selection rules can be
neglected. The most dramatic illustration of the Q sensi-
tivity of photoemission occurs when the angle of in-
cidence equals (or exceeds) the critical angle, i.e., "total re-
flection" sets in, and the z components of the wave vec-
tors in the metal acquire an imaginary part. We expect
the results above to apply, qualitatively, also for angles of
incidence larger than the critical angle. However, the
sharpness of the direct transition peak should diminish
with increasing angle of incidence, as the delta function,
5( k ' k f +q, ) tends to a Lorentzian

[Im(k, ; —, k) fR+e(q, ) i+Im(q, )]
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2a3 a3J (L) cc exp —2 cos2~b, k, a exp + 1
L L

(35)

0

Equation (35) indicates, in agreement with Fig. 1, that
when

/bk,
a

=25k, a )0. 1

CD

LU

k (z/a3)

EF

and L ) 5a 3, then the contribution of the directlike transi-
tions to the photoemitted current density loses its sensi-
tivity to the electronic extraction length L. That is, both
Eq. (35) and Fig. 1 suggest that the directlike contribution
to the AREDC tends to peak and to become strongly L
dependent as Ak, a 3 ~0, i.e., as the direct transition
peak is approached. However, in contrast, far from a
direct transition peak the directlike and surface contribu-
tions to the AREDC cannot be unambiguously separated.
That is, both contributions fail to conserve the normal (z)
component of the wave vector and both tend to saturate
for small values of the extraction length, L/a3 —1 —2.
The last observation was confirmed by calculations of
AREDC's to which only directlike transitions could con-
tribute. Here it should be reiterated that these contribu-
tions were calculated from the bulk energy-band structure.

FIG. 2. Electronic energy band structure E(k, ) of the modi-

fied Kronig-Penney model. The normal energy, E, is referred to
the vacuum level. The arrows represent typical electronic tran-
sitions, induced by the absorption of a photon of energy Ace=4
eV, and contributing to the AREDC's in Fig. 1. The transitions
are labeled by the detector angle at which they emerge from the
solid. The heavy arrow denotes the only direct transition at this
photon energy while the light arrows represent directlike contri-
butions to the AREDC.

The direct transition peak in the AREDC clearly exhib-
its a dependence on the extraction length, as expected, on
the basis of the discussion in Sec. II above, for bulk
photoemission. We now turn to examine the L depen-
dence of the balance of the AREDC.

2. The "directlike" transitions

~

&k,
~

cz 3 —277
~

kz f —k, ; ~

a )0.08m . (33)

Thus, neglecting the photon wave vector compared to
the electronic wave vectors, we conclude from Eqs. (9),
(19), and (31) that the matrix element

M(k, ,E, ;L) cc [exp(i 2~6k, a +a3/L) —1] (34)

The photocurrent density is proportional to the squared

magnitude of the matrix element,

The direct peak rides on a background, which close to
the peak, is strongly L dependent. This L dependence is
expected for a bulk effect. However, as seen from Fig. 1,
for L9) 40, the background is virtually L independent.
The explanation of the unexpected behavior of this bulk
"directlike" contribution to the AREDC is quite simple.
For 0)40'

IV. DISCUSSION

The wave-vector selection rule specified by Eq. (26)
states that the bulk photoeffect is due to both direct and
directlike photoexcited electronic transitions. These two
contributions to the photocurrent density are comparable,
as illustrated by the calculated AREDC's in Fig. 1.

Thus, we are led to a quasioperational definition of the
bulk photoeffect: A relatively sharp peak in the AREDC
is a signature of bulk direct transitions. This does not ex-
clude the possibility of a surface transition which acciden-
tally conserves k, . However, it asserts that a high proba-
bility of k, conservation is characteristic of a bulk one-
electron photoexcitation. Consequently, any spectral
structure with significant integrated intensity that can be
associated with a wave vector conserving transition may
be interpreted as a bulk effect. Furthermore, these direct
transition peaks can be distinguished from other struc-
tures, presumably due to either strictly surface effects or
bulk-surface interference effects, by their relative insensi-
tivity to surface modifications, e.g. , by adsorbates and de-
fects. The preceding comment clearly refers to effects
that are localized at the surface to within a few interatom-
ic distances. However, the very existence of a surface has
long-range consequences, such as the occurrence of direct-
like transitions due to the breaking of the translational
symmetry normal to the surface. Logically one has to
consider such effects as bulk phenomena characteristic of
the semi-infinite, as opposed to the infinite, crystal. In
other words, in general, surface effects are only those that
are not interpretable in terms of the bulk energy-band
structure and hence, do not probe it. ' There is a high
probability that surface photoexcitations do not conserve
the normal component of the wave vector. However, the
absence of significant structure in the AREDC does not
necessarily exclude the contribution of bulk, directlike
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transitions to the spectrum. The operational disentangle-
ment of the directlike from the surface contributions has
been discussed in Sec. III.

The fact that directlike transitions do not give rise to
pronounced structure in the AREDC suggests that they
may have to be considered only in the analysis of the line
shapes.

V. SUMMARY

Wave-vector selection rules for photoemission from a
semi-infinite crystalline solid were derived. The rules
were derived in terms of a "bulk limit" in which the effec-
tive width L of the semi-infinite sample tends to infinity.
Bulk effects were thus identified as nonsaturating for
small L and persisting for arbitrarily large L. It was
shown that the bulk photoeffect consists of two compar-
able contributions. The first is due to wave-vector-
conserving, direct, electronic transitions. The second con-
tribution is due to directlike electronic transitions that
conserve only the component of the wave vector parallel
to the surface. An illustration of the selection rule was
provided by a numerical analysis of a modified Kronig-
Penney model. The bulk photoeffect was shown to lead to
a peak in the constant final-state AREDC, and the peak
was identified with the direct transition. However, the
calculations suggest that, in general, the separation of sur-
face and directlike contributions to the photoemitted
current density may be more difficult than previously

recognized. It should be emphasized that the selection
rules derived in this paper apply generally to any semi-
infinite as opposed to infinite system. That is, these selec-
tion rules are not restricted to photoemission, which we
chose simply as a convenient example to illustrate our re-
sults.
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APPENDIX A: PROOF OF SELECTION RULE
FOR VECTORIAL EXTRACTION LENGTH

In the text we assumed that both the photoabsorption
and the mean free path for the elastic emission of pho-
toexcited electrons depend only on the normal, or z com-
ponent of the path. We shall now drop this assumption,
i.e., we shall introduce the vectorial inverse effective ex-
traction length,

3

L '= QLJ. bl,
j=1

(Al)

where {b&,b2, b3{ is the basis reciprocal to {a&az, a3I, the
basis introduced by Eq. (12). Instead of the sums over n

&

and n& in Eq. (15), we now have to evaluate the two-
dimensiona1 sum,

»m g g exp 2~i g [(kj; kj f+QJ)nj—+i ~L 'n
~ ]

L &,L2 o n&
———oo n2 j=1

2

lim ( {1 —exp[2~i(ki; kj f QJ+iL—J ')] I
—'+ {I —exp[ —2~i(kj; —k, f—Q iLJ ')] I

—' —1)
j=1L ~0J

(A2)

AppENDIX B: EVALUATION OF lim
i M& a(L) iL ~ao

In this appendix we demonstrate that

~1MB,Q(L)
~

'=
~

»m M~, g(L)
~L~oo L~co

(B1)

where G is a two-dimensional reciprocal-lattice vector.P
That is, conservation, modulo a two-dimensional

reciprocal-lattice vector, of the components of the (re-
duced) wave vectors parallel to the surface is unaffected
by the vectorial inverse extraction length. It is the semi-
infinite extent of the solid in the normal direction that
leads to the partial nonconservation of the normal com-
ponent of the wave vector even in the limit L3 + 00.

The extension of the preceding results from the semi-
infinite solid to the finite-sized crystal is obvious, and is
therefore omitted.

That is, the limit L ~ ao is well defined, even though it is
applied to products of distributions rather than ordinary
functions. In order to interpret the right-hand side of Eq.
(B1), we note that

lim M(L) = lim
b(x, L)

L~oo l. (x ia /L)—
P —+~i 5(x)

b

X

p
X

+ [vr6(x)] (B2)

where x =2~(k, ; —k, f+q, ) and P(1/x)6(x)—:0. We
now have to interpret the squared distributions in Eq.
(B2). First, we note the well-known differential formu-
la, '
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1P
X

1P
dX X

(B3) lim M(L) =P I
b

I

2

+ 2[tran(x ) ] (B7)

1P X= lim
oX +e

and the definitions of P(1/x), 6(x):

(B4)

=P I
b

I

X
+2—tr5(x) .

L
a

(B&)

X

X 2 2

= lim
o (x 2+ ~2)2

tr5(x) = lim
6

~~o X +e
Hence,

1
P

X

2

(BS)

—[tr6(x ) ] . (86)

b(x L
lim IM(L) I'= lim

L~oo x +(a/L)

=P +2[tr5(x)]

Finally, applying once more Eqs. (BS) and (B6)

(B9)

Next we apply the standard interpretation of the square of
the delta function, ' to reduce Eq. (B2) to Combining Eqs. (Bg) and (B9), we obtain Eq. (B1).
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