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We present an argument that the statistics of polymer rings at the 8' point in two dimensions is
exactly given by the statistics of the external perimeter ("hull" ) of a percolation cluster. As a
consequence, the fractal dimension df(8') of a polymer chain at the 8' point coincides with that of
the hull of the percolating cluster, df(8') dH. Here 8' is the coil-globule transition point for a
special interaction parameter. We also discuss conditions under which the 0' point may be related
to the conventional 9 point.

Consider a long flexible polymer chain. In a dilute solu-
tion of good solvent or at high temperatures one cus-
tomarily neglects the van der Waals attraction between
the monomers, and the chain assumes a shape controlled
solely by the hard-core repulsion. The statistics of real
polymers under these conditions are known to correspond
to those of a self-avoiding random walk (SAW). '2 What
happens under conditions (such as a poor solvent) where
we cannot neglect the attraction? At high T, the chain re-
tains the excluded volume or SAW statistics of the zero-
attraction limit. However, as T is decreased, the attractive
interaction plays an increasingly significant role and "sud-
denly" at a critical temperature T, =8 the chain under-
goes a dramatic phase transition to the collapsed phase
(Fig. 1). Since the fractal dimension of the swollen chain
is typically df 1.71= —,', ' while the fractal dimension of
the collapsed state is df =d =3, a small change in T leads
to a huge change in the volume occupied by the chain.
Many biological, chemical, and physical systems capitalize
on this amplification feature by evolving systems that
operate near the 8 point; one example is the collapse tran-
sition in DNA.

At present, the basic physics in the neighborhood of the
8 point is still not understood. For example, although we
know how the mass scales with distance for the dilute poly-
mer and for the collapsed state, there are many conflicting
results for the 8 point ' for d =2, in contrast to the exact
result df 2 at the critical dimension d, =3. Here we
present a model that may shed light on this problem. We

argue that the polymer chain at the 8' point has the same
statistics and therefore the same fractal dimension as a
new and extremely simple random walk, which reproduces
the hulls of all the clusters at the percolation threshold.
This walk, introduced by Weinrib and Trugman' who
called it a smart kinetic walk (SKW), chooses the next
step with equal probability from among all available possi-
bilities that do not result in self-intersection, except at the
origin, and do not lead to self-trapping; it therefore has the
unique feature that the only means of termination is to re-
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FIG. 1. Temperature dependence of v df ' for a polymer
solution or "interacting SAW." For any T & 8', the system has
the same behavior as a pure SAW, while for T & 0' it is identical
to a compact object.
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visit the origin. The end result of this walk is an ensemble
of self-avoiding polygons. Weinrib and Trugman also
showed that on the honeycomb lattice these self-avoiding
polygons are generated with the same statistics as the hulls
of the clusters at the percolation threshold of the triangu-
lar lattice. This result implies that the fractal dimension
of an SKW is identical to the hull of a percolating cluster.

A variation of the SKW consists, in addition to the
above constraints, in avoiding the self-intersection at the
origin, and in this case it grows forever. Such a walk was
introduced independently by Kremer and Lyklema' who
named it indefinitely growing self-avoiding walk (IG-
SAW). Weinrib and Trugman gave strong arguments
that the fractal dimension of the IGSAW is the same as
that of the SKW. This prediction is supported by very ac-
curate numerical work which gives for both walks
df=1.75, ' ' in agreement with the numerical value for
the hull of the percolating cluster dH=1. 75, ' and a con-
jectured exact result. ' d~ =1+v~

' =1.75, where
v~ =

3 is the percolation connectedness length exponent.
Our starting point is the simple SAW. The SAW can be

generated on a computer by choosing an origin and then
adding successive steps of the walk with equal probability.
Henceforth we consider the honeycomb lattice: The first
step has weight —,

' (three choices) and subsequent steps
have weight 2 (two choices); if the walk steps on a previ-
ously visited site, the walk stops. A typical SAW configu-
ration is given in Fig. 2(a). The SAW exponent for d=2
is known exactly to be v= 4, where v is defined by
(Riv) —N " and (Rgr) is the square of the radius of gyra-
tion averaged over all chain configurations of N steps. In-
stead of the SAW, sometimes it is more convenient to
study self-avoiding rings. These are made of all self-
avoiding walks which return to the origin. It is known
that the fractal dimension of the self-avoiding rings is the
same as that of the SAW.

The SAW is a good model only for the limit of a very
good solvent. For a less good solvent, one conventionally
uses the nearest-neighbor interacting SAW (ISAW):
each SAW configuration is weighted by a factor,
exp(eNNN), where NNN is the number of nearest-neighbor
(NN) monomer pairs in the walk and s =E/kT is the di-
mensionless NN interaction energy. The ISAW as well as
the NN interacting self-avoiding rings reproduces the 8
point and the collapsed state. However, it is very impracti-
cal from the computational point of view since the proba-
bility of generating a very long chain of, say, 100 steps
without a single self-intersection is extremely low.

We now argue that SKW generates interacting self-
avoiding rings at T=O'. Consider the honeycomb lattice
shown in Fig. 2 with the origin as indicated (o). In order
to generate the SKW [Fig. 2(d)], ' the first step is made in
a random direction and the hexagons on either side of the
chosen direction are assigned + and —,respectively. For
the second and subsequent steps we first assign to the hex-
agon at the vertex a + (or —) with probability 0.5 and
make a step to ensure the separation of the two regions +
and —.Note that at the end of the sixth step the sign of
the hexagon at the vertex of the walk is already deter-
mined and, hence, the next step (bold line) has a weight of
1, whereas the previous steps have a weight 2 except for
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FIG. 2. Three identical configurations (a, b, and c) of N 15
steps of the SAW, KGW, and IGSAW on the honeycomb lat-
tice, each with its own weight. The IGSAW configuration coin-
cides with an SKW before corning back to the origin. The ar-
rows indicate the future direction of the walks. (a) SAW. All
the light lines correspond to weight —,', except for the first step,
which has weight —,'. The total weight for the SAW is thus

WsAw 3 (2 ) '. (b) KGW. The KGW has for each step the
same weight as for the SAW except for that step chosen neces-
sarily to avoid self-intersection, which has weight 1 (bold line).
This step occurs immediately after the walker steps to a site that
is a NN to a previously visited site (connected by a dotted line).
The weight for such configuration is Widow WsAwexp(e ),
with e ln2. (c) IGSAW. For the IGSAW there are two steps
that have weight 1, and WrosAw S's~wexp(2s*). The first
occurs, as in the KGW, to avoid self-intersection (bold line),
while the second occurs to avoid self-trapping (wavy line).
"Wavy" steps occur only if a pair of NNN sites has been visited
(two dotted bonds). (d) An SKW configuration; note that the
first 14 steps have the same configuration and weight as in (c).

the first with weight —,'. The walk will eventually ter-
minate by a revisit to the origin, having generated a self-
avoiding ring. We note that some of the steps have weight

and some have weight 1, whereas each step of a nonin-

teracting self-avoiding ring always has weight 2 except
for the first with weight —,'. Therefore, the weight for a
self-avoiding ring model of X steps is given by
W„„s= —,

' ( —,
' ) ' while WsKw has an extra factor of 2 for

each bond or step with a weight of 1. In this example
there are five such bonds: three to avoid self-intersection
(bold lines), the other two to avoid self-trapping (wavy
lines); therefore WsKw = W„.„sexp(5 ln2).

In general, for a configuration with %~ of such bonds,
Ws~w=W„„sexp(N~ln2); we will show that in a given
configuration W& is given by one plus the number of hexa-
gons that contain two steps of the walk which are not con-
nected on that hexagon [see Fig. 3(a)], plus twice the
number of hexagons that contain three steps of the walk
not connected on this hexagon.

To prove the validity of this rule, consider first the walk
in its evolution, before it has returned back to the origin.
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FIG. 3. (a) The number of steps in a SKW before coming
back to the origin that have weight 1 is given by the number of
hexagonal plaquettes in configurations A, B, C, D, and E plus
twice the number of plaquettes in configuration F. The full lines
are the steps of the walk in that hexagonal plaquette. (b) All to-
pologically different configurations of a SKW that contain a pla-
quette of type A. These configurations show that one of the two
bonds always has a weight 1. In I and III the step represented by
bold lines avoids self-intersection. In II the step represented by a
wavy line avoids self-trapping. Note that there are three more
configurations obtained by reversing the arrow in I, II, and III.
In this case the weight 1 step is the opposite one.

Also exclude for the moment the case when the walk
comes within one lattice constant of the origin. Under
these circumstances we show that each time one of the pla-
quettes of Fig. 3(a) is realized it implies that one of the
bonds of the plaquette has weight 1 except for plaquette F
for which two bonds have weight 1. This can be checked
using the example of Fig. 2(c) where the bold and wavy
bonds are shown which have weight 1. In general we note
that the local configuration A can be part of the walk in
one of the three different topological configurations; in all
cases one of the two bonds always has weight 1 [Fig. 3(b)].
The same analysis can be repeated for all the other local
configurations of Fig. 3(a). When we consider the com-
plete ring, due to the fact that the origin has been revisit-
ed, there is one plaquette near the origin not included in
those of Fig. 3(a) which contains always one bond with
weight 1 [see, e.g., Fig. 2(d)]. This concludes the proof.
Note that N~ NNN+NNNN when NNN is the number of
NN monomers and NNNN is a subset of next-nearest-
neighbor (NNN) monomers [Fig. 3(b)].

Finally, if we define an interacting self-avoiding ring
with an interaction e E/kT for each nearest neighbor
and NNN pair contributing to N ~, the weight of this ring

TABLE I. Comparison between v for polymers and polymer
models with v for nonpolymer models. Flory theory gives —', .

Experiments on 8-point polymers
Monte Carlo (this paper)
SKW
IGSAW
Hull of percolating cluster

0.56'
0.57
0.57+ 0.01
0.567+ 0 003'
057

'Reference 10.
Reference 18.

'Reference 17.
References 19 and 20.

is W„„s WsAwexp(sNt) which coincides with WsKw at
s* =s/k8'=In2, corresponding to a particular temperature
T=8'. In this way we have mapped exactly the SKW on
the interacting self-avoiding rings at the particular tem-
perature T=O'. This is the main result of the present
work.

Before concluding, we note that 8' is a higher order crit-
ical point. The phase diagram of the interacting rings is
given in Fig. 1. Because of the mapping of the SKW onto
the NNN interacting rings with T =O', SKW should have
1 of the 3 critical exponents of Fig. 1. We rule out the
T & 0' exponent since v& 2 for the SKW and v= —,

' for
the ISAW with T & O'. We can virtually rule out the
T & 0' exponent since high-precision numerical work' '
and the possible exact result ' report v=

& quite dis-
tinct from the SAW value of 4 . Since the exponent v
seems distinct from the SAW and from the collapsed
phase, 8' corresponds to a higher order critical point.

If the special interaction is in the same universality class
as the NN interaction, then the 8' point describes also the
statistics of the 8 point. We haue no way of testing this in
triguing possibility. It is nonetheless interesting to exam-
ine the appropriate numerical data. We conclude that ex-
perimental results (Table I) and some calculations agree
well, ' ' but other calculations do not. For this reason,
we have undertaken our own numerical calculation for the
0 point using a new method, which is done in the follow-
ing manner. We consider the kinetic growth walk
(KGW) 24 recently introduced as a model for a growing
polymer. The KGW avoids direct self-intersection and
thus the next step is chosen with equal probability from
among the unvisited nearest-neighbor sites [Fig. 2(b)].
The walk terminates when there are no unvisited nearest
neighbors. Using the same reasoning as before, it is possi-
ble to show that the KGW on the honeycomb lattice is
equivalent to a NN interacting SAW at a particular tem-
perature e* =ln2. This corresponds to a temperature just
above the 0 temperature. Since a KGW is a NN ISAW
with weight exp(s'NNN), we can generate any ISAW
from a KGW weighted by exp[(s —s )NNN]. We have
generated many long KGW's (up to 700 steps) on the
honeycomb lattice and weighted each configuration with
the appropriate Boltzmann factor; our analysis gives
v=0.575+ 0.025, which agrees well with calculations for
IGSAW, SKW, and the hull of the percolating cluster
(Table I) 2'

One might ask the question whether there is a walk
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which describes the ISAW at the 8' point. The analysis
obtained above for determining the weights of the interact-
ing rings can be used to show that the IGSAW maps onto
an interacting SAW with NN and NNN interactions.
The only difference now is that there is no one-to-one
correspondence between the set of all N step ISAW (as
some conformations will eventually lead to trapping) and
the set of ¹tepI(sSAW's (which do not contain any con-
formation that can be trapped by subsequent steps). How-
ever, the following argument can be used to show that the
fractal dimension of the two walks is the same. In fact we
can define the SAW problem in a different way. Starting
from the origin one can generate extremely long chains of
N' steps. If we consider the statistics of that part of the
chain made on the first N steps (N «N'), we expect that
this will reproduce the same fractal dimension of the stan-
dard SAW, due to the self-similarity of a typical
cpnfiguratipn pf the lpng chain. The SAW cpnfig-
urations which are made of the first N steps of a long chain
exclude the possibility of ending in a cul-de-sac and there-
fore coincide with the IGSAW configuration. This argu-
ment is consistent with the fact that self-avoiding rings
and SAW have the same fractal dimensions. We are un-
able at present to predict y, the exponent describing the
number of distinct self-avoiding walks. The partition

function Ztv =/exp(sN~~) asymptotically diverges as
Z~ —p xN~, where p is the connectivity constant.
This cannot be obtained from the partition function of the
rings or equivalently the SKW. However y is equal to 1

by construction ' for the IGSAW and one may be tempted
to conclude that y=1 also at the 0' point. We believe that
although the cul-de-sac configurations do not contribute to
the fractal dimension, we cannot rule out that they con-
tribute to the enhancement factor and thus might lead to a
y slightly different from 1.

In conclusion, it appears that the SKW describes the
statistics of a polymer chain at the 0' point, and can be
found very accurately to give v=0.57. This prediction is
remarkably close to the experimental value v=0.56. '

Since the SKW is equivalent to the hull of the percolating
cluster we have the intriguing result that a polymer chain
at the 9' point in d =2 appears to have the same statistics
as the hull of the percolating cluster.
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