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Monte Carlo simulation of the growth of wetting layers
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We present the first Monte Carlo study of the dynamics of the formation of the wet phase far

from the wetting transition for a short-range attractive wall potential.

A nearest-neighbor,

simple-cubic, ferromagnetic Ising lattice gas with single spin-flip dynamics in a slab geometry
(L xL cross section) is used. We show that there are two distinct dynamical regimes with cross-
over from fluctuation-dominated logarithmic growth for large L and short time ¢ to quasi-one-
dimensional diffusive growth for small L and large ¢. For any finite system, the long-time behav-
for fi.e., £>> L*[In(L)?]} is predicted to always be quasi-one-dimensional diffusive in nature.

The physics of interfaces between coexisting phases
represents an important topic of broad fundamental and
applied interest.'-® Considerable current research focuses
on the influence of external perturbations, such as the in-
teractions introduced by the presence of walls (or sur-
faces) which preferentially favor formation of one phase
over the others.? Depending on the strength and range of
these perturbations, a wetting phase transition has been
predicted theoretically® and observed experimentally in
systems involving fluids and fluid mixtures.® These wet-
ting transitions are also related to the delocalization of in-
terface or domain wall depinning? in magnetic materials.

The static and dynamic nature of these phase transitions
has been subjected to extensive investigation including
mean field theory,?* renormalization group,®® Monte
Carlo simulations, >’ and experiments.>? In this paper, we
present, to our knowledge, the first Monte Carlo study of
the wet phase far from the wetting transition for short-
range attractive wall potential.

We consider a nearest-neighbor ferromagnetic Ising
model on a simple-cubic lattice with a geometry of
L xL x40 for L =8-24. There are two free (100) surfaces
and periodic boundary conditions in the remaining two
directions. The exchange constant is J in the bulk and J;
in the surface planes. The bulk magnetic field is H with a
field H+ H, and H + H,4 acting on the top and bottom
surface planes, respectively. We have considered the case
with J/kT=0.25, J,/J=0.5, H=0, H,/J=—5.0, and
H4o/H,= —3.5. The precise values of the surface fields
are not crucial but are chosen to ensure the formation of a
single interfacial profile which matches smoothly into the
bulk values as the bottom surface is approached. These
parameters also put the system in the wet phase far from
the estimated transition value of —H,/J=(1.3-1.4). Un-
der these conditions, the wetting transition is continuous
(critical). Note also that the bulk system with
J/kT=0.25 is above the roughening transition tempera-
ture® (J/kT,=0.4). Thus, the interface in our study is
rough and the dynamics is not expected to be dominated
by the layering transitions. ?

The initial configuration is always a uniformly ordered
state, modeling a bare substrate. Standard single spin-flip
updates with sites chosen at random are used.!® As the
simulation progresses, a wet layer begins to form and

k-]

grows, producing a density profile which evolves with
“time” t. The profile is recorded and ensemble averaged
over many samples to obtain m(Z,t), where Z is distance
from the top. The number of samples ranges from 60 to
3000 for times up to 5760 MCS (Monte Carlo steps per
site) with the smaller number of samples used for larger
lattices and longer times, resulting in larger statistical er-
rors. Our results also indicate the absence of self-
averaging which means that we then require a large num-
ber of samples even for large system sizes.

The evolution of the ensemble-averaged profile m(Z,t)
for L =8 is presented in Fig. 1 for t =20-2400 MCS. The
broadening of the averaged profile is a consequence of the
ensemble average of the interfacial motion. One simple
measure of the dynamics of film growth is the time depen-
dence of the position Zo(L,t) for which m (Zy(L,t)) =O0.
A wide range of system sizes (L =8-24) is considered and
two distinct dynamical regimes with finite size-dependent
crossovers are observed. For short time (¢), a logarithmic
time dependence is observed as shown in Fig. 2. This re-
sult is consistent with fluctuation-dominated growth.?>
The interfaces, being in the rough phase, contain fluctua-
tions which will lower the free energy by moving away
from the surfaces. The amplitudes of these excitations
(due to roughening) are expected to be proportional to
In(L).! For zo(L,t) > AIn(L) (the interface far from the
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FIG. 1. Time evolution of the ensemble-averaged density pro-
file m(Z,t) for 8 x8 x40 lattices for ¢: O =20, + =120, ® =600,
A =960, 0=2400 in units of updates per site (Monte Carlo steps
per site). The solid line shows the bulk magnetization.
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FIG. 2. Ensemble-averaged position of the interface Zo(L,t)
(see text) vs In(¢) for L X L x40 lattices. ¢ is in units of 100 up-
dates per site. The size dependence of the crossover Z2(L) (see
text) is given in the inset.

surface) the interfacial fluctuations do not interact with
the surface and are no longer relevant. The dynamics then
crosses over into a quasi-one-dimensional diffusive regime
with Zo(L,1)~~/t /L% The Vi dependence is a conse-
quence of the interface executing quasi-one-dimensional
random-walk behavior with the cross section of the (L X L)
interface playing the role of an effective mass. For dif-
fusion in an infinite one-dimensional system, the average
interfacial displacements would be zero by forward and
backward symmetry, but the root-mean-square displace-
ments would increase as v/z. For our system, the presence

of the surface breaks the symmetry, resulting in the 7

dependence for the average interfacial displacement.
Since in this motion L ? sites move together like a rigidly
locked object, we suggest the diffusion constant, which is
inversely proportional to the mass of the diffusing object,
for this coherent interface motion varies as 1/L2. These
excitations can be considered to be the realization of the
uniform Goldstone modes in the capillary wave spectrum.
In this one-dimensional diffusive regime, the probability
distribution for the position Zy(z) is independent of the
size of the system. L dependence enters via the diffusion
constant of the interface. This implies the absence of self-
averaging as discussed recently'! in the kinetics of domain
growth. A large number of samples is thus needed to ob-
tain accurate results even for large system sizes.

The position Z§(L), where the behavior crosses over
from In(z) to V7 is taken to be approximately the point of
departure from the straight line in Fig. 2, and the finite
size dependence of this point is shown in the inset of the
same figure. Although the range of L for which the cross-
over is observed is limited (L =8-18), and Z§ (L) can only
be estimated within reasonable errors, the behavior ob-
served is consistent with a logarithmic behavior. In Fig. 3,
we have plotted the same data to exhibit the vz regime.
The size dependence of the amplitude is given in the inset

FIG. 3. Ensemble-averaged position of the interface Zo(L,?)
vs V1 for L XL %40 lattices. ¢ is in unit of 100 updates per site.
The size dependence of the slope S(L) is given in the inset. The
lines indicate a 1/L? dependence.

and is consistent with a 1/L? dependence in the large L
limit.

One important implication of these numerical results is
the role played by the finite size of the system. For any
film with thickness Zo>1In(L) (i.e., for the long-time be-
havior) quasi-one-dimensional diffusive dynamics is al-
ways expected. The logarithmic time dependence is
relevant only for thin films or short time 7. Analytical re-
sults such as mean-field theory always take the thermo-
dynamic limit (L — <o) and thus exhibit only the logarith-
mic time dependence for all time.

Recently, it was shown!? that a logarithmic growth law
[Zo(t) ~In(¢)] can also be obtained from deterministic
mean-field theory, i.e., without arguments based on inter-
face fluctuations. The physical argument is as follows: In
the wet phase, the interfacial profile at finite distance from
the surface produces a mismatch of the order of
expl—Zo(t)/£] to the boundary condition at the surface
where £ is the correlation length. This mismatch raises the
free energy and acts as a driving force to the growth of the
wetting layers producing a logarithmic growth law. This
type of mechanism is an alternative to the fluctuation-
dominated processes in explaining the logarithmic growth.
For this process there should not be a dependence on the
size of the system (L); however, the size dependence which
was observed in the simulations for the range of sizes con-
sidered seems to indicate that this latter mechanism is not
important.

These results are obtained for a wet phase which is far
from the related wetting transition, which is continuous. It
is expected to be valid also for a wet phase far from a re-
lated first-order wetting transition. The nature of the dy-
namics near the transition is an important related problem
which will be considered elsewhere. There, the order of
the transition is expected to play a crucial role in the
dynamical properties.

The range of the surface potential has been shown to be
relevant in the static? and dynamic®’ properties of the
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wetting transitions. In this paper, only a short-range wall
potential is considered, but extensions to long-range poten-
tial would be of physical interest. It has been suggested?
that for long-range van der Waals forces, the logarithmic
growth law is replaced by a power law Z,(¢) ~t'4. We
conclude that in this case, in a system of finite extent
(linear dimension L parallel to the surface) a crossover to
one-dimensional diffusive behavior of the interface would
occur at a time of t ~L?, i.e., for a layer thickness of order
L2, while for the logarithmic growth case, the crossover
occurs already for a thickness of order In(L) [at a time of
t ~L*In(L)?]. For the case of conserved order parameter,
it was suggested'? that Z(z) ~1'/8, which would already
be overtaken by the diffusive one-dimensional motion
Zo(t)~1"2/L? at a time of t ~L 9% and a layer thickness
of L3 i.e., then the interface has moved away from the
wall a relatively small amount, only ~L ~'/3. In general,
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if one has a growth law Zo(¢) =¢* with x < + for L — oo,
crossover should occur at a thickness of Zo ~ L 4*/(1=2x)
(Ref. 14).

Finally, we note that our dynamical results have
relevant implications for computer simulations of equilib-
rium properties of wetting. We have observed the rather
long equilibration time needed to form a macroscopic wet-
ting film, with intricate dependence on the system sizes
and range of the surface potentials. The absence of self-
averaging combined with slow relaxation implies that con-
clusions drawn concerning static equilibrium wetting prop-
erties using limited simulations must be considered with
caution.
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