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I. R. MacGillivray, C. E. Soteros, and C. K. Hall
Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905

(Received 22 September 1986}

The cluster-variation method is applied to random-field lattice systems and specifically used to
model the disorder-disorder phase transition of hydrogen in niobium-molybdenum and niobium-

vanadium alloys. A small concentration of molybdenum or vanadium in the niobium lattice is treat-
ed as adding at each hydrogen site a random energy with a known probability distribution. Pairwise
interactions between hydrogen atoms are included out to the first fifty shells on the bcc tetrahedral
interstitial lattice, allowing for the effect of site blocking for the first three shells. The results show

the small and large depression in the critical temperature for Nb~ ~V~H„and Nb~ ~MPH„, respec-
tively, with increasing concentration of V or Mo, as observed in experiments. Comparison is made
with Monte Carlo calculations of other workers with use of the same interaction parameters, and the
effects of variations in the random-energy distribution are described.

I. INTRODUCTION

In the past, there has been considerable interest in lat-
tice models with random-site energies. Such models are
applicable to amorphous materials, hydrogen in metals,
and to physical adsorption and chemisorption onto sur-
faces. The earliest work appears to be that of Hill, ' who
studied the adsorption of molecules on a heterogeneous
surface with and without interactions between adsorbed
molecules. In recent years ' models of magnetic spin sys-
tems have been studied in which the local field conjugate
to the spins is random, the so-called random-field Ising
model. Morita gave an expression for the free energy of
a nonuniform lattice system (or random lattice gas) using
cluster techniques and subsequently applied this expres-
sion to the random-field Ising model. More recently,
Richards has performed calculations for a lattice gas
with random-site energies and applied the results to amor-
phous metal hydrides.

In this paper the cluster variation method ' (CVM) is
applied to a random-field lattice system. The technique is
general and can, in principle, be used to give solvable ex-
pressions for the free energy of any lattice system with
random site energies. However, the calculations presented
here are specific to the problem of hydrogen in niobium
alloys. When a small amount of a substitutional impurity
such as molybdenum is absorbed in niobium, the associat-
ed hydride can be treated by considering the impurity
atoms to add a random energy, with calculable distribu-
tion, to each hydrogen site. " With use of the theory of
lattice statics, the H-H interactions and the random-site-
energy distribution can be determined. The H-H interac-
tion includes blocking of the first three shells of sites sur-
rounding any occupied site on the bcc tetrahedral intersti-
tial lattice. The thermodynamic properties and phase dia-
gram are calculated using the CVM. This is a consider-

able improvement over the usual approach in which
Monte Carlo methods are used to calculate metal-hydride
phase diagrams since it is an analytic technique which is
therefore much less expensive and yet is surprisingly accu-
rate. It is especially well suited to the long-range interac-
tions which are characteristic of metal-hydrogen systems.
Although the approach is limited to the description of the
a-a transition, the resulting expression for the chemical
potential is simple and readily allows for an assessment of
the effect of changes in the interaction parameters.

The CVM calculations presented here also apply to H
in a pure metal such as niobium. In this case there is no
random-site-energy distribution; this is simply expressed
by having a random field with "zero" width. Richards'
has developed an analytic approximation for a lattice gas
with long-range interactions, and has applied it to the +-
a (disorder-disorder) transition in Pd-H and Nb-H to
yield critical temperatures and concentrations which agree
with Monte Carlo calculations to within 10%. In com-
parison, the CVM used here yields results which agree
even more closely with the Monte Carlo calculations.
Similarly, a calculation has been made by Boureau' based
upon theoretical and experimental expressions for the par-
tial entropy and enthalpy of Nb-H, showing that a simple
analytical technique can give reasonable results. Both
Richard's approximation and the CVM represent im-
provements over this calculation.

In Secs. II—IV the CVM is briefly reviewed, and the
model and theory presented. Calculations are performed
for NbH NbQ 95MoQ Q5H„, NbQ 8gMoQ )5H, and
NbQ 94VQ Q6H and are presented in Sec. V, along with
comparisons with the Monte Carlo results. The effects of
variations in the parameters of the model are also
described. Finally, in Sec. VI the work is concluded with
a brief overview of the results obtained.
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II. THE MODEL

a, b a, c

where V,b ( V„) is the total interaction energy, respective-
ly, between an H at interstitial site a and an H (Mo) at in-
terstitial (lattice) site b (c). The occupation variable r,
equals 1 or 0 depending on whether interstitial site a is
occupied or unoccupied by an H. Similarly o., equals 0 if
lattice site c is occupied by an Nb atom and equals 1 if it
is occupied by an Mo atom. If this Hamiltonian is rear-
ranged to give

H = g V~br~rb+ g e, r,
a, b

(2)

We consider a lattice model in which the tetrahedral in-
terstitial sites of bcc niobium are either singly occupied or
unoccupied by H atoms (see Fig. 1). Molybdenum atoms
(or other impurities) are dissolved substitutionally at ran-
dom in the niobium lattice. The H atoms interact pair-
wise with each other and with neighboring Mo atoms with
strengths which have been calculated previously as
described by Shirley et al. ' In addition to phonon terms,
the system Hamiltonian contains the following term
which depends on hydrogen concentration:

I$ Vab arb+ 2 $ Vacraac r

Mo were zero then p(e) =5(e —eo), where eo is some arbi-
trary energy. The addition of Mo yields a spread in this
energy distribution, characterized by a new p(E). In reali-
ty the distribution would not be truly random because of
the correlation of energies between nearby sites, but this
effect is being neglected. The H-H interactions also
change upon addition of the Mo.

In order to deal with a continuous energy distribution
in the context of the CVM, p(e) will be approximated by a
discrete spectrum of I energy levels e, each character-
ized by the probability a . The distribution is normalized
such that

00 r
P 6 dE Qa

a=1
(4)

Since the distribution p(e) is typically multipeaked, its ap-
proximation by a discrete distribution is justified.

The CVM gives an approximation for the configura-
tional entropy of a system in terms of the concentration of
cluster configurations on the lattice. A cluster is a set of
lattice sites forming an arbitrary geometrical figure, and a
configuration is a particular arrangement of particles on a
cluster. Following the notation of Sanchez and de Fon-
taine, the entropy in the CVM is

where

e, =+V„cr, , (3)

S =Nkvd g y(r, t) g at(r, t)xt(r, t)lnxt(r, t),
(r, t) 1

then the system may be interpreted as a lattice gas with a
random energy e, (or random field) at each site a. The
probability that any particular site has a potential energy
e is p(e)de where p(e) is the random-site-energy probabili-
ty distribution which is calculable from Eq. (3) as
described by Shirley et al. ' If the concentration of the

where X is the total number of lattice points or sites and
ks is Boltzmann's constant. The index t in (r, t) labels a
specific type of r-site cluster. In the systems considered
here each interstitial site can be either occupied or unoc-
cupied by a hydrogen atom. Therefore there are generally
2" arrangements or configurations of an (r, t) cluster, al-
though some will be equivalent. The variable xt(r, t) is the
concentration of the 1th configuration of the (r, t) cluster,
and at(r, t) is a degeneracy factor which takes into ac-
count the configurations which are equivalent. If the full
2" configurations are enumerated separately then
at(r, t) = l. A particular configuration i is specified by the
r numbers j i,j, . . . , k ) where each number takes the
value 1 if the site is occupied and —1 otherwise. The
largest clusters to be considered must be chosen in ad-
vance in order to calculate S using Eq. (5). These clusters
are called the basic clusters and contain n points. There
can be many independent basic clusters with different
values of n. The coefficients y(r, t) are given by

FICx. 1. The bcc host-metal lattice (large open circles) and the
tetrahedral interstitial lattice (small solid circles). A typical 5-
site tetrahedral cluster is indicated by the sites numbered 1—5.
Site 1 is the center of this cluster (cluster 1) and sites 2—5 are at
nearest-neighbor separations from site 1. Sites 1, 2, 6, 7, and 8
represent another 5-site cluster centered on site 2 (cluster 2)
which overlaps cluster 1 in the 2-site cluster of sites 1 and 2.
Similarly, cluster 8 overlaps cluster 1 at the second-neighbor 2-
site cluster composed of sites 2 and 5. Clusters 1 and 6, howev-
er, only overlap at the 1-site cluster which is site 2.

y(n, t) = —N(n, t)/N

for the basic clusters and by

n

y( r, t) = N(r, t)/N — g g—M(r, t;q, s)y(q, s),
q=r+1 s

1&r &n (7)

for all other clusters, where N(r, t) is the total number of
(r, t) clusters in the system and M(r, t;q, s) is the number
of ( r, t) clusters contained in a ( q, s) cluster. For any
(r', t') cluster which is completely contained in an (n, t)
basic cluster and is not shared by any other basic clusters,
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N(r', t') =M(r', t', n, t)N(n, t) .

Using this relationship in Eqs. (6) and (7) results in
y(r', t') =0. Hence the only nonzero contributions to the
entropy come from clusters formed from the intersection
of two basic clusters, or from the intersections of other
clusters for which y(r, t) is nonzero .N(r, t) and
M(r, t;q, s) are calculated straightforwardly as described
by Sanchez and de Fontaine.

Once the largest clusters are chosen the entropy can be
expressed in terms of the cluster concentrations using Eq.
(S). By minimizing the free energy (or the grand poten-
tial, as discussed in Sec. IV) the equilibrium cluster con-
centrations can be determined, enabling the chemical po-
tential and phase diagram of the system to be calculated.
Although the tetrahedral interstitial lattice is not a Bra-
vais lattice and possesses six different sites from the
viewpoint of translational symmetry, each lattice site is
equivalent from the point of cluster algebra since each site
has the same number of nth neighbors at the same dis-
tances, arranged in the same general way. It is therefore
not necessary to distinguish between the different site
types when applying the CVM.

Boureau' has shown that experimental measurements
of the partial molar entropy support a H-H interaction
that is infinitely repulsive out to second neighbors on the
tetrahedral lattice. But to obtain reasonable phase dia-
grams previous workers "' ' have used a blocking
model that extends to third neighbors. Therefore, in order
to compare the model used here with previous Monte Car-
lo calculations and to achieve a phase diagram which
compares well with experiment the blocking will be re-
garded as extending to third neighbors. While this can be
allowed for by setting the appropriate interaction energies
to infinity it is better to account for this directly when
choosing the basic clusters for the CVM expansion. It
can be also be noted that these near-neighbor repulsions
should partially negate the effect of correlations between
the random energies of nearby hydrogen atoms since in
this case the hydrogen atoms are never close together.

In this model the basic clusters chosen form two dis-
tinct sets. The first set contains the five-site (tetrahedral)
clusters which consist of a site and its four nearest neigh-
bors (see, for example, cluster 1 in Fig. 1). Each site will
have an energy which is one of the I values of e, so a
particular cluster can be specified by the indices
(S,a,P, y, 5,$) if site 1 of the cluster (the center) has energy
e, site 2 has energy e~, and so on. For simplicity in the
calculations, symmetry will not be used to reduce the
number of distinct clusters to less than S [even though,
for example, (S,a,P, y, 5,$) and (S,a,P,y, g, 5) are
equivalent] and the indices a —g are considered to be or-
dered. These 5-site clusters are used to account for the ex-
clusion out to third neighbors.

The second set of basic clusters is chosen to allow for
the long-range interactions that are needed to more accu-
rately take account of the phase change. It consists of all
nth-neighbor pairs for n )4 out to some finite limit
n =I.. In a similar manner to the 5-site clusters, the 2-
site basic clusters may be written as (2,a,p, n) where n & 4.
These clusters are independent of the 5-site clusters and,

again, a (2,a, P,n) cluster is considered distinct from a
(2j3,a, n) cluster if a&P.

III. CONFIGURATIONAL ENTROPY

N(S, a, P, y, 5,$)=a a~azasa~N

since the probability a that any site has energy e is in-
dependent of the energy of any other site.

The number of nth neighbors of a particular site on the
interstitial lattice will be denoted by z„. In an infinite lat-
tice there are a total of Xz„/2 nth-neighbor pairs. The
number of (2,a, /3, n) clusters is therefore

N (2,a, P, n ) =a a ~z„N /2 . (10)

The above results are summarized in Table I.
Values of y(r, t) are obtained using Eqs. (6) and (7).

The number of (r, t) clusters contained in a (q,s) cluster,
M(r, t;q, s) is obtained from the geometry of the particu-
lar clusters. For each basic cluster y(n, t) is obtained us-
ing Eq. (6) and given in Table I. Values of y(r, t) for the
subclusters are obtained using Eq (7) for . successively
lower values of r, and are also shown in the table.

For example,

M(2, a,P, I;S,a', P', y', 5', g') =5 (5pg+5py +5~ +5pg),

TABLE I. The number N(r, t) of ( r, t) clusters on the lattice
and nonzero values of the parameter y(r, t) that appears in Eq.
(5).

(r, t) cluster

(S,a, P, y, 5,$)
(2,a, P, n), 4&n &L,

(2,a, P, 1)
(2,a, P, 2)

N (r, t)/Ã

a a~a&a~a~
a a~z„/2

2a a~
asap

aa

—a~a~a~a~a~
—a apz„/2

2a a~
asap

L

a —2+ gz„

In the bcc interstitial lattice two 5-site tetrahedral clus-
ters can overlap in only three ways, as shown in Fig. 1. If
the centers of the adjacent clusters are nearest neighbors
then the region of overlap is simply the nearest-neighbor
pair formed by these centers. If the separation of the
centers is a second-neighbor distance then the overlapping
region is another second-neighbor pair. Last, if the
centers are at a third-neighbor separation then only a sin-
gle site is common. Similarly, a particular 2-site n &3
cluster can overlap another distinct 2-site or 5-site cluster
only at one site. Hence, the only subclusters on the lattice
for which y(r, t) in Eq. (S) is nonzero are of the type
(2,a, P, n =1), (2,a,P, n =2), or (l,a).

As the total number of sites is X, and the site energies
are assumed to be randomly distributed over the sites, the
number of 1-site clusters of a particular type is

N(l, a)=a N .

There are a total of X 5-site clusters as every site is the
center of such a cluster. Hence,



3548 I. R. MacGILLIVRAY, C. E. SOTEROS, AND C. K. HALL 35

since the function is nonzero only if the central site of the 5-site cluster is of energy e and one (or more) of the other
four sites is of energy Ep. Then from Eq. (7),

N(2, a, P, l)
y(2, a, P, 1)=— ' ' ' + g M(2, a, 13, 1;5,a', P', y', 5', g')a apaz asar ——2a ap ..gyes

(12)

x, ( l,a) =x. ,

x ~(l, a)=1—x
(13)

Each of the basic 2-site clusters has the four configura-
tions I 1, 1 ), I 1, —1 I, I

—1, 1 I, and I
—1, —1 I . Straight-

forward probability arguments show that, for example,

In this expression the normalization condition (7) has been
used and all sums are performed over the I values of the
energy index for each a, P, . . . . [Note that the right-hand
side of Eq. (11) depends on the ordering chosen for the
sites of the clusters with respect to the notation', however,
the result of Eq. (12) is independent of the choice. ] Coef-
ficients y(2,a, P,2) and y(l,a) are obtained in a similar
manner.

Note all the cluster concentrations xI(r, t) in Eq. (5) are
independent. If x is the probability that a site of energy
e is occupied then the probability that it is not occupied
is 1 —x, so that two 1-site configurations have concentra-
tions

where

x;( l,a) = —,
' [1+ig( l,a)],

x; J(2,a, p, n) = —,[1+i'( l,a)+j g(l, p)+ijg(2, a, p, n)]

(19)

for all n . (20)

But x~ ~(2,a, P, n)=0 for n & 3 since two sites with first-,
second-, or third-neighbor separations cannot both be oc-
cupied. Hence, from Eqs. (13), (19), and (20),

g(r', t')=, , g a(p~)a(p~) . . a(p„) (lg)
N r', t'

(t~

is the r'-body correlation function and v; «(r, t;r', t')
is, in general, a sum of r -order products involving the in-
dices i,j, . . . , k. The symmetry of the cluster determines
the form of v;~ «(r, t;r', t'), as described by Sanchez
and de Fontaine, and the sum in Eq. (17) is taken over all
lattice points p &, . . . ,p„consistent with the ( r, t) cluster.

For the 1- and 2-site clusters, Eqs. (16)—(18) give

x, (l,a}=x, , (2,a,P, n)+x, , (2,a, P, n), (14} g(2, a, P, n) =1—2x —2xp (21)

and if x~ t(2, a, P, n) is written in the more compact form
x ~.„ then the 2-site concentrations can be given in terms
of the x and x &.„.

x~ &(2,a, 13,n)=x p. „, 4&n &L

x, , (2,a, f3,n)=x —x p. „, 4&n &L

x
& &(2,a,g, n)=xp —x p. „, 4&n &L

x
~ ~(2 a, /3, n)=1 —x —xp+x p. „, 4&n &L .

(15)

To reduce the 5-site and 2-site (n =1,2) cluster concen-
trations, as for Eqs. (13) and (15), the correlation func-
tions of Sanchez and de Fontaine are introduced. Let

I;(p) = —,
' [1+iver(p)], (16)

+ 1 (site p occupied),
—1 (site p unoccupied),

where i takes the value 1 if p is occupied and —1 if p is
unoccupied. Then I;(p) is unity if p is occupied (i =1)
and zero otherwise (i = —1). The cluster concentrations
become

1
«(r, t) = g I;(p& )I ~(p2) I I, (p„)N(r, t)

(

and

x~ ~(2,a, P, n)=0, n &3

x) )(2,a, P,n)=x, n &3

x»(2, a,g, n)=xp, n &3

x
~

~(2a13n)=1 —x —xp, n &3 .

(22)

g( 3,a, f3, y ) = —1+2x +2x p+ 2x (23)

so the distinction between the two cases is irrelevant here.
Extending this procedure to the 4-site and finally the 5-
site clusters gives

This result can also be obtained by setting x p.„——0 in
Eqs. (15).

In order to determine the 5-site-cluster concentrations it
is convenient to first consider all possible 3- and 4-site
clusters, even though they are not directly needed in the
equation for the entropy. There are two types of 3-site
a, P, y clusters that can be constructed from the sites of
the 5-site cluster —one contains the central site and the
other does not. In either case an x;i «(3,a, P, y} can be
obtained in terms of the correlation functions and
x

~ & ~ (3,a, P, y) then set to zero as only one site can be oc-
cupied. In both cases this gives

(17)

g(4, a,P, y, 6)= 1 —2x —2xp —2xr —2xs,

g(5 a P y g g): 1+2x~+2xp+2xr+2xs+2xg
Substituting these results back into Eq. (17) gives

(24)
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x ifi =1, j=k =1=m
xp if j =1, i =k =l =m

x. . (5a R 5 j)=' x ifm=1 i=J kj
1 —xa —xp —x& —xg —xg

0 otherwise .

ifi =j =k=l=m = —1,
(25)

The entropy is obtained by substituting Eqs. (13), (15), (22), and (25), and the expressions for y(r, t) from Table I, into
Eq. (5). Simplification then leads to

S/Nks ———ga x lnx —2+a (1—x )ln(1 —x )+3+a ap(1 —x —xp)ln(1 —x —xp)
ap

a aparasa~(1 —x —xp —xr —xs —x~)ln(1 —x —xp —xr —xs —x~)
apyg'

L 2
pa ap[x p. „lnx p.„+(x —x p. „)ln(x —x p.„)+(xp—x p. „)ln(xp —x p. „)

n=4 ap

+(1—x —xp+x p. „)ln(1 —x —xp+x p. „)]

L

+ g z„pa [x lnx +(1—x )ln(1 —x )],
n=4 a

(26)

which is an expression for the entropy of the system of H
atoms in terms of the cluster concentrations. When com-
bined with the total energy of the system to give the free
energy or grand potential, as in the following section,
minimization with respect to the cluster concentrations
will give the equilibrium values of all these parameters.

The procedure of this section could, in principle, be
used to calculate the entropy for a system with site block-
ing to any nth-neighbor shell if appropriate basic clusters
were chosen. For example, in the system chosen here the
basic tetrahedral cluster is convenient because first-,
second-, and third-neighbor separations exist in a cluster
of this type. This readily allows for an explicit account of
site blocking out to third neighbors [Eqs. (16)—(25)]. Al-
though the expression for the entropy would be more
complicated, the same basic clusters could be used for
first- or second-neighbor blocking. For blocking out to
separations larger than third neighbors a larger cluster
would give better results.

IV. ENERGY AND GRAND POTENTIAL

For every occupied nth-neighbor pair on the lattice
there is an associated interaction energy Jn. There is also
a contribution from each occupied site as a result of the
imposed random site energies. The total energy of the hy-
drogen atoms can therefore be written in terms of the
cluster concentrations as described below.

Equation (10) gives the number of 2-site clusters of a
particular type, and x~ ~(2,a, P, n) is the fraction that have
both sites occupied resulting in an interaction energy Jn.
The total interaction energy is therefore obtained by mul-

tiplying these three factors together and summing over all
cases. Similarly, there are Na sites with energy e and a
fraction x of these sites are occupied. Hence the total
energy is

NE=—gz„J„+a apx p „+N g.a e~
n ap a

(27)

The equilibrium configuration of the entire system,
specified by particular values of the variables x and
x p. n, is obtained by minimizing the free energy

F=E —TS (28)

0=F—pNc =E —TS —pNc, (29)

where p is the chemical potential of the H atoms. The
concentration c can be written in terms of the variables
x: there are Na x sites of each energy e giving

c=—QNa x =pa x1

N a
(30)

Minimizing 0, with respect to the cluster concentration
variables ensures that

dFNp=
dc

(31)

It also follows that, in equilibrium, two coexisting phases
share the same values of 0 and p. '

The grand potential is minimized by setting

(32)

an
Xap n

=0. (33)

with respect to these variables, subject to the constraint
that the total concentration c of H atoms on the lattice is
fixed. However, it is more convenient when calculating
phase diagrams to consider the grand potential
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Equation (32) represents 1 equations for I variables x . Although Eq. (33) represents the number I I of 2-site vari-
ables x~@„,not all are independent since x p. „——xp .„. Using Eqs. (26), (27), (29), and (30), Eqs. (32) and (33), respective-
ly, give

&a X~
+ln +6+apln(1 —x —xp)

kgT (1—x )~
p

5 g aug psych(1 —x —xp —xr —xs —xC)ln(1 —x —xp —xy —xs —xg)

L

+ g z„ ln
n=4

X~ —X~p.„
a pin

p
1 —X~ —Xp+X~p. ~

(34)

and

X~+Xp
Xap;n = 1 —

I [1+(x —xp) U„] —4.x (1—xp) U„ I
'

2U„

where

U„=1— (36)

=ln
k~T

(1—2c) c
(1—5c) (1—c)

L—g z„lnv„, (37)

1 —y 1 2
—J ~km~ 1i2+[(1 y)2+4ye II B]l/2

2 2

c
1 —c

(38)

(39)

This can be compared with the expression derived by
Richards' for a lattice gas model with many neighbor in-

teractions but no random site energies:

=ln
k&T 1 —c

L—g z„lnv„. (40)

The second term on the right-hand side of Eq. (37) is the
same as Richards's equation (but excludes n = 1,2, 3), and

The first term in Eq. (34) is the contribution to p from the
random site energies, while the last term results from the
interactions J„. The remaining terms arise from the clus-

ters chosen to take explicit account of site blocking. For
example, the fourfold sum arises from the 5-site cluster
configuration with all sites unoccupied.

For a given p, Eq. (34), which actually represents I
nonlinear equations in the I unknown values of x, can
be solved numerically for the x using the Newton-

Raphson method. The concentration c is then obtained
using Eq. (30) and 0 is found using Eq. (29). Alternative-

ly, Eq. (30) can be included with Eq. (34), for a fixed value

of c, and the equations can then be solved for the I + 1

variables x and p, thus giving 0,. A plot of 0 versus p
is then used to determine the values of 0, p, and c where

phase separation occurs. (Note that it is necessary to add
a term corresponding to a long-range elastic interaction in

order to obtain the n and cx' phases as is discussed further
in Sec. V.) For a particular T, the point at which the II
versus p curve crosses itself gives the coexistence concen-
trations on the T versus c phase diagram.

When there are no random site energies, Eqs. (34) and

(35) become

p, 1 BS (1—5c) (1—c)=ln
k T Nk Bc (1—2c) c

(41)

where the first equality follows from the minimization
condition (32). Boureau' has derived the following ap-
proximation for the partial molar entropy of this system,

aS (1—sc)'(1 —4c)
Nk~ Bc (1—2c) (1 —3c)c

(42)

which is a similar functional form and agrees well numer-
ically with Eq. (41), especially for the concentration range
of interest (c (0.1).

The form of Eq. (37) can be compared with the work of
Meuffels and Oates, ' who performed Monte Carlo calcu-
lations for a lattice gas with a second-neighbor hard-core
and a finite third-neighbor interaction energy. They
found that the second-neighbor Boureau expression, com-
bined with Richards s interaction term, gave the best com-
parison with the simulations. This is completely analo-
gous to our Eq. (37), which combines a"Boureau-like"
hard-core and a Richards-type term, both of which arise
naturally and more rigorously in this equation through
the use of the CVM.

V. PHASE DIAGRAMS

The parameters appearing in Eqs. (34) and (35) are the
H-H pairwise interaction energies J„,the random energies
e and the weighting factors a . In general, the cornputa-
tion of these parameters is a complex task, but various

the first term differs because the total exclusion of first-
to third-neighbor occupied pairs in our model is taken
into account explicitly. If the basic clusters had been
chosen to be only the (2,a,P, n) clusters [in this case sim-

ply (2,n)] for all n, with total exclusion taken into ac-
count only by setting J„=ce (and not by setting the clus-
ter concentrations to zero), then we would have obtained
Richards's equation. Richards has also treated the infi-
nite repulsions explicitly and Eq. (37) will be compared
with his results in Sec. V.

If there are no interactions beyond the repulsive third-
neighbor core equation (37) gives
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workers' "' ' have calculated the random site energy
distribution p(e) and the elastic contribution to the J„ for
Nb-H, Nb-Mo-H, and Nb-V-H. Use of these data enables
a comparison between Eqs. (34) and (35) and the Monte
Caro calculations of the phase diagrams also performed
by these workers.

In addition to the relatively short-range interactions al-
ready discussed the grand potential includes an elastic in-
teraction term associated with the free surfaces of the
crystal. Since this term is of macroscopic range it can be
treated in mean field theory, resulting in the addition of a
term Nac l2 (where a is a constant) to the free energy
and hence to the grand potential. Minimizing the grand
potential with respect to the independent cluster concen-
trations yields the same results as Eqs. (34) and (35) ex-

cept that p must be replaced by p —ac. Equivalently, if p
is the minimized solution to Eqs. (34) and (35), then the
solution to the problem when the long-range elastic in-
teraction is included is simply p+ ac. In this work
a /kz ——18 000 K when L =50.' '

Using the interaction energies calculated by Futran
et ai. ,

' which extend out to L =50 shells, the a-n' coex-
istence curve in NbH, where x =6c, was obtained using
Eq. (37) (no random site energies are required). The re-
sults are compared in Fig. 2 with the Monte Carlo results
of Futran et al. for the same system. The critical param-
eters obtained here are T, =451 K and x, =0.33, com-
pared with T, =460 K and x, =0.29 for Futran et al. the
discrepancies being directly attributable to the differences
between the Monte Carlo technique and the approximate
analytical technique used here. The coexistence curves are
in reasonably good agreement, especially considering the
simplicity of the technique. At higher hydrogen concen-
trations the discrepancies are largest, which is in part due

to the expression (26) for the entropy being more accurate
at low concentrations. Differences also arise because the
model used here does not account for the ordering of the
H atoms found experimentally for x=0.6—1.0 (the P
phase), whereas the calculations of Futran et al. do allow
for ordering. (The inclusion of ordering in the CVM
model used here is discussed later. ) Some experimental re-
sults are also included in the figure for reference, but it
should be noted that the differences here may be due to
many factors, including deficiencies in the models and er-
rors in the interactions J„and the elastic parameter a. A
typical experimental critical point is T, =444 K,
xe=0 31

Without explicit account of near-neighbor repulsions
Richards' obtained T, =520 K and x, =0.51 for NbH„
using Eq. (40). When Richards modified his model to ex-
plicitly include the infinite repulsions out to third neigh-
bors, T, was reduced to 421 K and x, to 0.26.

The thermodynamic factor

c Bp x Bp (43)
kgT Bc k~T Bx

is an experimentally measurable quantity ' that is readily
obtained for NbH„ from Eq. (37). The factor represents
averaged information on the effects of the H-H interac-
tions. Figure 3 presents f,h„ for hydrogen in pure niobi-
um at temperatures near and above the critical tempera-
ture for a wide range of concentrations. Comparison of
the theory with experiment in Fig. 2, showing a phase en-
velope which is too wide, indicates that the theoretical
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FICx. 2. Phase diagram for the a-a' transition in NbH„. The
solid curve gives the result obtained in this work, the long-
dashed curve is the Monte Carlo result of Futran et ai. (Ref. 16)
for the same model, and the short-dashed curve is a typical ex-
perimental result (Ref. 20).

FIG. 3. Thermodynamic factor f,h„as a function of concen-
tration for NbH„as obtained in this work. Curves are given for
several temperatures (as indicated) near and above the critical
temperature.
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FIG. 4. Phase diagram for Nb& yMoyH& for 0%, 5%, and
15% Mo in Nb, as indicated. The solid curves are the results
obtained in this work, and the dashed curves are the Monte Car-
lo results of Shirley et al. (Ref. 10) for the same model at 5%
and 15%.

f,h„obtained here is probably too small at high concen-
trations. Note that at low concentrations the interaction
effects become unimportant and f,h„~ 1 is c~0.

To model hydrogen in a niobium alloy using Eqs. (34)
and (35) requires that both the interaction energies J„and
random-energy distribution p(e) be known. Shirley
et al. ' have determined p(e) and J„ for 5% and 15%
molybdenum in niobium. Figure 4 shows the results ob-
tained by using their data in equations (34) and (35).
Similarly, Fig. 5 shows the phase diagram obtained using
the parameters of Grewell" for 6% vanadium in niobium.
Table II presents the discrete spectrum of energies, ap-
proximating p(e), that was used in each case.

With I., the maximum nth neighbor considered, of or-
der 50, and the number of site energies I =5, Eq. (34) can
be solved rapidly to give c for any particular values of p
and T. For I & 10, the fourfold energy sum appearing in
the equation makes the calculation more time-consuming.
However, values much larger than this were found to be
unnecessary since increasing I led to only small changes
in the calculated coexistence curves.

The Monte Carlo calculations of Shirley et al. for Nb-
Mo-H are also shown in Fig. 4. It can be seen that the ad-
dition of as little as 5% Mo to Nb lowers the critical tem-
perature of the a-a' transition below the a-a'-13 triple-
point temperature, thus erasing the n-a' transition. While
the model used here predicts the depression of the a-u'
coexistence curve for 5% Mo, it is unable to predict the
transition to the P phase. (This is because there is no
mechanism built into the model for dealing with ordered
phases. Although the CVM can in general be used to
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FIG. 5. Phase diagram for the a-a' transition in Nb& yVyH&
for 0%, and 6% V in Nb, as obtained in this work.

predict transitions to ordered phases, it is not a practical
approach to take on this lattice because the clusters and
configurations necessary to account for the P phase with
random site energies become too numerous. ) At 15% Mo
the present calculations are comparable with the Monte
Carlo result, the large depression of the critical point be-
ing due to the wide energy distribution (see Table II).

In contrast, the depression of the critical point is less
severe in Nb-V-H enabling our model to provide a simple
and yet more realistic description of the phase digram.
As shown in Fig. 5, the model predicts a critical point for
Nbo 94VO 06H of T, =428 K, x, =0.33 (compared with
451 K, 0.33, respectively, for NbH„), a decrease in critical
temperature of 23 K in the alloy. The Monte Carlo calcu-
lations of Grewell give the critical temperature as 435 K
for NbH and 418 K for the alloy, a decrease of 17 K.
These results may be compared with the experimentally
observed decrease of approximately 26 K from 444 to 418

22 23

It is informative to describe the effect on the phase dia-
gram of varying some of the parameters of the model.
Figure 6 shows the effect of increasingly better discrete
approximations to a continuous random-energy distribu-
tion. The interaction energies are assumed to be those of
Nb-H and the distribution p(e) is taken to be rectangular
with width 2000k& K. The numbers on each curve corre-
spond to the number I of equispaced energies being used
to approximate the distribution, and range from I = 1 (no
random energies) to I =13. Fairly consistent results are
achieved for I & 5, although this is a uniform, well-
behaved, distribution and more complicated distributions
can require larger values of I . However, the results do
show that the discrete approximation can give good re-
sults for relatively small values of I .

The effect of increasing the separation eo of the levels
of a simple bilevel distribution is shown in Fig. 7. For the
distribution, each lattice site must have energy 0 (with
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TABLE II. Discrete random-energy distributions used in the calculation of the Nb-Mo-H and Nb-
V-H phase diagrams.

p/kg K

—300
0

400
800

1600
2100
3500

5%
Cla

0.020
0.636
0.132
0.020
0.159
0.020
0.013

Mo in Nb
15%

e/kg K
—400

0
600

1600
2200
3200
3800
4400
4900

Cla

0.003
0.313
0.194
0.260
0.113
0.078
0.021
0.008
0.010

V in Nb
6%

e /kg K

—650
—480
—340
—120

0
180
320
620

+a

0.0108
0.0476
0.1256
0.1948
0.4329
0.0606
0.1169
0.0108

probability —, ) or energy ep (with probability —,
'

); that is,
p(e)= —,

' [5(0)+5(ep)]. Curves are drawn for ep/kg=0,
500, 1000, 1500, and 2000 K, with J„again taken to be
those of Nb-H. As the distribution widens the critical
temperature initially decreases slowly, then shows a more
rapid decrease which again slows as the separation be-
comes much greater than 1000k& K. The critical concen-
tration also shows a similar decrease. This dependence on
the general width of the distribution is typical of all distri-
butions considered.

Last, the effect of varying the range L of the H-H in-
teractions is shown in Fig. 8 for Nb-H. Values of L are
attached to each curve and some critical points are also
shown. The critical temperature gradually increases as L
increases, from a value of 277 K when there are no pair

interactions, apart from the hard core, up to 451 K for
L =50. For these calculations the long-range elastic term
a depends upon L.' ' ' For L )40 there is only a
small change in T„which shows that this is a sufficient
number of shells to realistically describe the phase
behavior.

Some final comments should also be made concerning
the computation of the concentrations x . At small c the
concentrations x are found to be proportional to
exp( —e /k~T), as would be expected. This behavior is of
assistance when selecting initial estimates of x to satisfy
Eq. (34). For very wide distributions (such as
3000—4000k& K), and as c increases, the minimized
values of x for the lowest energy e can tend linearly to

p

x =0.2. This concentration corresponds to all sites of
p
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FICx. 6. Phase diagram for a model of increasingly finer
discrete approximations to a continuous rectangular random-
energy distribution. The number I of discrete energy levels is
indicated for each curve.

FIG. 7. Phase diagram for a random-energy distribution with
two discrete energy levels of increasing separation E'p. The value
ep/k~ is attached to each curve.
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energy e being occupied. In this case x is no longer a
0 0

variable; the number of variables in Eq. (34) is decreased
by one, with x set constant at 0.2. This effect seems to

0

be an artefact of the approximations inherent in the
model, but does not lead to any problems when solving
the equation.

FIG. 8. The effect on the NbH„phase diagram of variations
in the maximum number L of nth-neighbor H-H interactions.
A value of L is attached to each curve and some extra critical
points (crosses) are also shown.

The CVM has been applied to a random-field lattice
system. Although the technique is quite general, the
theory has been specifically applied to obtain a relatively
simple expression describing the disorder-disorder phase
transition in hydrogen-niobium alloy systems for small
concentrations of the alloying element. The model re-
quires the hydrogen interaction energies J„and the ran-
dom site energy distribution due to the effect of the alloy-
ing element; these parameters have been calculated for
some alloys by other workers.

Good results are obtained for NbH„and Nbp 94Vp p6H„.
Since the model does not account for transitions to or-
dered phases the results for Nb& «Mo~H„are not as good.
Previous Monte Carlo calculations and experiments have
shown that the a-a' transition is erased for Mo concentra-
tions as small as 5%, leaving only the a-P transition. The
model used here yields the large depression in critical tem-
perature but because no allowance is made for the oc-
currence of the /3 phase a sensible comparison is not possi-
ble at higher molybdenum concentrations.

Although the CVM, in the model used here, is not cap-
able of accounting for the ordered P phase some account
of ordering can be made by using sublattices correspond-
ing to the ground states that will occur. Work on such
theory is in progress but at present has not been success-
ful.
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