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The effects of uncorrelated and correlated random fields on the critical properties in the quantum
displacive limit in systems undergoing structural phase transitions are investigated within the Har-
tree approximation. An unusual critical behavior, absent dimensional reduction, and breaking of the
scaling exponent relations, occurs as a competition of thermal, quantum, and random field fluctua-
tions when the transition is driven by the temperature. On the contrary, by our approaching the
quantum displacive limit in terms of the interaction-strength parameter a picture emerges which is
consistent with recent renormalization-group predictions. In particular the dimensional reduction is
present also for long-range interactions and correlated random fields due to the absence of perturba-
tive effects as the Griffiths singularities which disappear in the large-n limit.

I. INTRODUCTION

Since the observation of a "central peak"' in the
dynamic structure factor of SrTi03 in neutron scattering,
considerable effort has been expended in studying the ef-
fects of impurities on the critical behavior of systems un-
dergoing structural phase transitions at finite tempera-
ture. In contrast, the effects of quenched impurities on
the critical properties in the displacive limit have received
less attention and only partial renormalization-group
(RG) information has been obtained quite recently for
a lattice dynamical model as a member of a wide class of
quantum systems. ' The aim of the present paper is to ex-
plore the effects of correlated random fields (describing
quenched impurities which couple linearly to the ordering
field) on the structural phase transition in the quantum
displacive limit"' (QDL) where quantum fluctuations
are, in general, extremely important. The starting point is
a continuous functional representation of a d-dimensional
quantum-lattice dynamic n-vector model" ' which pro-
vides a good theoretical laboratory for studying several as-
pects of critical phenomena in displacive structural phase
transitions. By using the Hartree approximation, which is

I

exact in the large-n limit, we are able to study systemati-
cally the random field (RF) critical properties by ap-
proaching the QDL and a great variety of interesting situ-
ations appears depending on the nature of the RF correla-
tions. Here we do not include information about the criti-
cality at finite temperature, when quantum fluctuations
become irrelevant, because, in this classical regime, the re-
sults already obtained for bosonized systems in (Ref. 14)
[recently reproduced for the RF classical n-vector model
(Ref. 15) in the large nlimit] -are true.

The paper is organized as follows. In Sec. II we intro-
duce the n-vector RF quantum model and the self-
consistent Hartree equation for the inverse susceptibility
is presented. A discussion of the critical properties of the
model at QDL is made in Sec. III. Finally, in Sec. IV, we
make some concluding remarks.

II. THE MODEL AND
THE HARTREE APPROXIMATION

The RF quantum model of interest for us is defined by
the following quantum Ginzburg-Landau-Wilson (GLW)
functional

1/T
A Ig, hj= —,

' f d x f dr c[V' @(x,r)]'+rof (x,~)+
2

f (x,r)+2h(x). g(x, ~)
2

Here c, ro, and uo are parameters characteristic of the lat-
tice model (in particular ro ———S, where S is the interac-
tion strength ),

1/2
l(K I—cD(1 )@( )

q
o& ]~] &w

is a real n-component vector field, q=(a, co~), coI 2mlT-—
(1=0,+1,+2, . . . ), T is the temperature, Vis the volume
of the system, and A is a wave-vector cutoff related to the
presence of a microscopic length scale (the lattice spacing)
in the original model. In (1), [V ~ f(x, r)] corresponds
to ~

~ P(q)
~

in the Fourier representation and the value
of o. reflects the range of interactions involved in the lat-
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tice model: 0 =2 for short-range interactions and
0(cr (2 for long-range interactions which fall as
R '"+ '. Finally, the quenched RF h(x) is governed by a
gaussian distribution with Fourier component averages:

[hi(a)],„=0, [h'(a)hi. (a')],„=5;i5„„g(a.),

when 8)0 with bo;&0 (i =1,2), when bo2 ——0 or when
dpi ——0, bp2&0, and 8=0 the short-range correlated RF
case will be reproduced.

By using the replica trick, ' the free energy of the
model is given by

where ' 1 —A d I It) I )

m~0 m
(3)

g«) =~oi+~o2
I

a
I

for small
I
k

I
and arbitrary 8, which corresponds to RF

correlations that decay as
I
x —y I

'"+ '. Of course,

where the "effective GLW functional" A, ff(IQ I ) of m
replications (g; a= 1, . . . , m ) of the original field P has
the following Fourier representation:

r.",'(q )g.( q)P—(q )

where

a,p=1 j=1

0&/x
/

&A

q
0& j~l &A

+4~X X X 0' (qi)W (q2 4" (q3 W4( —qi —q2 —q3»

r' p(q)=(rp+clr +coi)5 p T'g(—ir)5 (5)

Equations (3)—(5) allow us to apply to the "effective problem" the usual techniques quite parallel to the pure system, tak-
ing m~0 in the final results.

As shown in Ref. 14, in the large-n limit, for fixed m and arbitrary replica index a, we can split the fourth term of
ff( I p I ) in the (x,r) representation as (Hartree approximation' )

y'(, ) 2&@'& „y'(, ) —(&y')- „)'.
This makes the effective functional quadratic with roar, ff =rp+up&@ )~ . Then, by evaluating the average &@ )~
with the approximate form of ~,ff..

a, p=1 j=1

(reff —rp )
2

[(reff +ca +coI )5~p —T 'g(a. )5„p]p~( —q )g~(q )—
4up

0& i~/ &A

we obtain for r,ff the self-consistent equation

Tr,ff ——rp+nup—
V

q
0& ia/ &A

1
T 'g (a.)5 p

1
r ff+cK +coI r ff+cK +coi —mT g(a)5

+

with up ——0(1/n ). At this stage we make the limit of Eq.
(8) for m ~0 and the result is the self-consistent equation:

This last statement immediately follows from the large-n
limit result:

Tr =rp+nup—
V

0& i~j &A

1 T 'g(a)5 o

a 2 +r+ca +m& r+c~ +

m

G(q ) = lim —g & P ( —q )Pp(q ) )~
rn-+0 m p

( r +cK +col )

(9)

for the parameter r = lim prd~ which is just the inverse
susceptibi1ity for the RF quantum model under study de-
fined by the inverse value at q=O (k=O, cof =0) of the
physical propagator:

«q) =I:&W( —q)W(q) &l.,—[&0(—q) &&K(q))]" .

(10)

obtained by using the approximate functional (7) via the
general replica trick procedure. ' '

By making the sum over the Matsubara frequencies in
(9) and assuming

1
V~ oo A

Xd f dKa'
0& Iaci &A

0

with &d —2' ~ di2/I (d /2), in the low-temperature
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(which is the temperature region of interest for us) the
general self-consistent equation (9) for r reduces to

Finally, we note that, from (11) it follows for G(q) the
scaling relation:

r=rp+Ap(d, o)nupT ~ 'C&(r/T ) G(a, cp()=g W(~g, g ~~co(), (18)

+A, (d, o )nupF, (r )+A z(d, o.)nwp~Fq(r )

+A 3 (d, cr, 8)nwpzF3 (r )

where wp; ——upb. p; (i =1,2) and

2Kd A K„
Ap(d, o)= q, A i(d, cT) =

oC 2oc

(12)

where g=c' r '~ and W(x,y)=[c(x +1)+y~]
The relation (18) implies that g assumes the role of corre-
lation length for our model.

III. CRITICAL PROPERTIES
AT QUANTUM DISPLACIVE LIMIT

A. Critical line and RF quantum displacive limit

A Kd
Aq(d, o.)= z, A3(d, cr, 8)=

oc

Wd+'-"X
d

OC

(13)

2d/o l 2 2 1/2
@( /T2) d

x
(

(rlT +x ) 1)
—1

P ( /T2+ 2)1/2

& d/o —1 & 1/o —1

F&(r) = f dx, , Fz(r) = f dx, (14)
(r+x)' p (r+x)

(d+ 8)/o —1

F3(r)= f dx
(r+x)

(r r,)—2

+— g ln 2 sinh
T (r+ clc )

'"
4vo ~ o. I.~.~

1 ~ g(~)
2~o& ~~~ &A r+«

where vo ——nu o. Then, the specific heat at constant
volume in the low-temperature limit is expressed as

2' 21/o —I (r/T +x )7''"f dx1/o. 0 (r /T2+x 2) I /2
e

with r =r/CA .
We are now in a position to investigate the critical

properties of our model by approaching the QDL from
the disordered phase side. These can be extracted by ex-
amining the Eq. (12) near criticality defined by r =0.
This lies on the possibility to express all the relevant mac-
roscopic quantities in terms of r Indeed, .from (3) and (7),
the free-energy density per order parameter component
W=F/n V in the large-n limit is given by

As concerning the existence of a critical point defined
by r =0, we firstly note that @(r/T ) diverges for
r/T ~0 when d/cr & 1 and F;(r) (i =1,2, 3) diverge for
r~O when d/o & —,, d/o' &2, and (d+8)/o &2, respec
tively. This implies that the existence of a phase transi-
tion strongly depends on the structure of the RF correla-
tion function g(k) and on appropriate combinations of
d, o. O'

From Eq. (12) we find that a phase transition occurs:
(i) for d /cr & 2 when b, p~ &0, b,pz ——0;
(ii) for d/o & 1/2 and (d+8)/cr & 2 when bp~ ——0,

~o2&0
(iii) for d /cr & 2 and (2 +8)/cr & 2 when b,p&&0,

~oz&o
In the cases (i)—(iii) for d /o & 1, a "critical line"

T, =T, (rp ) exists showing a terminal critical point
(T =0, rp =rp ), where rp =rp (up, jap; } )

[ - - S, =S,(up, Ibp;})] is the particular choice of rp for
which T, vanishes and defines, therefore, the RF QDL.
In any case we can write ro, ——r o, +r o, , where(P) (R)

rp, ' nupA&———(d, cr)F, (0) is the value of rp which defines
the QDL in the pure model"' and rp, ' equal to

—
nwp ) A p (d, cr )Fq (0),

—nwpq A 3 ( d, cr, 8)F3(0)
and

n [wpl A 2(d, o )Fz(0) +wpzA 3(d, o,8)F3(0)]

in the cases (i)—(iii), respectively, represents the effects of
randomness. Close to the QDL for rp &rp„ the critical
line is, in any case, represented by the power law:

T, (rp)=[nupAp(d, cr)@(0)] ' '(rp, —rp)'

r 2 1 Br
T2+ 2T aT

a'~ l-
2uz Br&

(17)

Notice that rp ( = —S) does not depend on temperature in
contrast to the well known case of the analogous parame-
ter in the CxLW functional for classical magnetic systems.

Another interesting thermodynamic quantity, which is ap-
propriate when the phase transition is driven by ro and
constitutes the analogy of the specific heat for a magnetic
system, is

where 1it=2d/o —1 is the shift exponent for the present
model. Note that it is formally the same as that for the
pure model but for d & o. and also in the RF case the criti-
cal line has an infinite slope at (T, =0, rp=rp, ). In the
case (ii) for —,

' &d/o. & 1 (with 8/o &2 d/cr) an —isolated
critical point (T, =0, rp =rp, ) exists, where

rp: r p
—nwppA 3 (d, o', 8)F3(0)

We now investigate the low-temperature critical proper-
ties of our RF model by approaching the QDL along the
two thermodynamic paths W T = (ro ——ro„T~T, =0),
Wz=(T=T, =O, S~S,= —rp, ) within the disordered
phase region. Correspondingly, for the pure system, ex-
perimental ' and theoretical" ' results exist so that, pre-
dictions about the competition of RF, thermal and quan-
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turn fluctuations can be made. Of course, since the criti-
cal line, when it exists, has an infinite slope at QDL, the
critical behavior along the line WT is expected to differ
from the one along Wz which is driven by the variation
of ro ———S.

B. Critical properties along
the line W T = ( ro ——r~, T~0)

We are interested to determine the asymptotical
behavior for T~0 of the most relevant macroscopic
quantities as the susceptibility X=r, the specific heat
Cv and the correlation length g. Thus, if we define the
critical exponent xT for a generic quantity X as

X-T (T~O, ro ——ro, ), (20)

where xT yT, vT, a——r, ar, . . . for X=X,E, Cv, . . . ,

respectively, our problem is to calculate the critical ex-
ponents (xT) for different thermodynamic quantities (X).
Note that, as in the pure case, "' the exponent for C&
can be defined in two ways since, for T, =0, the addition-
al factor T in Cz ———Tc) u /BT reduces its singularity—cxT
by one power in T. Thus, we define Cz-T and

C~/T —T, where a T corresponds to the usual
specific-heat exponent. The previous program can be
realized simply by a study of the self-consistent equation
(12) for r~0 in combination with the asymptotical
behaviors of the functions N(r/T ) and F (r) (see Appen-
dix) and the expressions (16)—(18). The results are con-
veniently summarized in Table I where 8;, P;, and B;
denote the regions of the (d/o, 8/cr) plane, shown in Fig.
1, where random (R), pure (P), and borderline (B)
behaviors occur, respectively. Here, the white regions cor-

respond to absence of a critical point.
By inspection of Table I and Fig. 1, we firstly note that,

when a short-range correlated RF is present (for bo»0,
~o2=0' ~o(=0 ~ox&0 and 8=0 ho(&0 bo2%0 with
8&0) and the QDL is approached along the line WT,
dcI ——2o, and dcU ——3o. assume the role of lower and
upper critical dimensionality, respectively, to be compared
with dc(piI=a/2 and d(cU) =3a/2 for the corresponding
pure system. Thus, the introduction of a RF generates a
dimensional shift d~d —30./2. Here, dcL has the usual
meaning but dcU has not to be considered in the usual
sense since along WT we do not have mean-field behavior
for d & dcU. It must be considered simply as a borderline
dimension below which a RF criticality appears and above
which the pure one occurs. When a correlated RF is
present we find the following.

(a) If b,ot ——0, b,o2&0 with arbitrary 8/cr & 1, the lower
and upper critical dimensionalities are dcL ——2o.—0 and
dcU ——3o.—0, respectively, corresponding to the dimen-
sional shift d~d —(3o/2 —8).

(b) If ho(&0, ho2&0, we have the same expressions for
dcL and dcU as in (a), but with 8&0.

(c) A very strange situation occurs in the (d/cr, 8/cr)
plane's region (2 —8/o &d/cr &3—8/o. , 1&8/o &3/2),
where two different RF regimes appear separated, along
Bi, by a borderline behavior: the first regime (in Ri) is
associated to an isolated critical point, while the second
one corresponds to a terminal point of a critical line. In
this case, generated by a peculiar competition between the
RF and thermal terms in the self-consistent equation (12),
and which has not a counterpart along the thermodynam-
ic path Ws, it is difficult to define, without ambiguity,
critical dimensionalities to be compared with those of the
pure system. Thus, in the following we limit ourselves to

FICi. 1. Regions of the (d/cr, 8/a) plane where different critical regimes occur by approaching the QDL along the line Wr in the
presence of a RF with (a) bo]=0 Ap2&0' (b) ko]&0 EO2&0.
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TABLE I. Some critical exponents by approaching the QDL along the line Wr =(T~O, ro ——ro, )

for different values of the RF correlation function parameters Ib,o; j. The asterisks indicate additional

logarithmic corrections.

Regions of the
(d/o, 0/cT) plane

2d —cT

d —2cT

2d —1

2d /o. —1

d —20

(5/c. )*

2d —cT

CT2

2d

2d

2d

2d

2 &d/cT & 3

d/o =3

d/cT) 3

2d 2d Ri

2d —cT

d+0 —20
2d /o. —1

d+ 0—2o.

2/CT

2d

2d

2d

2d

R2

P(

2d 2d —cT

CT2

2d 2d
P2

Bj

(2/CT )* B2

2d 2d —0
CT2

2d 2d
B3

~o»0
~o2&0

2d —cT

d —2cT

2d —0
d +0—2o.

2d

2d /o. —1

d —20

2d /o. —1

d+ 0—2o.

2d —0
CT2

(5/c. )
*

2d
o

2d

2d

2d

2d

2d

R3

R4

P3

B4

2d 2d —cT

CT2

2d
o

B5

consider situations (a) and (b) only.
As concerning the RF critical exponents for

dcL &d &dcU (notice that aT and aT have, in any case,
the same formal expressions as those in the pure systems),
it is immediate to check that they cannot be obtained
from the corresponding pure ones" ' with the dimension-
al shift d~d —d' where d'=3'/2 or 3cT/2 —0. Thus, no
"dimensional reduction" exists when the QDL is ap-
proached along WT when a RF is present. On the con-
trary, as we shall see later, a dimensional reduction occurs
when the QDL is approached along Wz, i.e., when the
(T=O) transition is driven by the interaction strength
S= —ro of the lattice dynamical model. The absence of
dimensional reduction along Wz- is a peculiar manifesta-
tion of quantum-thermal fluctuations in the low-
temperature limit and not an effect of the Cxriffiths singu-
larities ' which have been shown to disappear in the
large- n limit.

An additional interesting aspect of our investigation is
connected with the effect of the RF fluctuations on the
hyperscaling exponent relations which directly involve the

spatial dimensionality. It is already known" ' that, for
pure systems, the usual hyperscaling relations involving
the critical exponents xT appear to fail in the dimen-

~ ~ (P) (Pjsionality range d &L & d & d CU, where they are expected to
be true for n-vector classical systems. However, for QDL
criticality along WT it is possible to introduce "modified
hyperscaling relations" which are, on the contrary, satis-
fied. For example, the hyperscaling relation dv=2 —a is
modified in dvT '=(2 —az- ')+gz, where gf'= —,y'T ' —2-
= —1, y'T' ——2, v'T' ——2/cT, and a'T ——(cT —2d)/cT. Then, it
is easy to show that, when the RF is present, for short-
range RF correlations and in the cases (a) and (b) with
d~L & d & d~U, the above "modified hyperscaling rela-
tion" is changed in (d —d')vT ——(2 —aT)+fr, where

1

gT = —,yz- —2 and yT, vz. , ar are the exponents appropri-
ate to the random system. Explicitly we find that
gz- ——(7o —2d )/2(d 2cr ) or —gz- ——[7cr —2(d +0) ] /2(d
+0—2o') for uncorrelated and correlated RF, respective-
ly.

The above relations can be also rewritten as
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TABLE II. Some critical exponents by approaching the QDL along the line Ws=—(T=O, ro~ro, )
for different values of the RF correlation function parameters [b,p; I. The asterisks indicate additional
logarithmic corrections.

'Vs

d —2o
1

d —2o

(1/o )

1/o

as
d —30
d —2o'

0+

Regions of the
(d/a, O/o) plane

2&d/o &3

d/a=3
d/o &3

1

d+ 8—2o.

1/o.

(1/o. )*

2d —3o'

2d —o

0+

Ri

Bi,B

~oi&0

~o2&0

d —2o
1

d —2o

1/o

(1/o )*

d —30
d —2o

d+0 —3o.

d+0 —2o.

0+

R2

R3

MF2

B3,B4

(d —8"')v'f'=2 —a')' and (d —d' —~')v, =2—aT,
where ro' ' =g'T '/v'r ———o /2 and

o' 7o —2d
2 2d —o

o 7o —2(d+2&)or—
2 2d —0

C. Critical properties along the line Ws=(T=O, S~S,}

We now put T=0 in the self-consistent equation (12) so
that we can explore the critical properties of the RF
model in terms of ro —ro, when only quantum and RF
fluctuations are involved. By approaching the QDL along
Ws from the disordered phase side, we define the critical
exponents ys, vs, and as (for X, g, and C= a'W/pro)—
according to the power law

X-(ro —"o ) g-(ro ro ) (T=O r—o~ro )
~s ~s

(21)
C-Cp+C](rp —rp, ) (T=O, rp~rp, ) .

Then, by using the asymptotical behaviors of the func-
tions F~(r ) (i = 1,2, 3) near the criticality (see Appendix), a
study of the self-consistent equation for the inverse sus-
ceptibility yields the results exhibited in Table II for dif-

assume the role of the Fisher anomalous dimensions of
the vacuum" for pure systems and when a (uncorrelated
or correlated) RF is switched on, respectively. Due to the
possibility to consider different values of d, o., O, we be-
lieve that the previous aspect of the modified hyperscaling
laws for critical properties near the QDL along WT may
have some relevance from the experimental point of view.
A discussion about the scaling relations, which do not
contain the dimensionality explicitly, is reserved for the
end of Sec. III.

ferent structures of the RF correlation function.
Here, as in Table I, R;, P, MI';, and B; denote the re-

gions of the (d/o, e/a ) plane shown in Fig 2, wh. ere ran-
dom, pure, mean-field, and borderline behaviors occur,
respectively. Qf course, in the white regions no critical
point exists.

The critical properties obtained by approaching the
QDL along Ws drastically differ from those along WT
and are quite consistent with RCx predictions for quantum
systems at zero temperature. ' This is due to the fact
that rp ———S for structural phase transitions (as the
chemical potential for Bose systems, the transverse field
in spin systems, etc.) is the natural intensive variable in-
volved in a RG treatment of ( T=0) quantum criticality
and it is the analogous of the corresponding parameter in
the GLW functional for classical n-vector model. From
Table II and Fig. 2 it immediately follows that, for both
uncorrelated and correlated RF, we can speak about a
lower and upper critical dimensionality for criticality
along Ws in the usual sense. Specifically one has
dcL ——2o. and dcU ——3o. for short-range correlated RF and
dcL ——2o.—0 and dcU ——3o —0 for long-range correlated
ones. Further, for dcL &d &dcU, the critical exponents
can be obtained from the pure ones ys

' ——2o/(2d —a),
vs

' ——2/(2d —cr), a~ ' ——(2d —jo)/(2d —o.), which occur
for d CL ——o-/2 & d & d CU ——3o-/2, with the dimensional
shift d~d —d', where d'=3o. /2 or 3o./2 —0. Thus, in
the present quantum model, when the T=O structural
phase transition is driven by ro ———S, a "dimensional
reduction" occurs [xs"'(d )—:xs (d ), where d =d —d'].
This form of dimensional crossover is "exact" in the
large-n limit since in this case dangerous unperturbative
effects as the Cxriffiths singularities disappear. An im-
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where H isis an external field a
H

'
h

th s s and 6 defined b
in re-

M- ro rp, —
i

(T=O, r ~ ),~ "O~~OC

M- ~H
~

'" (T=O=0, ro ro„——H~O),
(25)

where M=[( ' '
er ar],„ is the order ar

1 fidP = —'in s =
2 in any case and

d+0d
d —2o ' d+0 —2' (26)

for short- and ion -rong-range random c
1y. Of course th

correlations res

b
'

h 1'e sca ing laws:

2 —a's+ Xs
2 —a.s —ys

(27}

Ps=
6—1

mediate conse u
tru f

quence is that all the
«Pure system at T 0

ca»ng laws, which ar

Presence of a RF &f
Preserve their val'd'

exponent r
' ourse also the (T—0cou

» ityin the

relations are sim 1

= ) hyperscalin

(in terms of r
P y obtained from th

g

ro ———S these are vali
e pure ones

'h h
o 's in

ere modified hyperscalin
d)

h li 1 ti (d
„(d(d'" (wh h fic or pure u

—as or

obt i d fro th
consequence of th

e classical one for d~d+o
s at =0

e usual ua

vs and as are RF critical ex one
s — a's where

ponents for d &d d
is section b

tions about add't'
y including some

itional critical
me considera-

intrinsic
exponents a

stud .
critical dynam' ics of the

a so involving th

y. Firstly we ob

e

o serve that
quantum model d

of the Matsubar
, by analytical co

e uner

se, e~O+) one
a re-

R(a, co) which sca es as
rear-

(22)
or the (T=O) h ersyperscaling relations in thns in the presence of a

(23)

where q=2 —o. and z=o.

cal m
I

mode is found to obo o ey the dynam' 1
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),(v+1) & (2 —a, )(&—1) . (29)

This is in a sharp contrast with the case of the corre-
sponding pure system"' and appears as a peculiarity of
the approach to the QDL along Wr.

IV. CONCLUDING REMARKS

The previous theoretical predictions, which are exact in
the large n limit, can give useful informations about real
situations in quantum ferroelectrics and other systems
which show structural phase transitions when quenched
impurities are present. In particular, in our opinion, the
analysis of the QDL criticality along the thermodynamic
path WT assumes a relevant role, from both theoretical
and experimental point of view, based on the following,

(i) More sophisticated techniques based on quantum
versions of the Wilson RG (Refs. 7 and 10), do not allow
to obtain information about QDL critical properties along
WT. The reason of this limitation lies on the fact that in
the RG approach the parameter rp= —S (not depending
on temperature) is the natural variable which drives the
transition at QDL and not the temperature which assumes
the role of external fixed parameter. Thus, only (T=O)
predictions in terms of ro —ro, are available and the ex-
ponents [xT I are not accessible via the usual RG treat-
ment.

(ii) The temperature is the intensive parameter which is
involved directly in the experiments ' and the situation
(T=O, rp~rp ) is beyond the actual experimental possi-
bility, apart from some extrapolations of low-temperature
results. '

We wish to stress that, while the predictions along Wz
are consistent with those obtained via RG perturbative

techniques and the (T=O) dimensional reduction has to
be considered exact in the large n-limit (the Griffiths
singularities disappear), the results along WT change
drastically the usual scenario of the RF effects on classi-
cal and quantum critical behavior. Unusual QDL critical
properties emerge in terms of T which are not governed
by the RF fluctuations only, but rather have to be inter-
preted as a manifestation of the peculiar competition of
the three types of fluctuations involved in the problem.
The contrary happens for the (T=O) critical behavior
along W~. Indeed, a comparison with the results for a
RF Bose system in the classical regime' [which are valid
also for the present model when the (T&0) transition is
driven by rp= —S], allows us to assert that, as expect-
ed ' the RF fluctuations dominate over thermal and
quantum ones along

Ws ( T):—[fixed T and r p ~r p, ( T ) ]

and destroy the classical quantum crossover for T~O
which occurs in pure quantum systems. ' ' '

In conclusion, we believe that the qualitative picture of
the QDL problem in structural phase transitions here
presented is correct and quite informative and may consti-
tute a useful guide for future experimental and theoretical
investigations.

APPENDIX

In this appendix we summarize the asymptotical
behaviors of the functions F;(r) (i =1,2, 3) and C&(r/T )

appropriate for a discussion of structural critical proper-
ties by approaching the QDL in the presence of a RF. We
have

—A(d, cr)r ~ '~ +O(r), —,
' &d/a& —',

F (0)+, ( , cA )r lnr+O—(r), d/o= —', (A 1)

r+O(r '~Id ~ ' ' )) d/a) 3

cA (2d —3cr)

where F, (0)=2o./(2d —o ) and

&(d, cT) =—,sin[sr(d/o. + —,
' )])0,~'"r(d /a)

r(d/o+ -,
'

)

since sin[a (d lo+ —,
' )] & 0 for —,

'
& d lo& —,

' . Fu.rther, if we put Fz(r ) = Gd& (r ) and F3(r ) =Gid+si& (r ), one has

vol(cA )(1 —a) r +O(r), 2&a&3
sin(era )

G (r)=G (0)+ 2/cA )r lnr+O(r), a=3
2/(cA ) +O( min(a —2;2)

)
Q —3

(A2)

where a=dlcr, (d+8)/ r, Gc(0)=1/(a —2), and sin(ma) &0 for 2&a &3. Finally,
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(r/T') '+O(r/T'), 1 &d/cr & —,
2 sin(md/cr)

(r—/T )'~ +O[(r/T ) 1n(r/T )], d/o'=
z2

(r/T )
~ '+O(r/T ), —, &d/cr &2

cp —+(0)+ 2 sin(nd /cr )

, (r/T—)1n(r/T )+O(r/T ), d/cr=2

I I (d/o —3/2)g —3
28 2J

(r /T)+O[(r / T2)min(d /cr

8I (d/o+ —, )

(A3)

where @(0)=I[(2d/cr) —1)g[(2d/cr) —1] for d/o. & 1, g(s)= g &tc
' is the g function and sin(rrd/o. ) &0 for

1 & 0/CT & 2.
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