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Magnetic properties of the two-dimensional n =0 vector model
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We determine the magnetic properties of the two-dimensional n 0 vector model using
transfer-matrix calculations and finite-size scaling. In the high-temperature region, we obtain re-
sults similar to the mean-field picture. In the low-temperature region, we find a very different be-
havior with a susceptibility which is always negative and an infinite spontaneous magnetization.
This is shown to be in agreement with some works of Nienhuis. The physical interpretation is dis-
cussed.

The properties of self-avoiding walks (SAW's) can be
obtained by considering the n =0 limit of the n-vector
model' and this correspondence has been the basis of
many calculations in polymer physics, although more
direct approaches have also been developed.

Apart from being this useful intermediate, the n 0 vec-
tor model is of some interest in itself. Substantial work
has been done to determine the nature of its transition
and to study the different thermodynamic instabilities
which may appear. ' The magnetic properties of the
low-temperature phase have also been much discussed and
several questions remain open. First, one may wonder
whether there is a spontaneous magnetization and what is
its behavior. ' A related intriguing point concerns the
longitudinal susceptibility X. Several arguments (see Ref.
15, and references therein) suggest that —at least for n in-

teger and d & 2—the (n —1) Goldstone modes transvers-
ing to the spontaneous magnetization make Z diverge in
small magnetic fields h like

g—(n —1)hd/2 —2 T & Tc h~ 0

If n =0 in formula (1), one finds that X becomes negative
when the coexistence curve is approached. Although a
negative susceptibility has no consequence on the stability
of the polymer problem, "' ' several authors have sug-
gested that formula (1) cannot be applied for n & 1 and
that Z must remain positive. Approximate calculations
where this is indeed the case have been produced. "'

In this paper we study these questions in the two-
dimensional case. We shall first recall some general re-
sults which have been obtained by Nienhuis. ' Using a
series of model transformations, this author has shown
how a particular O(n) model on the hexagonal lattice can
be mapped onto a Coulomb gas. The properties of the
critical point can be deduced from this mapping and the
exponents obtained in this way are in good agreement with
numerical estimates, especially for the polymer problem
(see Ref. 17, and references therein). In addition, the
mapping is expected to also give the spin correlation func-
tion in the low-temperature phase when the magnetic field
vanishes. ' Parametrizing,

Nienhuis has suggested that —at least for n & 1 (Ref.
16)—this correlation function behaves like (StS/)—~i —j~,where

—x+2 g =1+ +—3 t
4t 4

(2b)

As far as one knows, this result has never been tested nu-
merically.

If we now apply these formulas to the case n -0, we find
t -4, y ',6, and x —,', . This negative value of x corre-
sponds to a correlation function increasing with the dis-
tance, a behavior which is observed in other cases, for in-
stance, the Lee-Yang problem. ' Then the scaling rela-
tions give

4 h 16/35

m —h, T&T, h~0
(3a)

(3b)

h
—3s/3s

h
(3c)

pP = —pcs; s/
—hps (4)

(ij) i

where s is a n-component classical spin and g,"-~ (s')
=n. The high-temperature expansion for the partition
function of (4) in a volume A can be analytically contin-
ued to n 0 (Refs. 9 and 11) giving

' A r

h
Z(P, h) - 1+

2

—p —I
h21+ g Quoth

~P' 1+
p)1 2
l~p

(5)

Within conjecture (2), the susceptibility (3c) is negative
and diverges as was the case in (1). The magnetization
(3b) is also expected to diverge, in opposition to the result
of mean-field-type calculations7 or perturbation expan-
sions for the quantum version of the model. '3

In order to test the validity of (3) we shall now present a
numerical study based on transfer-matrix calculations and
finite-size scaling. We consider the n-vector model on a
lattice with the Hamiltonian (p- I/T)

n = —2cos (t & 2) .
2x
t

(2a) In this formula A~I is the number of configurations of p
nonintersecting SAW's of total length 1 on the lattice of A
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spins. Z(P, h) describes thus a grand canonical ensemble
of nonintersecting polymers of variable length. The num-
ber of monomers is controlled by the fugacity P, and the
number of chain extremities by h, a special weight h /2
being associated to polymers of zero length. " Very simi-
lar expressions are obtained in other versions of the n =0
limit. 4 In this limit, the critical temperature of (4) be-
comes T'=(P') '=p, where p is the connectivity con-
stant of the lattice. I have shown in Refs. 17 and 19 how
one can calculate (5) on strips of width L, generalizing to
the case of several polymers the transfer matrix of Ref. 20.
The configurations at one column are defined by the sites
which are connected together and also by the sites which
are extremities of a polymer, the other extremity of which
is in the left part of the strip. The matrix elements depend
now on P and h. If h =0 one cannot go from one column
to the next by adding extremity sites. The transfer matrix
ML therefore has a "blockwise triangular" structure' and
the complete spectrum can be obtained by diagonalizing
submatrices ML~ acting on configurations with p extremi-
ty sites which correspond to p polymers present on the
strip. In the following we shall denote the largest eigenval-
ue of MLI~) by Xf~). An important property of (5) is the ex-
istence of a phase transition on strips of finite width. 2'22

This occurs because the connectivity constant of strips pL
is nonzero so if P =Pj =pL, ', XP =1 and Xj') become de-
generate. At this point, there is a spontaneous magnetiza-
tion ' which, however, scales as' L ~~"=L ~ (where
P and v are the standard order parameter and correlation
length exponents for the n =0 critical point' P= ~'~, v
= —,

' ) and becomes negligible for L large enough. If
P & Pl, this spontaneous magnetization disappears while

becomes larger than 1, which corresponds to the pres-
ence of a finite density of monomer pL = (1/L)
x f) 1nk)' /r) InP

These properties are already well known and we shall
now investigate what happens if we apply a magnetic field.
In this case one must diagonalize the complete transfer
matrix ML since configurations with diA'erent numbers of
polymers are now coupled. The magnetization is obtained
by
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where XL is the largest eigenvalue of ML, . I have calculat-
ed these magnetizations for the square lattice and strips
with periodic boundary conditions. The critical point is
known with a good precision' P'=0.37905. In the high-
temperature (low-P) regime, we have observed for mL a
behavior very similar to the single spin or mean-field re-
sults. 7 In Fig. 1(a) there is a typical example for P =0.36.
One sees that the different mL, (h) converge rapidly to a
limiting curve which has a smooth maximum m~,„(P)
after which the susceptibility becomes negative. This
maximum depends now on P with m~, „(P)~ m~»(P
=0) = I/J2 while it is constant and equal to I/E2 in the
mean field. An example of the low-temperature (high P)
regime is given in Fig. 1(b) where P=0.40. In this case
the curves mL (h ) show sharp maxima at values of h which
go to zero while the height of these maxima do not stabi-
lize when L increases. This is rather diAerent from the
standard picture ' where one expects a finite spontane-

0.0 0.2

FIG. l. (a) Magnetizations for a typical high-temperature
value P 0.36. The mL (h) saturate to a limiting curve which has
a smooth maxima after which X becomes negative. This is simi-
lar to the mean-field picture. (b) Magnetizations for P 0.40.
The mL(h) now have sharp maxima which do not seem to have a
limit. This is very different from (a) or from what should be ob-
served if there were a finite spontaneous magnetization.

ous magnetization m, z which tends to zero as P —P'. If
this were the case here, the curves mL(h) should asymp-
tote to m, in the vicinity of h =0, as is observed in the Is-
ing (n =1) case. Our results are in much better agree-
ment with (3b). To test this more precisely we have used
several methods. We have verified that the mL(h) take
the scaling form mL(h)=L ~' F(hL ~' ) expected from
(3), and so the maxima of Fig. 1(b) increase like L ~' .
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g = —(1 )$"/X$")

We have thus studied the quantities

xP'
ln )27K

(9)

which are presented for diff'erent widths up to L =10 in
Fig. 2. (One can work with larger sizes here since h =0
and it suffices to diagonalize submatrices of ML, . ) For
P & P, (5) is not critical, gL remains finite, and the
diAerent AL, move apart. For P =P', we have the standard
critical point of the polymer problem. The diA'erent AL
cross at a value already studied in Ref. 19, AI. (P') = ~,'.

AL

27

ae
1/2—

We have also checked that g diverges as in (3a) by apply-
ing phenomenological normalization. 3 Our best results,
however, have been obtained by studying the amplitudes of
the correlation lengths. As Cardy has shown, conformal
invariance at the critical point gives the general relation

4L,,—— L (7)
2''Xy

where x& is the dimension of any operator p and (1.&
the

length of the p correlations on a strip of width L and
periodic boundary conditions. Relation (7) has already
been used' ' to study various properties of (5) at P=P',
h =0. In the low-temperature regime of (5), however (7)
cannot hold directly since the dimension x of the spin is ex-
pected to be negative. It has been discussed in Ref. 25 how
(7) must be modified in such cases. For the spin correla-
tion length this gives the simple result

L~ ooL (8)
2K x

At any point p & p', h =0, gL is given for L large enough
by

Finally, for P & P', the curves become more and more con-
stant with increasing L, collapsing at the expected value
~x ~

i'6 (this can be checked more precisely with stan-
dard extrapolation methods' ). It must be noted that the
study of AL confirms only the absolute value of X. The be-
havior of the other physical quantities, like the magnetiza-
tion (6), shows that x is, in fact, negative, but this can also
be seen more directly on the spectrum of ML. For in-
stance, following the arguments of Ref. 26 one can show
that the central charge of the critical region P & P', h =0
is C = —2 (while the standard critical point P =P', h =0
has C 0'9). As explained in Ref. 25, the presence of a
negative dimension can then be detected by studying the
scaling behavior of the free energy fL = (1/L ) !nkvd' .
Defining C by

fI.=fo+ xC (10)
6L

we have checked that C=C —12x= —,
' instead of C=C

= —2 which should be observed if x were positive.
Our calculations thus confirm the conjectures (3).

Moreover, we find that X is, in fact, negative in all low-
temperature regions. Let us recall that this has no conse-
quence for the stability of the polymer problem. The
correct stability criterion is not 1~0 but' (p ) —(p)~ 0. This takes a rather complicated form" for (5), but
it simplifies in the limit h 0 to give"'

X+ „~0, h —0,
which is satisfied by (3). Note that (11) requires that m
diverges no faster than h . A negative susceptibility cor-
responds to a repulsion between the extremities of poly-
mers in the dense phase. ' If m,„is finite, as in the mean
field case, this eff'ect of repulsion is rather weak: When
(p) «A, the extremities behave independently, ' a defect
free energy lnm, & being associated to each of them, and
the distribution of p in the ensemble (5) is Poissonian.
This is not what happens in two dimensions where (S;SJ)
diverges like ~i

—j ~ so m» is infinite. If we consider
one single polymer in A and P & P', its extremities are nev-
er independent but repel each otherz with a potential —,

'
In

(distance).
In addition, the distribution of p for 1«(p) «A is no

longer Poissonian, in opposition to what was suggested in
Ref. 14. Using (3b) and taking the inverse Laplace trans-
form of (5) we find

'P (p)—
35/32

(2p) 2~

(2p)! exp ——'„' (p), 1«p, (p)«A .
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FIG. 2. Scaling behavior of the correlation length. The curves
collapse to the expected value

~
x

~
—,', (see the text) in all the

low-temperature region. f (P Pc) dv+ (P Pc) dv —hh (13a)

(12)

It would be interesting to know whether such behavior ex-
tends to d=3 or is particular to d=2. In any case, the
divergence of m does not modify the main result' of the
semidilute regime. If there is a finite spontaneous magne-
tization m», the free energy has the form for P~ P't and
h 0 (A is the usual gap exponent A s4 for d 2),
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A magnetization diverging as m —h& '(g=,'& for d =2) gives

(p pc) dv+ (p pc) dv —t'kp t'

However, only the first term is needed to give the osmotic pressure x:
2v/2v —1

(13b)

(14)

in the limit where the monomer and polymer concentration are small but the chains are very long.

The results (3) being established, one could now use them for predicting some geometrical properties of dense poly-
mers. ""
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