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Analysis of the available data on critical currents in amorphous superconductors shows a strik-
ing similarity in the defects responsible for the pinning force in all samples in which two-
dimensional flux pinning can be observed. Order-of-magnitude calculations show that this is con-
sistent with the existence of disclinations in glasses as has been proposed in different theoretical
papers by Rivier, Nelson, Kleman, and Sadoc. The evolution of pinning forces with annealing also
shows a similar behavior in all the published data, and the trend is toward a state with fewer or
smaller disclinations. If disclinations are identified with two-level systems (TLS) this trend is con-
sistent with a decrease of the scattering of phonons by TLS which is observed upon annealing in

thermal conductivity measurements.

Pinning forces in superconductors are, in principle, a
sensitive way of studying the defects present in a given ma-
terial, but the interpretation of the experimental results is
not usually straightforward because of the theoretical
complexity of the problem. One needs to know the behav-
ior of the flux-line lattice (FLL), the individual pinning
force f,, and what summation rule to use for the calcula-
tion of the average pinning force {(f,). Thus full quantita-
tive agreement between calculations and measurements of
the resultant pinning force F}, are difficult to achieve. One
instance in which good agreement between theory and ex-
periment has been reported is when the conditions for
two-dimensional (2D) collective flux pinning have been
fulfilled. Measurements on amorphous superconduc-
tors!~3 have been quantitatively explained by means of the
theory of collective flux pinning proposed by Larkin and
Orchivnikov* (LO). Amorphous materials appear to be
good candidates for observing collective pinning because it

seems that they have a large density of weak pinning’

centers, but although the agreement between theory and
experiment is good, the microscopic nature of the pinning
centers is not clear because of the lack of a better under-
standing of the structure of glassy materials and of the de-
fects present in them.

In the experiments where 2D pinning has been observed
the curves of the measured pinning force F, against the re-
duced magnetic field b =H/H,_, were fitted assuming that
the defects responsible for the pinning are dislocation
loops. The interaction of the strain field of the FLL with
the stress field of the dislocation loops>~7 produces an ele-
mentary pinning force

) =vnaffeb(1—b) , (1a)

or
()b (1—b)(1—gb) , (1b)

where ng is the number of defects, {f,,> an average pinning
force, and f), the pinning force of a single dislocation loop.
Other defects, such as voids, give an elementary pinning
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force”:®

fpreb3(1—0b) , (1¢)

whose field dependence is not in agreement with the exper-
imental data.

Although the formulas for dislocation loops give a good
fit for the measurements, it is far from clear how disloca-
tion loops as such can exist in an amorphous material, and
no microscopic model for the defects responsible for the
pinning has been given so far. If one uses the quasi-
dislocation-loop concept and accepts the formulas at face
value, some tentative conclusions as to the density and di-
ameter of the loops can be drawn. The measured pinning
force is (2D LO theory*)

FP=W(O)/d00C66 s (2)

where d is the sample thickness, ag is the lattice constant
of the FLL, and Cgg is the shear modulus of the FLL given
by Brandt® in the large-K limit:

K(T.)
K(T)

2
—p)2
b(—b) a

C66=ch/47t 2

—0.296) , ()

where H, is the thermodynamic critical field and K(T) is
the temperature-dependent Ginzburg-Landau parameter.

W) =(f,)=+nyf? (4)

and the elementary pinning force can be written as'®

J»=043Cr/ao)ub* D dey (L =0)aDY4 , (5)
where u is the shear modulus of the material, b* is the
Burgers vector of the dislocation, v is Poisson’s ratio, D the
diameter of the loop, and dey is the volume dilation which
can be related to the pressure dependence of the critical
field by!

dey =(H./8x)dH./dP . (6)
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The FLL spacing is related to the applied field H by
ao=Q/\V3)(9o/H) 2= (2//3)0d* /b 2HY2 , (D

where ¢o=2.07x10 "7 Gcm? is the flux quantum.
From the above equations one obtains

Dim 25604 [K(T.)/K(D)]?
MO T A 043u6° 10+ )/ —v)1dH /dP}?
Fp(b)  (1—0.295)
1;32/2 d b2 ) (®)

taking u=3%10"" dyncm "2, b*=2.8x10"% cm, and
v=0.39 as was assumed by Kes and Tsuei,! and using
dH./dP =6.2%x10 ~° Gecm?dyn !, which is the value ob-
tained by Olsen and Rohrer!! for lanthanum:

naD*=5.75x10 "2F,/H>?d (1 —0.296)/b'2 | (9)

with ngD*in cm if cgs units are used for d, F,,, and H,,.

In Table I the values of ngD* are tabulated for all the
materials for which the 2D theory is valid and a ‘‘univer-
sal” behavior is seen, that is, all materials have remarkably
close values for the product ngD*.

Although this is only a small selection of amorphous su-
perconductors, the materials are different with a range of
T.’s that goes from 7.69 to 2.8 K, and they are prepared
by different techniques: the Zr-based alloys are melt spun
and the other samples are sputtered. The similarity in be-
havior could be explained if the defects were not just a re-
sult of the way in which the samples were prepared but
rather a fundamental property of the glass itself.

Recent theoretical results of Rivier,'*!* Rivier and
Duffy,'® Kleman and Sadoc,!® and Nelson'” have focused
attention on disclinations as important defects of amor-
phous solids which are absent in normal crystalline materi-
als because their elastic energy is prohibitively high. The
models proposed do not agree in detail, but from the point
of view of the pinning forces it is interesting to test the
concept of disclinations against the experimental results.
Disclinations would replace dislocations as a source of
stress and they could interact with the FLL to produce a
pinning force.

In the model of Rivier!*~!® disclinations are identified
with odd lines, that is, continuous lines threading the odd-
numbered faces of a Voronoi partition of the solid which

BRIEF REPORTS 35

either form loops or end in the boundaries of the sample.
It can be shown !? that odd-numbered faces are not present
in isolation. In Rivier’s model it is assumed that the odd
faces are not too abundant and that the distribution of odd
lines is semidilute. Nelson,!” on the other hand, assumes
that in glasses there is a tendency toward icosahedral order
and thus five-sided faces are the norm in the Voronoi par-
tition. Odd lines still form loops but they are very small,
and it is the faces with an even number of sides which are
connected by disclination lines. Thus, in both cases the
geometry of the defects is indeed that of loops or lines and
one can compare the strains produced by them with that of
dislocation loops to see if they could be responsible for the
pinning force.

Rivier'* calculates for the elastic energy of a semidilute
distribution of loops as follows:

E0L=F[—And1n(nd)+Bnd] s (10)

where F is the number of faces, n; is the density of odd
lines, B is a core energy, and A =kT, with T, the glass
temperature. The interaction potential of the disclination
loops assumes the form 1/|x—x’| which is of the same
form as the interaction potential between dislocations.

On the other hand, the strain energy of a dislocation
loop is approximately '®

ep =b**GIn(R/ro)nD +ecore , an

where G is an elastic constant, usually of the order of
10'1-10'2 dyncm ~2, b* is the Burgers vector of the dislo-
cation, D is the diameter of the loop, R is a distance of the
order of the sample dimensions, and r¢ is of the order of a
few atomic distances.

If it is assumed that the core of a disclination and a
dislocation have a similar energy and that the Burgers vec-
tor is of the order of an interatomic distance which is of
about the same order of magnitude as the deformation at
the core of the disclination, one can equate from Egs. (10)
and (11) that

EoL=ngep

to obtain an order of magnitude estimate for D. It is
necessary to assume a value for ny to obtain D and one can
use a further important result of Ref. 13, the identification
of odd lines with the two-level systems (TLS) responsible

TABLE 1. Data of pinning forces for samples which show 2D collective flux pinning. The product of the number of *“‘quasidisloca-
tion loops” and their diameter raised to the fourth power is calculated from Eq. (9) in the text. The values of D are estimated assum-
ing a density of disclinations equal to that of TLS, i.e., one every 10° atoms.

Preparation T. F,(b) H., d naD* nq D
Material technique (X) ¢ b (0*dyncm™3) (10°G) (10 *cm) (107 % cm) (10" cm™3) (A) Refs.
NbsGe?®  Sputtering 4.00 0.7 0.4 16.1 23.6 0.46 1.64 5.19 42 1
Nb3Ge®  Sputtering 399 0.7 0.4 6.49 24.0 1.24 1.74 5.19 43 1
NbsSi Sputtering 320 0.65 0.4 8.10 16.6 0.22 0.67 5.40 33 1
MosSi Sputtering 7.69 0.75 0.5 57.20 35.7 0.46 2.70 6.28 46 1
Zr70Cuzp Melt spinning 2.80 0.65 0.9 0.85 22.6 12.00 1.34 5.25 40 2,12
Zr3Rh Melt spinning 4.24 0.67 0.9 2.0 37.4 12.00 1.48 5.10 41 3

2Corresponds to sample 191B, Ref. 1.
®Corresponds to sample 175A, Ref. 1.
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FIG. 1. Evolution of defects with annealing as a function of
critical temperature divided by the T of the “as-quenched” sam-
ples. Crosses, Zr3Rh (Ref. 3); open diamonds, Zr;sCu,s (Refs. 2
and 18); squares, Nb3Ge (sample 191B, Ref. 1); filled diamonds,
Nb3Ge (sample 175A, Ref. 1). The data of ZrsRh and Zr7sCuas
correspond to different measuring temperatures.

for the characteristic behavior of the specific heat, thermal
conductivity, sound attenuation, etc. of glasses at low tem-
peratures. The density of TLS is of the order of one every
10° or 109 atoms, ! and this is the density assumed for the
disclination loops.

Taking G =10'! dyncm =2, b* =108 cm, R/ro=10%,
ng=10"3, T, =800 K, and F =+(f)C, where (f)=14 is
the average number of faces and C the number of cells
(equal to the number of atoms), one obtains

D=30x10"8cm=30A . 12)

If one uses ng =10 ~3 per atom in Table I, an estimate of
the diameter of the ‘‘quasidislocation loops” can be ob-
tained as can be seen in column 9 of Table I where the
values of D for all samples are around 40 A. Therefore the
pinning forces measured are compatible with a picture of
the glass with disclinations as the main defects, at least
within the very coarse approximations used here.

Disclination lines are also topologically stable and this
should be reflected in the behavior of the pinning force
with annealing. In Fig. 1 the evolution of nyD* with an-
nealing is plotted as a function of T./T,;, where T, is the
critical temperature and T; is the T of the ““as quenched”
samples. It can be seen that the evolution of the defects is
correlated with the critical temperature and again a simi-
lar behavior is followed by all the samples. The change in
the defects is less than the change in the measured pinning
force because the pinning forces reflect not only the
changes in the pinning centers but also changes in the su-
perconducting matrix (such as T, and H.,;) and possibly
changes in the pinning regime, which can change from two
dimensional to three dimensional.?® It is possible too that
other types of defects can also contribute and thus raise
the value of F,. This is clearly the case when crystalline
precipitates are present, as in the measurements of Clem-
ens, Johnson, and Bennet?! on (MoggRug.4)SijoB1o where
an increase in the pinning force due to the precipitates is
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FIG. 2. Evolution of the product of density of states times
phonon-TLS coupling constant as a function of temperature.
Both quantities are normalized by the value of the “as-
quenched” samples. Data are taken from Refs. 27 and 28.

seen. The samples used, however, are 50 um thick so they
are not in the 2D regime and the analysis of their defects is
not so straightforward. Other measurements of critical
currents published in the literature??~2% show results clear-
ly outside the 2D regime. Most of the samples are more
than 30 ym thick and they do not fulfill the 2D criterion
nor possibly the requirements for collective flux pinning.

Results of thermal conductivity with annealing are
available for Zr;9Cujs¢ and an increase of the thermal con-
ductivity is observed with heat treatment.?’”?® The in-
crease is due to a decrease of the scattering of phonons by
the TLS, which is proportional to y2P where 7 is the cou-
pling constant of the phonons and TLS and P is the density
of states of the TLS at low energies. In a plot of
y2P/(y2P); vs T./T.; (Fig. 2) a decrease which is roughly
linear can be seen. This is consistent with an identification
of TLS and odd lines although the relative decrease in y2P
is about twice that of ngD* for ZrsoCuso. The discrepancy
could be absorbed by a change in y2, but too detailed a
comparison makes little sense within the present state of
experimental and theoretical knowledge.

In conclusion, the present analysis shows that the pin-
ning characteristics in a variety of amorphous alloys are
remarkably similar. This is consistent with a view which
identifies the defects as essential constituents of glasses, ei-
ther arising from the impossibility of filling ordinary space
with tetrahedra,!’ as a projection from an ideal space
where such a filling is possible,'®?® or as a result of the
constraints imposed by space filling requirements and the
maximization of entropy.'®* A more detailed theoretical
description could perhaps give a unified picture of the
structure of defects in amorphous materials, but within the
rather simplified analysis given here the existence of dis-
clinations in glasses seems to account for the experimental
data in a semiquantitative fashion.
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