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Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces
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A field-asymmetric offset of the hysteresis loop in ferromagnetic-antiferromagnetic sandwiches,
one of the manifestations of so-called exchange anisotropy, can be predicted from the presence of
random interface roughness giving rise to a random field acting on the interface spins. The anti-
ferromagnet breaks up into domains of size determined by the competition of exchange and an ad-
ditional uniaxial in-plane anisotropy, and this size sets the scale for averaging of the random field.

A ferromagnetic film exchange-coupled to an antiferro-
magnetic film exhibits a complex of unusual properties
such as a hysteresis loop whose center can be shifted away
from zero field. These properties have been interpreted as
arising from an effective "exchange field" HE or, equiva-
lently, from a "unidirectional" anisotropy energy

Kissing,

where 8 is the polar angle of the ferromagnet's magnetiza-
tion MF with respect to the anisotropy axis, and where
EE HEMp. This form contrasts with the more con-
ventional time-reversal-symmetric uniaxial anisotropy
ECsin 8, and it is usually called "exchange anisotropy" be-
cause it arises from the exchange coupling between the two
layers. Although exchange anisotropy has been intensively
studied both theoretically and experimentally, ' '2 no
theory has yet succeeded in predicting its order of magni-
tude. "

Here I propose a novel mechanism for exchange anisot-
ropy which postulates a randomness in the exchange in-
teractions at the ferromagnetic-antiferromagnetic (F-AF)
interface, arising, for example, from interface roughness.
These random exchange interactions act like a random
field on the antiferromagnet (AF) and form domains rem-
iniscent of the so-called "Imry-Ma domains" of the
random-field problem. ' While consistent with the origi-
nal suggestions of AF domains by Kouvel and Neel, this
mechanism goes a step further to give the first semiquanti-
tative predictions for the size of the exchange anisotropy
and related phenomena in agreement with experiment.
The model also opens up a rich new class of problems in
disordered magnetism where interfacial or two-dimen-
sional disorder interacts with neighboring order in the
bulk. In other words, these are problems involving a mix-
ture of two- and three-dimensional efects. By contrast,
earlier theories in surface or interfacial magnetism' have,
by and large, been limited to one-dimensional models, i.e. ,
to the assumption of uniformity along the interface and of
perpendicular variations only.

The context for calculating the exchange anisotropy
field is shown in Fig. I, where a domain wall in a uniaxial
ferromagnet is driven by an applied in-plane field H. If
the interfacial energy with the AF differs for the two
domains, then the exchange field is determined by the bal-
ance of the applied field pressure 2HMF t~ and the
effective pressure from the interfacial energy difference
ho:

HE hcrl2MFiF .

Here Mp and tF are the magnetization and thickness of
the ferromagnet. Thus the problem reduces to calculating
the interfacial energy difference between the two fer-
romagnetic orientations.

Several general materials requirements for obtaining ex-
change anisotropy can already be deduced at this point.
There must be some initial breaking of time-reversal sym-
metry. This is usually obtained by cooling the AF through
its ordering temperature while the ferromagnet with a
higher-ordering temperature is single-domained by an ap-
plied field. Further, once this process is complete and a
domain wall is dragged through the ferromagnet, the un-
derlying AF structure, at least away from the immediate
interface, must remain fixed. Otherwise the interfaces of
both ferromagnetic domains can relax to their lowest-
energy states, which are the same by time-reversal symme-
try, and the effect disappears. Thus we must calculate the
energy difference between two opposite ferromagnetic
configurations with the same bulk AF configuration.

Another important requirement is on the orientation of
the bulk AF moments. If they are colinear and point per-
pendicular to the interface, then no matter what the spin
structure at the interface, an equivalent energy con-
figuration can be generated by keeping the same perpen-
dicular spin components but inverting all the planar com-
ponents. Again the eff'ect disappears. So we must have ei-
ther a noncolinear antiferromagnet or an anisotropy which
holds the bulk AF moments in the plane. This anisotropy
must have components in the plane to prevent simple rota-
tion and keep the bulk fixed as required above. In what
follows, an in-plane bulk AF orientation will be assumed.
Further details on spin Hop to the perpendicular orienta-
tion and on the interesting case of noncolinear antifer-
romagnetism will be considered elsewhere.

Previous understanding of exchange anisotropy is based
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FIG. 1. Schematic side view of ferromagnetic-antifer-
romagnetic sandwich with ferromagnetic domain wall driven by
an applied field H.
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FIG. 2. Schematic side view of possible atomic moment
configurations in a ferromagnetic-antiferromagnetic sandwich
with a planar ferromagnetically coupled interface indicated by
the dashed line. Frustrated bonds are indicated by crosses. The
unfavorable configuration of (c) can reduce its energy by form-
ing a planar antiferromagnetic domain wall as in (d).

largely on the assumption of idealized planar "compensat-
ed" or "uncompensated" interfaces. ' If, as shown in Fig.
2(a), the first AF plane next to the interface is compensat-
ed, that is, if the AF sublattice structure is such as to give
equal numbers of the two opposite spin directions at the in-
terface, then the net field exerted on the ferromagnet by an
assumed ferromagnetic exchange J; across the interface is
zero. (Here we define Ekt = —J;Sk St per pair of
nearest-neighbor spins kl at the interface. ) On the other
hand, if the first AF plane is uncompensated, as shown in
Figs. 2(b) and 2(c), with all interfacial spin directions the
same, there is an interfacial energy difference h, a per unit
area favoring one ferromagnetic orientation over the other.
This is just 2J;/a, assuming a simple cubic structure with
lattice parameter a. Equation (1) then gives HE =J;/
a MFtp.

Unfortunately, reasonable estimates of the relevant pa-
rameters give predictions of HE which are two orders of
magnitude too large. ' For example, in the system of fer-
romagnetic Nio sFeo 2 (permalloy) on antiferromagnetic
FeMn, ' it is plausible that the interfacial exchange in-
teraction should be comparable to the effective exchange
interactions of FeNi or FeMn, namely, of order 10 ' erg.
But observed hysteresis loop offsets HE of order 50 Oe in
sandwiches with permalloy thickness 400 A, magnetiza-
tion 4nM =10000 6, and nearest-neighbor distance 2.5 A,
imply J; of only 10 ' erg. To explain this factor-of-100
discrepancy, one could try to invoke a "pinhole" effect
in which some unspecified surface contamination breaks
99 out of 100 exchange interactions, but the consistency of
experimental results points to a more intrinsic mechanism.
Drastically reduced interfacial exchange J; is also not
plausible, nor is any unit cell in the real crystal structures
suf5ciently complex to permit a 99% compensated AF
plane.

A more reasonable estimate for HE comes from allow-
ing a planar domain wall to form at the interface with the
unfavorable ferromagnetic orientation, ' in analogy to
well-known phenomena in ferromagnetic sandwiches. ' '
This domain wall could be either in the AF, as illustrated
schematically in Fig. 2(c), or in the ferromagnet, wherever
the energy is lower. For example, if the AF has an in-plane
uniaxial anisotropy energy Kz and exchange stiffness
Aq =Jq/a, the AF domain-wall energy has the well-

known value'6 4+A~K~, provided the AF is assumed to
be infinitely thick. Since this energy represents the
difference between the interfacial energies of the two fer-
romagnetic orientations, Eq. (1) now gives

HE =2QAgKg/MFtF .

This prediction is significantly smaller than the previous
estimate by the factor 2a +A~K~/J; and thus, for the first
time, off'ers a possible micromagnetic origin for exchange
anisotropy. If we assume all exchange parameters are
about the same and take A =J/a, then the reduction fac-
tor is just 2a/v'A/K, that is, twice the ratio of the lattice
parameter to the standard micromagnetic domain-wall
width parameter' JA/K. Since the wall can be either in
the ferromagnet or in the AF, K is the lesser of the two an-
isotropies. A typical permalloy planar anisotropy of
1.6X10 erg/cm would give exactly the factor-of-100
reduction needed.

Nevertheless, this model suffers from the assumption of
the atomistically perfect uncompensated boundary ex-
change, which is unlikely in practice. Any monatomic step
in the surface will change the sign of the interactions and
create a situation similar to a compensated interface.
Therefore, naively one might expect the interface energy
to decrease to zero as the number of defects increases. As
we shall see next, consideration of a randomly disordered
surface actually can lead to a finite value for HE and one
which has essentially the same parameter dependences as
Eq. (2). Let us then consider a rough (nonplanar) inter-
face, starting with a single monatomic bump in the com-
pensated simple cubic interface as shown in Fig. 3(a).
One ferromagnetically oriented nearest-neighbor pair
across the interface is now replaced by five AF-aligned
pairs, for a net antiferromagnetic deviation of 6 away from
perfect compensation. A bump shifted by one lattice spac-
ing as shown in Fig. 3(b), which corresponds by symmetry
to the opposite ferromagnetic or AF domain, gives, simi-
larly, a net ferromagnetic deviation of 6 away from perfect
compensation. Thus a net energy difference of z;J;, with
z; =12, acts as the interface, favoring one domain orienta-
tion over the other. This simple example suggests then
how interface roughness can give rise to breaking of time-
reversal symmetry, provided the AF configuration remains
fixed.

A more detailed model reduces some~hat the estimate
of this local energy difference. For example, it is easy to
see that by inverting the spin in the bump of Fig. 3(a), the
interfacial energy difference is reduced by S x 2J; at the
cost of generating one frustrated pair in the AF layer just
under the bump, as shown in Fig. 3(c). This AF frustrated
pair increases the energy difference by 2J&, where Jz is
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FIG. 3. Schematic side view of possible atomic moment
configurations in the ferromagnetic-antiferromagnetic sandwich
with a nonplanar interface. The bump should be visualized on a
two-dimensional interface. Configuration (c) represents a lower
energy state of (a). The shifted bump of (b) is energetically
equivalent to flipping the ferromagnetic spins of (a).

the AF exchange constant. Thus the energy difference be-
tween the two domains becomes only 2J;+2J& or roughly
4J if J;—J~ —J.

If one further allows localized canting of the spins, one
can expect the energy diff'erence to be reduced somewhat
further. The detailed solution of this problem is complex
and depends on the specific parameters J; and J~, as well
as the crystal structure (e.g. , fcc rather than simple cubic)
and the ferromagnetic exchange Jp since the ferromagnet-
ic layer may also cant at the interface. For our purposes it
will be sufficient to assume that associated with each inter-
face irregularity is a local energy difference between the
two domains whose sign depends on the particular location
of the irregularity and whose local magnitude is on the
average 2zJ. Here z is a number of order unity as suggest-
ed by the above model, and J is the magnitude of the ex-
change constant assumed to be similar at and on either
side of the interface.

The next key physical insight is that for an interface
which is random on an atomic scale, the local unidirection-
al interface energy crt +'zJ/a will also be random,
much as in the Imry-Ma random-field problem, ' and its
average cr in a region of area L will go down statistically
as cr —ot/JN, where N =L z/a is the number of sites pro-
jected onto the interface plane. This argument is quite
general' and so, in principle, not only interface roughness
but also other mechanisms such as random alloy effects
could do. Here also is the key difference with Kouvel's
earlier model of AF domains: He simply averaged over
an unknown distribution of domain sizes and parameters
rather than using the randomness to determine the domain
size, as we do next.

Given the random field and assuming a region with a
single domain of the ferromagnet, it will now be energeti-
cally favorable for the AF to break up into domainlike re-
gions, as pictured schematically in Fig. 4(a), to minimize
the net random unidirectional interfacial anisotropy. The
situation is analogous to the classic Imry-Ma domains' of
the random-field problem, except that here the random
field is at an interface while the competing domain-wall
exchange (and possible uniaxial anisotropy) energies are

FIG. 4. Schematic perspective view of antiferromagnetic
domains (dashed lines) stabilized by a net (locally averaged) in-
terface field surrounded by regions of net oppositely directed in-
terface field. In contrast to Figs. 2 and 3, this figure is macro-
scopic, with the arrows indicating not the atomic but only the
global ferromagnetic and antiferromagnetic moments. (a)
represents the small and (b) the large domain-size limit.

in the bulk. Of course, we have assumed that the AF
configuration in the bulk is fixed; so in eA'ect we are con-
sidering here the initialization of an AF domain pattern as
the AF is cooled through its ordering temperature.

Since approximately half the AF interface exchange
field points in each direction, a simple model is a square
grid with lateral dimension L and depth h, as in Fig. 4(a).
Then the approximate interfacial energy (per area of the
F-AF interface) is

' 2 ' 2r

2zJ+i J 1 na
naL 2 h

h+ na
a

g
h (3)

a

Here the first term represents the stabilizing (negative)
net random interface anisotropy energy, with a factor 2/tr
from averaging the spin component along the interfacial
exchange field in a one-dimensional linear-rotation ap-
proximation 0=trx/L to the domain structure. The second
term represents the competing exchange energy J(68) /2
with its vertical and horizontal components estimated in
the same linear approximation. Minimizing the energy
with respect to h, we find h =L/2, showing that the
domain height is comparable to its lateral dimensions.
Substituting this result back into Eq. (3), we find o =(tr
—2z)J/traL. Thus, both interface anisotropy and ex-
change terms go inversely with L. Even with the factor-
of-2 accuracy of the above approximations, the x term
will certainly be larger than 2z, and then it will be favor-
able for the domain size L to expand to lower the energy.
This case corresponds to the case of critical dimensionality
in the Imry-Ma random-field problem, ' and small addi-
tional energy terms can now play a dominant role.

In particular, a term like a uniform in-plane uniaxial an-
isotropy energy K in the AF layer, will limit the domain
size. To see this, we note that a large domain will no
longer consist of uniform rotation dictated only by ex-
change, as in the small-domain limit treated above. In-
stead the domain wall is confined by the anisotropy to a
width trdA/K, which is by assumption much smaller than
the domain diameter L. As shown in Fig. 4(b), the surface
tension 44AK will then equalize curvature everywhere
and create a hemispherical bubble domain, assuming verti-
cal incidence of the wall on the F-AF interface. The total
energy of the bubble is then the total interfacial stabiliza-
tion energy = —JxzJL/2a plus the total hemispherical
surface energy 2trdAKL z.
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HE 2z JAK/tr MFtF (4)

This form is remarkably similar to Eq. (2) and therefore
equally able to explain the order of magnitude of the ex-
change anisotropy eA'ect, provided an appropriate uniaxial
anisotropy K is present in the antiferromagnet. ' This
similarity rejects the fact that fundamentally both pic-
tures have characteristic domain-wall energies at the inter-
face. In principle, they could be differentiated if the vari-
ous exchanges J;, J~, and Jp were substantially diA'erent,
as can be easily shown by keeping track of these parame-
ters in the above calculation.

With a sea of these bubbles covering half the interface,
the energy per area (that is, dividing by L ) has a negative
term going as 1/L and a positive constant term. Therefore
the domains tend to contract until the size equals the wall
width trJA/K. Squeezing the domains further causes ex-
change energy to mount over anisotropy energy and re-
store the limit of Eq. (3), where the domains prefer to ex-
pand Th. us the condition L =trJA/K, which is also the
crossing point between a volume and a surface type of
domain exchange energy, gives equilibrium. It is
noteworthy that JA/K will be independent of temperature
to a first approximation when both 2 and K go as the
thermal average of S . Then L = trJA/K will give a good
measure of the frozen-in AF domain size, even at room
temperature.

Once these domains are fixed, flipping the ferromagnetic
orientation causes an energy change per unit area of
t5.cr=4zJ/traL with L now determined as above. Finally,
then, Eq. (I) gives the predicted exchange anisotropy field

Further diff'erences between these pictures arise because
the random-field model and its consequent lateral inhomo-
geneity more naturally explain the observed coercivity and
remanent phenomena which appear as the ferromagnetic
domain is cycled back and forth. AF domain walls ex-
perience coercivity just as ferromagnetic domain walls do,
except that in bulk antiferromagnets there is no easy han-
dle to probe that coercivity. In the F-AF sandwich, cou-
pling of the ferromagnetic domain wall to the underlying
structure can put pressure on the AF walls and cause them
to move slightly, generating coercive loss. But as in the
classic ferromagnetic Rayleigh loop, one must assume
that the AF coercivity is still su%cient to hold most of the
underlying domain pattern in place. This is, in fact, just
Neel's original model, in which he postulated an AF
domain structure without being able to give a micromag-
netic derivation for the size of the eA'ect as I have done
here.

In summary, I have given the first derivation of ex-
change anisotropy which plausibly estimates the size of the
eA'ect in terms of fundamental parameters of the com-
ponent films and interface. The derivation involves exten-
sion of classic random-field concepts to an interesting new
regime. Clearly further work is called for, both to extend
the model and to test it by determining relevant parame-
ters and looking for the antiferromagnetic interface struc-
ture directly.
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