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The resistance R (x, x') between two connected terminals in a randomly diluted resistor network is

studied on a d-dimensional hypercubic lattice at the percolation threshold p, . When each individual
resistor has a small random component of resistance, R (x,x') becomes a random variable with an
associated probability distribution, which contains information on the distribution of currents in the
individual resistors. The noise measured between the terminals may be characterized by the cumu-

lants M~(x, x') of R (x, x'). When averaged over configurations of clusters, M~(x, x') —
~

x —x'
~

+q.
We construct low-concentration series for the generalized resistive susceptibility, P' ', associated
with Mq, from which the critical exponents P(q) are obtained. We prove that P(q) is a convex
monotonically decreasing function of q, which has the special values g(0)=De, P(1)=g~, and

P( co )=1/v. (Dv is the fractal dimension of the backbone, gq is the usual scaling exponent for the
average resistance, and v is the correlation-length exponent. ) Using the convexity property and the
accepted values of these three exponents, we construct two approximant functions for P(q)=g(q)v,
both of which agree with the series results for all q & 1 and with existing numerical simulations.
These approximants enabled us to obtain explicit approximate forms for the multifractal functions
a(q) and f (q) which, for a given q, characterize the scaling with size of the dominant value of the
current and the number of bonds having this current. This scaling description fails for sufficiently
large negative q, when the dominant (small) current decreases exponentially with size. In this case

' diverges at a lower threshold p*(q), which vanishes as q ~—ao.

I. INTRODUCTION

The simplest geometrical properties of percolation clus-
ters formed when each bond can randomly be either occu-
pied with probability p or vacant with probability 1 —p
are well known. The existence of a divergent correlation
length g as p approaches the threshold value for percola-
tion, p„occurs in close analogy with thermodynamic
phase transitions. ' If occupied bonds are assigned unit
resistance and unoccupied bonds infinite resistance, the
bulk conductivity of such a random network can be for-
mulated in terms of the percolation correlation length and
a crossover exponent gtt. The average resistance between
two connected points x and x' on the random network

scales as ' R(x, x') —
~

x —x' ~, and the exponent gR has4, 5 4
been intensively studied for several years. ' Recently
Rammal et al. " have considered fluctuations in the resis-
tance R(x,x') in a network due to fluctuations in the
resistances, rb, of single occupied bonds. Subsequently, de
Arcangelis et al. ' have focused attention on the distribu-
tion of currents that occurs in a two-terminal measure-
ment. The fluctuations in resistance are directly related to
the distribution of currents. An infinite set of exponents
was introduced to describe either of these phenomena.
The principal aim of this paper is to present a comprehen-
sive study of the properties of this set of exponents.

where g& indicates a sum over all bonds b which carry a
nonzero current Ib which depends implicitly on x and x'.
An equivalent formulation may be given in terms of the
distribution of R (x,x') in the case when the resistance of
each bond b independently has a small random com-
ponent 5rb. Averages over the distribution of rb will be
denoted ( ) and cumulant averages, ( ), . To lowest or-
der in 5rb we write the cumulant average of the qth power
of the resistance as"

(6R(x, ') ),= g [t)R(x, ')/t) b]6 b
b C

= g [[M(x,x')/t)r, ]q(5rg), I,

(1.2a)

(1.2b)

where 5R (x,x')=R (x,x') —(R (x,x')). With the use of"
M (x,x')/t)rb ib one see——s that Eqs. (1.1) and (1.2) are

To define these exponents consider a two-terminal mea-
surement on an arbitrary fixed cluster in which a current
I is injected at a source site x and removed at a sink site
x . This imposed current will give rise to a distribution of
currents in bonds covering a region associated with x and
x. A simple way of characterizing this distribution in-
volves its moments, '

{Mz I:

Mq(x, x')= g (Ib/I) t= giP,
b b

35 3524 1987 The American Physical Society



35 RESISTANCE FLUCTUATIONS IN RANDOMLY DILUTED NETWORKS 3525

essentially the same:

(5R (x,x')&), =M&(x, x')(5rb ), =6~(x,x') . (1.2c)

where v(x, x ) is the indicator function for percolation:
i.e., it is unity if sites x and x are in the same cluster and
is zero otherwise, and [ ],„ indicates an average over all
configurations of occupied and unoccupied bonds. Criti-
cal exponents can be defined in association with each rno-
ment via

M~—:[v(x, x')M~ ( x, x') ],„/[v( x, x') ],„
—

i
x —x'

i

'b'~', 1 ((
i
x —x'

i
((g', (1.4)

where g is the percolation correlation length:
g-

~ p, —p ~

". From Eq. (1.4) it follows that

where y is the susceptibility exponent for percolation and
P(q)=P(q)v. Throughout this paper we shall follow the
convention that exponents with tildes are equal to those
without tildes divided by v.

Some special values of q have readily identifiable physi-
cal significance. ' For example, M~(x, x') gives the aver-
age resistance between sites x and x'. Since Mo(x, x')
counts the average number of sites in the backbone, g(0)
gives the fractal dimensionality of the backbone Dz.
Also, M (x,x') counts the number of singly connected
bonds, so that l((oo) can be identified as the fractal di-
mension of the set of such singly connected bonds
(through which the full current I flows). In summary,
then, we have the following limits:

limg(q) =Dz,
q~O

limp(q) =gz,q~l

(1.6a)

(1.6b)

where gz is the usual ohmic resistivity crossover ex-
ponent' ' and' '

Rammal et al. " have suggested that such resistance fluc-
tuations may provide a model from which the spectrum
of noise in a two-terminal measurement can be calculated.
They relate the noise to the variance of the resistance,
summed over x and x' and then averaged over percolation
clusters. For this purpose they were led to generalize the
usual resistive susceptibility to a qth-order resistance-
fluctuation susceptibility (per site), as

g'~'(p) = g [v(x, x')M~(x, x')]„, (1.3)
x

II. ANALYTIC PROPERTIES
OF CRITICAL EXPONENTS

In this section we discuss various relations which the
critical exponents P(q) must satisfy. Perhaps the most
important of these is the convexity relation,

P(k)+f(m) )2P
2

(2.1)

We also show that the central moments of the resistance
fluctuations, when each individual bond has a small ran-
dom component, can be characterized by g(2) and f(3)
only.

We start by discussing some simple properties of the
t/i(q)'s. We may write the definition of le(q) as

P(q) = lim ln gib
~x x'~ ~ b

av

ln~x —x'~, (p=p, ),

(2.2)

in the notation of Eq. (1.1). Since ib (1, it is clear that
g(q) is a nonincreasing function of q. Thus, as was
shown by Park et al. ,

In this paper we present a number of new results con-
cerning P(q). In particular, in Sec. II we derive a convexi-
ty relation which these exponents must satisfy. %'e also
show that all the central moments can be given in terms
of P(2) and P(3) only. In Sec. III we give the results of the
determination of P(q) from series expansions in spatial di-
mensions d for 2(d (6. These results represent the first
study of g(q) for d & 3 and agree within the limit of their
accuracy with the results of the e expansion as well as
with available results for d=2 and d=3. In view of our
increasing knowledge concerning these exponents, in Sec.
IV we construct approximants which are constrained to
reproduce the accepted values for the limiting cases in Eq.
(1.6). These approximants reproduce our series values for
all q& 1, and provide convenient representations for g(q).
We use these approximants to facilitate a discussion,
given in Sec. V, of the application of the multifractal for-
malism to the l((q). In Sec. VI this formalism is shown to
break down for negative q, and in particular the threshold
concentration p at which g'q' diverges is shown to de-
pend on q and to vanish as q ~—~. Our conclusions are
briefly summarized in Sec. VII.

l~sc
lim g(q) = = 1 /v,

q ln~x —x'~
(1.6c) D~&(g)g(2))g(3)& . . )1/v. (2.3)

where Xsc is the number of singly connected bonds.
Some analytic and numerical results concerning these

moments or the P(q)'s have already appeared. For in-
stance, upper and lower bounds for f(2) have been given
by Wright et al. ' and by Tremblay and Feng. ' These
exponents have been studied using numerical simula-
tion' ' ' in two and three spatial dimensions d. For d
near six, Park et al. have given results to first order in
@=6—d for f(q), for arbitrary q.

dq

y ib" lnib

lim 2
b

/
x —x'J ~00 2g

b

ln
f
x —x'/ (2.4a)

The second derivative is

Alternatively, the monotonicity of @(q) follows from the
expression for dl((q)/dq:
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dltl (q)

dg 2q

b

gi p(lnib )'
b

lim 4
/I —x'/ ~~

2g lb lnlb
b

2q

b

ln/x —x'/ (2.4b)

Since this quantity can be interpreted as the variance of
lni within the distribution defined by Ib, it is clear that
g(q) has a positive second derivative, i.e. , it is a convex
function of q. From Eq. (2.3) it is immediately deducible
that

—,gll &P & gll —1/(2v), (2.5)

where P = ltd( 1 ) ——,g(2) was introduced by Rammal
et al. " to characterize the relative noise. This exponent is
essentially equivalent to the n =4 member of a generalized
set of exponents p (n) introduced by de Arcangelis
et al. ,

' which in our notation is given by

P (n) =nltj(1) —lt(n/2) .

In terms of the p (n)'s Eq. (2.3) is

p(2n —2)+2/(1) (p(2n) &p(2n +2) —2$(1) .

The bound hatt(n) ) 1 becomes

(2.6)

(2.7a)

y bj' ) y aib
2

(2.8)

where equality holds only if the vectors a and b are paral-
lel. Assigning the values (ii)" to aj and (ii) to b/ (where
j here labels the bonds), we have

p(2n) &2ng(1) —1 or p(2n)lv(2ng(1) —1/v . (2.7b)

Since ltd(1) =p(2)/v and v=4/3 for ' d=2, one sees that
the bound is satisfied for n=2 but violated for n=3 by
the estimates of Ref. 19: p(2)/v=0. 976, p(4)/v=3. 12,
and p(6)/v=5. 15. [If their quoted uncertainties are tak-
en into account, their values just barely satisfy Eq. (2.7b)
for n=3].

Next we prove Eq. (2.1). For this purpose recall the
Schwartz inequality:

ln gii" +ln gil ) 21n gil" +

J
(2.9)

which in conjunction with Eq. (2.2) implies Eq. (2.1). The
equality holds in Eq. (2. 1) only if ib ——1 for all bonds
which contribute to the sums in Eq. (2.9). For d) 6 this
happens because the blobs are irrelevant. ' Thus the
sums are dominated by the contributions from singly con-
nected bonds, for which ib ——1. For d(6 the equality
only holds in the limit when k and m ~ oo. By generaliz-
ing Eq. (2.4) we see that all the derivatives d lt(q)/dq
vanish in the limit q~ oo. This situation is equivalent to
having equality in Eq. (2.1). In view of Eq. (2.6), the con-
vexity of P(q) implies that p (q) is concave:

p(k)+p(m) &2p
k+rn

2
(2.10)

Next we consider the average central moments in the
case where each bond has independently a small random
component of resistance 6rb. We define the "central mo-
ments" p„by

P„(x,x') =[v(x,x')(5R (x,x') ) ],„/[v(x, x'))„, (2. 1 1)

where ( ) denotes an average over 5rb. In terms of the
cumulants 5„, similarly defined in Eq. (1.2c) we have

)(22(xix ) =52(x,x )

p3(x, x') =53(x,x'),
[v(x, x')(5R(x, x') ),]„

p,4(x, x') =54(x,x')+3
v x,x'),„

(2.12a)

(2.12b)

(2.12c)

Apart from corrections to scaling, the distribution of
R (x, x') associated with the average, [ ]„,over cluster
configurations is a scaling function described by a single
exponent. ' ' Thus, in counting powers of L =

~

x —x'
i

it is permissible to decouple the averages in Eq. (2.12c):

[v(x,x')(5R (x,x')'), ]„
[v(x,x')]„

[v(x, x')(5R (x,x')'), ]„
[v(x,x') ]„ =51 (2.13)

[v(x,x')AB]„=[v(x, x')A],„[v(x,x')B],„/[v(x, x')],„,
where A and B are functions of R (x,x'). Thus we have

3[v(x,x')(R(x, x') ),]„
P4(x, x') =54(x,x')+

[v(x, x') ],„
(2.12c')

More generally for percolation we expect to be able to
write

y) =4(4), y2 ——2p(2), (2.14)

so that the second term dominates. The decoupling of Eq.
(2.13) can be invoked for general n to recover an expan-
sion of the usual form for p„ in terms of 6„:

Now consider the scaling behavior of this result. The nth
cumulant scales as 5„-L,+"'. Thus the two terms in

Eq. (2.12c") scale as L ', with,

=54(x, x') + 352(x, x')' (2.12c") P„(x,x') = g c + [5 (l)]"'",
j I

(2.15)
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where the index j labels the partitions of n of the form
n = QI m(l)h(l). As in Eq. (2.12c"), each term in Eq.
(2.15) scales with a different power of L. In particular,
the jth term in Eq. (2.15) has a scaling exponent given by

yj = g P[m (l)]h (l) .
I

(2.16)

First consider the even central moments, i.e., n =2k.
Note that m (l) in Eq. (2.16) is greater than one and also
that 11(l), and therefore also p(l)/l, decrease with increas-
ing l. Thus we may write

g g[m (l)]h (l) ( —,g(2) g m (l)h (I) =kg(2) .
I I

(2.17)

L (k —1)(k(2)+)('(3)
P2k+) X,X'— (2.19)

Thus the central moments depend only on P(2) and )tj(3).

All the even moments contain the term 62, which by Eq.k

(2.17) is the dominant one at large L, so that

)M2k(x, x')-L "~' ' . (2.18)

In a similar manner one can show that the dominant term
in the (2k+1)th central moment is that proportional to
6352 ', so that

III. SERIES RESULTS

We constructed low density series for the qth suscepti-
bility defined in Eq. (1.3), above. To do this we literally
followed the prescription implied by Eq. (1.3): For a
given cluster of bonds and a given location on that cluster
of the source and sink at which unit current was put in
and taken out, respectively, we solved Kirchhoff's circuit
equations to find the current in every bond of the cluster.
We could then calculate arbitrary moments of the current
distribution for that arrangement of source, sink, and
cluster. We then summed the 2qth moment of the bond
currents over positions of the source and sink, as indicated
in Eqs. (1.1) and (1.3). To perform the configurational
average we could, in principle, weight each cluster with
the appropriate factors of p and 1 —p for occupied bonds
and vacant perimeter bonds, respectively. However, to
avoid counting perimeter bonds, we had recourse to the
usual cumulant subtraction, namely we define the cumu-
lant susceptibilities via

(3.1)

where y H I means that y is a subdiagram of I (but not
equal to I ), and Xo(I ) is the "bare" susceptibility for the

TABLE I. Series coefficients ck )' defined in Eq. (3.3b). For this tabulation we write the coefficients of Fk(d) = g, ) „ek )'d' in de-
creasing powers of d starting from d". Thus F4(d) =32d —48d +4.90625d +15.09375d.

Fk(d)

10

0.10000000000000K 10'

0.40000000000000 K 10'

0.120000 000 000 00 X 10'

0.320 000 000 000 00 X 10
0.15093750000000K 10

0.800 000 000 000 00 X 10'
0.142 75000000000 K 10'

0.192000 000 000 00 K 10'
0.324 888 888 888 89 K 10

0.448 00000000000K 10'
0.761 305 555 555 55 X 10
0.291 875 810 555 55 X 10

0.102 40000000000 X 10'
0.137 116666 666 67 K 10

—0.313 18038197223K 10
0.23040000000000 K 10'
0.356 244 444 444 44 X 104

—0.365 754 840 208 56 K 10

0.512 000 000000 00 K 10'
0.585 911 111 111 11 X 10

—0.960 128 571 086 67 X 10
—0.217 591 530 173 33 X 10

0.11264000000000 X 10'
0.407 866 666 666 67 X 10
0.240 872 214 229 67 X 10

—0.44? 190 165 753 46K 10'

—0.20000000000000 K 10'

—0.120000000000 00 K 10'

—0.480 000 000 00000 X 10

—0.16000000000000 X 10'
—0.813 75000000000 K 10

—0.480 000 000 000 00 X 10
0.164416 666 666 67 X 10

—0.13440000000000 K 10'
0.256 442 670 000 00 K 10'

—0.358 40000000000 K 10'
0.380 695 332 777 78 X 10
0.225 498 378 750 00X 10'

—0.921 600 000 000 00 K 10'
0.400 374 54000000 X 10
0.460 790 969 836 53 X 10

—0.230 400 000 000 00 X 10
—0.146 205 393 333 33 X 10
—0.194 854 961 876 93 K 10

—0.563 200 000 000 00 X 10
—0.266 746417 777 78 X 10
—0.200210407 707 34X 10

0.155 033 995 771 63 X 10'

0.300 000 000 000 00K 10'

0.490 625 000 00000 X 10'

0.236 250 000 000 00 X 10

0.130875 00000000 X 10
—0.326 180 555 555 55 X 10

0.589 000 000 000 00 X 10'
—0.593 049 036 111 11 X 10

0.224 85000000000 K 104

0.354 958 032 777 78 X 104

0.766 20000000000 X 10'
0.834 104 501 619 64 X 10

—0.186753 769 634 37X 10

0.240 86000000000X 10
0.158 715 424736 80K 10
0.405 120929 569 70K 10

0.713 28000000000K 10
0.307 350 654 432 55 X 10
0.465 169 19947300K 10
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25fractal dimension obtained by Hong and Stanley. These
series become less useful as q~O because the series are
not long enough to contain large blobs which determine
the properties of the backbone. It appears that more
terms in the series will be required to obtain results con-
sistent with recent numerical simulations for the back-
bonen26-28 Nevertheless, our results are qualitatively
reasonable and are consistent both with the convexity
property of Eq. (2.1) as well as with the monotonic
behavior expressed by Eq. (2.3). Since our results for
q = 1 agree with previous determinations of gz using vari-
ous techniques, and since the blobs become less important
for increasing q, we conclude that our series estimates are
quite reliable for q & 1. Our results can be compared with
the e expansion results of Park et al. , who give, for20

d=6 —e,

FIG. 1. Series results for l((q) vs q for d=2 and d=3 spatial
dimensions. The solid curve gives our results, the dashed curve
is from the approxirnant of Eq. {4.1a), and the dotted curve is
that from Eq. {4.1b).

) =1+ (3 4)
7(q+1)(2q+1)

Although a direct comparison of our data for q & 1 with
Eq. (3.4) is inconclusive, we will see indirect support for
the form of the result, Eq. (3.4), in the next section.

cluster I:
(3.2)X,"'(r)= g gi,"= g ~, (x,x),

x, x'G I b x, x'E I

where M~(x, x') is calculated according to Eq. (1.1) and ib
is the current in bond b when a unit current is inserted at
I and removed at x'. Since the solution to Kirchhoff's
equations only depends on the topology of the cluster, we
only need to calculate Xo~'(r) for diagrams 1 which are
topologically inequivalent. This calculation is done once,
and then used for all dimensions. Let w(r;d) be the
number of diagrams per site which are topologically
equivalent to I in dimension d. ttt(1;d) is usually re-
ferred to as the weak embedding constant. Summing only
over inequivalent diagrams, one has

IV. APPROXIMANTS FOR 1((q)

The simple analytic properties of the function P(q), i.e.,
monotonicity and convexity, the identification of the three
values tt(0), f(1), and P(co ) with exponents which have
been determined previously, and the fact that all the
derivatives of tt(q) approach zero as q~ ao, all restrict
the possible functional dependence of g on q. It is there-
fore tempting to construct simple approximate functional
forms for l((q). Such analytic approximants are very use-

ful, both for getting rough easy estimates of exponents
and for algebraic manipulation (see below). Similar ap-

roximants have been used widely in critical phenomena.prox
~ ~ f. 12They were recently proposed for percolation, in Re.s.

and 29. We have constructed two such approximants, i.e.,

x' '(p)= y tU(r;d)x,'~'(r)p '
r

(3.3a)
g( q) = 1+(vD~ —1)' ~(g~ —1)~ (4.1a)

= gcklp d
k, 1

(3.3b)

where nb(I ) is the number of bonds in the diagram 1 .
This series was calculated up to and including all dia-

(2)grams with 11 bonds. For q =2 the coefficients ck &
are

given in Table I.
The results were analyzed using generalized Pade ap-

24
p roximants in the manner described previously. We o-
tained series for arbitrary values of q in the range
0& q & 10 from which we obtained the values of tt(q)+y.
We then subtracted the value of y from the analysis of the
percolation series of the same order, so as to exclude any
systematic errors. The value of y we used were

=2.41,1.81,1.40, 1.16 for spatial dimension d=2, 3,4,5,
respectively. For d=2 and d=3 our results are shown in
Fig. 1. For q=2, 3, and 4 the results in dimensions 2 and
3 are given in Table II. For d&3 these exponents are
hardly distinguishable from unity within the accuracy of
our determination. Our results for q~O in d=2 are con-
sistent with series (of nine terms) results for the backbone

and

(4.1b)a
(q+1)(q+b)

In each case the parameters were adjusted to reproduce
the best available data for the cases, q=O (backbone),
q= 1 (resistance crossover), and q = m (singly connected
bonds). The form in Eq. (4.la) obviously reproduces the
values vD~, g~, and 1 for q=O, 1, and oo, respectively.
Th form was chosen because it imitates the expressionis orm

1
30f 1'( ) on the simple Mandelbrot-Given fractal mode,

29, 31 32
which has been used successfully ' for the nonlinear
resistor network. The second form was chosen to imitate
the form found in the e expansion, Eq. (3.4). The parame-
ters a and b were adjusted to fit the values of vD~ and gz.
The values used as input, and the resulting values of a
and b are listed in Table III (Refs. 32 and 33) for dimen-

sions 2&d (6.
The resulting values of P(q), from both Eqs. (4. la) and

(4.1b), are compared with our series results in Fig. 1 for
d=2 and d=3. The agreement for q & 1 is satisfactory.
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TABLE II. Comparison of values of g(n) from series, approximants, numerical simulations, and the e expansion.

Method

Eq. (4.1a)
Eq. (4.1b)

Series'
Simul
Simul'
(4.2)

1.076+0.007
1.13 +0.01
1.10 +0.08
1.04 +0.09
1.08 +0.03

1.020
1.05
1.04
0.95
1.03

+0.00003
+0.02
+0.08
+0.09
+0.04

it (4)

1.0005+0.0001
1.02 +0.02
1.02 + —0.08

0.99 +0.03

0.40 +0.01
0.29 +0.02
0.36 +0.08

0.44 +0.02

Eq. (4.1a)
Eq. (4.1b)

Series'
(4.2)'

Eq. (4.1a)
Eq. (4.1b)

(4.2)'

Eq. (4.1a)
Eq. (4.1b)

(4.2)

Eq. (4.1a)

Eq. (4.1b)

(4.2)'

e expt'

1.024+ 0.002
1.05 +0.02
1.05 +0.03

1.008+0.002
1.02 +0.02

1.0025+0.0007
1.01 +0.01

252
E+

105

+
105

1.0046+0.0004
1.03 +0.01
1.02 +0.03

1.0012+0.0002
1.01 +0.01

1.0003+0.0001
1.01 +0.01

E

1512

196

1+
196

1.000 9+0.000 07
1.017 +0.007
1.01 +0.03

1.000 19+0.000 03
1.007 +0.005

1.000 04+0.000 01
1.003 +0.007

9072
1 +

315

+
315

0.20 +0.04
0.13 +0.03
0.16 +0.03
0.18 +0.06

0.09 +0.05
0.06 +0.03
0.10 +0.04

0.041+0.04
0.02 +0.03
0.04 +0.04

ln6 =0.04E
42

36
0.04m

36

'This work.
Numerical simulation, see Ref. 19.

'Numerical simulation, see Ref. 18.
Using Eq. (4.2) with the right-hand side taken froID Ref. 31.

expansion, see Ref. 20.

The discrepancy for q & 1 is due to the fact that we used
values for q=0 for our fit which were not very close tp
the series values. This difficulty was apparent when ear-
lier shorter series were compared to numerical simula-
tipn data. Table II contains cpmparispns between
specific approximant values of 1tj(q) and other available
estimates, and the agreement is again quite good. Note,
however, that even at d=2 and 3 Eq. (4.1b) fits the data
better than Eq. (4.1a). Since Eq. (4.1b) goes smoothly into
the e-expansion result of Eq. (3.4), this fact provides in-
direct support for the e expansion, and reveals some of the
drawbacks of models like that used in Ref. 12.

Table II also contains values for —df(q)/dq ~~
This latter quantity is of some interest in that it is related
to the critical exponent g(a) associated with the non
linear ' ' ' resistor network. Harris has derived the
relation

conclude that the approximants in Eq. (4.1) provide useful
representations of the f(q)'s. Equation (4.1b) is more sa-
tisfactory for q~ l.

V. MULTIFRACTALS

Recently there has been increasing interest in the mul-
tifractal description of the probability distributions on
fractal structures. These formulations provide a
mathematical framework within which it is possible to
discuss systematically families of fractal measures which
may be used to characterize a fractal set. Originally an

TABLE III. The values of the input and output parameters
for the approximants given in Eq. (4.1).

a@(q) ag(a) (4.2)

We have tested this relation by comparing the left-hand
side and the right-hand side in Table II. The left-hand
side is well represented by the derivative of the approxi-
mants in Eq. (4.1). Also, as was noted in Ref. 31, a simi-
lar approximant for g(a) can be used to obtain the right-
hand side of Eq. (4.2) without significant error and the re-
sulting values are listed in Table II. In summary then, we

vDg

2.16+0.03'
1.61+0.07'
1.32+0. 1'
1.16+0.1'

1+ &e
7

'Reference 26.
Reference 10.

'Reference 25.

1.297+0.007
1.12 +0.02
1.05 +0.02
1.02 +0.02

42

1.22 +0.01
0.40+0.06
0.15+0.04
0.05 %0.05

14

1.05 %0. 1

0.65 +0.08
0.45+0. 1

0.33+0.3
1

2

Reference 34.
'Reference 33.
Reference 9.
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idea of this type was proposed by Mandelbrot to treat
nonuniform turbulence. The more recent interest in this
phenomenon has been motivated by the nonuniform mea-
sures generated by diffusion-limited aggregates, chaotic
behavior, and the distribution of currents on percolating
clusters. ' Although the multifractal description contains
exactly the same information as does the function 1t(q), it
is sometimes useful to discuss the fractal behavior in
terms of the multifractal functions f and a defined below.
Our analytic approximants allow explicit construction of
these functions.

For convenience, in the discussion which follows we
consider a single large cluster of linear size L. A typical
resistance, R (L), between two points in the cluster whose
separation is of order L is given by

These two equations may now be used to construct f (a).
Using Eq. (4.1b) we evaluated these functions and we
show the results for D (q), f ( q), and a(q) in Fig. 2 and for
f (a) in Fig. 3 for d=2. Similar results for all these func-
tions are obtained for d) 2. Note that, unlike D(q), f (q)
has the geometrical interpretation as a fractal dimen-
sionality, of the subset of bonds which dominate Mq.

We have used the approximant of Eq. (4.1b) to illus-
trate the analysis because it correctly reflects the fact (dis-
cussed in detail in the next section) that 1((q)~oo for
q~q„where q, is a critical value of q which is nonposi-
tive and possibly small in magnitude. Quantitatively, Eq.

R(L)= gib=M)(L),
b

(5.1)
2, 4—

we can define a bond variable pb i&/——R(L), so that

gb pb
——1. We can now rewrite Eq. (1.4) in the form

g pg =M (L ) /R (L )»-L ~'&'

b

(5.2)

L D(q) (5.3)

We can now follow Halsey et al. , and define a set of
fractal dimensionalities D (q) via

&/( 1 —q)

2.2—

2.0—

I.8—
D(q)

I.O—

0.8

i.e.,
0 6 & I I I I I I I I I a I ~ I I I t I I I

-1.0 -0.5 0 0.5 I.O 1.5 2.0 2.5 3 0 3.5 4

(5.4)
1.7

I.6

5—

I .4—

I .2

(5.5)

The D(q) are obviously similar to the p(q) of Eq. (2.6)
introduced in Ref. 19. It is easy to see that D (0)
=1((0)=D~, D( oo ) =f(1)=(~, and D(1)=ltt(1) dg/—
dq

i ~ &. As shown by Hentschel and Procaccia'7 D(q) is
also a monotonically decreasing function.

Following Halsey et al. , we can now rewrite gb pb as

(b)

b P

where n (p) is the number of bonds on which the fraction-
al current i obeys i /R =p. Using steepest descent, the
sum will be dominated by a value of p denoted p*, for
which d logn/d logp = —q. Assuming now that both p*
and n (p') scale as powers of L, we write

(S.6a)

I 0 i I

—0.3 0.1 0.5 0.9 1.3

(c)

(5.6b)

and we identify

(q —1)D (q) =q~r(q) —f(q), (5.7a)

(5.7b)

Using Eqs. (5.4) and (5.7) we thus find

tx(q) =1((1)— tt (q),

f (q) =P(q) qP(q) . —

(S.ga)

(5.8b)

I i I s I i I i I a I i I s I i I s )

-I.O -0.5 0 0.5 I 0 I 5 2 0 2.5 3.0 3.5 4

FIG. 2. D(q), f (q), and a(q) for d=2, as obtained from the
approximant of Eq. (4.1b).
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I 7

I. 5—

1.4—

I 3

I 2—

I. 0—

0.9

O.B—

0.7
0

I i !

9 IO

FIG. 3. f(a) for d=2 constructed from the functions f(q)
and a(q) shown in Fig. 2.

(4.1b), may not be very accurate for q&0. However, it
does illustrate the type of behavior one can expect from
the exact P(q). In particular, g(q), a(q), and f(a) possess
the general properties discussed by Halsey et al. For in-
stance, from Eq. (5.8) we obtain

2f

dc'

d f da
q dq

2p

dfda
dq

&0.

dQ

dq

3

(5.9a)

(5.9b)

We now discuss the results for d=2 in more detail. Note
that for q = ap, the values of pb ——ib/R correspond to
R ' which scales with L as L ' ', with a( co )

=JR ——0.973, and the set of bonds having iz ——1 has a
fractal dimension f ( ao ) =D( oo )= 1/v=3/4. Also, f as-
sumes its maximum value, the fractal dimension of the
backbone, DB ——1.62 for q=0. Finally, as q~q, [for the
approximant of Eq. (4.1b), q, = —1], the functions f and
a describe the set of bonds for which pb ——ib/R scales
with the largest a(a~ oo ) and whose fractal dimension f
becomes very small (f~ —oo). The curve of f versus a
therefore characterizes all the fractal sets, i.e., those sets
which exhibit power law scaling. However, this descrip-
tion is not a complete one, because it does not deal with
the regime q &q, . As we shall see in the next section, in
that regime the ordinary power law scaling breaks down:

pb =ly /R then scales as an exponential function of I .
We now compare our results with those of Ref. 19. To

facilitate this comparison we denote their quantities by
the subscript ARC and ours by the subscript BMAH.
Then we have

mate for p(6) does not satisfy the inequalities of Eq.
(2.7b). On the other hand, for q &0 our results are quite
different from theirs. The anomalous behavior we find
for q~q, is not well represented in their numerical simu-
lation. As we discuss in the next section, the magnitude
of their sharp increase in a for q&0 is probably depen-
dent on their sampling procedure. With more extensive
sampling, their "maximum" in a(q) would probably in-
crease without limit. To see the non-power-law scaling we
find would require extensive numerical work.

VI. BEHAVIOR OF P(q) FOR q&0

Within the multifractal formulation it is of interest to
consider the g(q)'s for negative q. ' Recall that within
this picture, for each value of q one has a fractal dimen-
sion associated with the set of currents assuming values in
a corresponding narrow range. As q becomes negative
and large, obviously the P(q)'s emphasize the smallest
nonzero currents, and thereby would seem to give infor-
mation on the fractal dimension of the set of bonds carry-
ing some small value of the current. In the existing
theories, this phenomenon is reflected by a continuous
variation in g(q) as q~ —oo, with the understanding, of
course, that the scaling result of Eq. (1.4) remains valid
for all q. Here we show that this is not the case. In par-
ticular, there exists a critical value of q denoted q„such
that for q & q, the sum over backbone bonds needed to
construct [Mq(x, x')]„does not converge for p =p, .
Physically, this occurs because the rate at which the
current falls off as the size of the system is increased, is
fast enough so that when the current is raised to a large
negative power, it can overcome the exponential decay as-
sociated with the percolation correlations for p &p, . As a
result, for q &q„ there exists a critical curve p*(q) with

p (q) &p, which gives the largest value of p for which

Mq(x, x') is finite for a given q.
To investigate this possibility we analyzed our series for

negative q. We show in Fig. 4 the results for the thresh-
old value of p as a function of q for d =2 and d =3. For
positive q our results are as expected, viz. , the threshold is

P,

0.8

2D

04

0. 2

and

fARC(2q ) =fBMAH (q ) (5.10a) 0

aBMAH 2aARC (5.10b)

Otherwise, for q & 0 our results do not differ substantively
from theirs except that, as noted above, their central esti-

FIG. 4. Dependence of the apparent threshold, p (q) on q.
For q)0, p*(q) coincides with p, . The critical value of q at
which p *(q) differs from p, seems to be about —0.3.
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I 2v3
fIllll

(2 ~3)m + ] (2 ~3 )m

For large m this gives
~ —m

Imin =a~ O

where

(6.1)

(6.2)

io —2+v 3, (6.3)

rather than 3 as intuited above.
The probability that such a ladder occur starting at a

given bond and having orientation in a given direction is

3m + j i q t2mz +2z —6m —2 (6.4)

independent of q and agrees with the accepted value.
However, for q negative we see that the threshold begins
to decrease. Whether this decrease begins strictly at q=0
or not is unclear from our data. However, it is undeniable
that this data establishes that p*(q) &p, for q & —0.3 in
d=2 and for q & —0.6 in d=3.

We now develop a bound which proves the above asser-
tions. To do this we wish to focus on structures which
give very small currents. Although we cannot specify pre-
cisely which structures are the dominant ones at a given
concentration p, it seems clear that they should contain
loops within loops. To obtain a bound we consider some
special configurations of this type which are susceptible to
exact analysis. To start, consider a "ladder" of m pla-
quettes as shown in Fig. 5 with unit current imposed
across the bottom rungs. Crudely, one expects that the
current in each successively higher rung will be smaller by
a factor of 3 than in that below it. An exact solution, il-

lustrated in Fig. 5, gives the current in the topmost (i.e.,

mth) rung as

Here the factors of 1 —p are included to ensure that the
perimeter bonds are indeed unoccupied. [The precise
form of the terms in the exponent of (1—p) which are in-
dependent of m is not important in what follows. ] We
might also take account of the many equivalent configu-
rations which can be constructed by allowing the ladder to
be distorted at each stage (as in Fig. 6). Since at each
stage there are three choices of which bond to use for at-
tachment, and there are 2d —3 orientations for the suc-
cessive plaquettes, one would estimate the total number of
distorted configurations of an rn rung ladder to be of or-
der [3(2d —3)] . As in the theory of self-avoiding
walks, we expect that a more rigorous treatment would
replace this result by p, where p is an asymptotic
branching ratio not too different from 3(2d —3). Actual-
ly, the existence of a bound could even be obtained by set-
ting p = 1, i.e., considering only straight ladders. In sum-
mary, the average number of m-rung ladders attached to a
given bond is of order

g ( )
m 3m+ I( 1 )2mz+2z —6m —2 (6.5)

Now consider the situation when two terminals at
separation r are the source and sink for a unit imposed
current. If these terminals are I steps apart, the above m-
rung ladder configuration surely occurs at least
[p(1 —p)' ] g(m) times. Thus, the m-rung ladder con-
tributes to Mz(x, x') an amount at least as large as

5M~ —[p(1 —p)' ]'Q(m)a qio (6.6a)

—exp[ —mA +Bm ( —q) —Cl], (6.6b)

where e =pp (1—p) ', e~=i o, and
e =p (1—p)' . We now consider the contribution of
these ladders to M~(x, x'). This contribution, denoted
6Mq, is obtained by summing the above result over m.
Obviously this sum will diverge for —Bq & Q If q is not
strongly negative, —Bq & A for p &p, and the bound in
Eq (6.6) doesn't provide any useful information. Qn the
other hand, when q is large and negative, then —Bq & p
for p =p, . This fact indicates that the qth-order suscepti-
bility in question will actually become infinite as p in-

4

1( l5

I =56 r. =56

FIG. 5. A ladder configuration with m=3 plaquettes which
gives rise to small currents. The relative current (normalized to
unity in the topmost rung) is indicated. If the external current is
normalized to unity, the current in the topmost rung is
i~jn 56 y as given by Eq. (6.1 ) for m =3. FICs. 6. A distorted ladder configuration.
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creases toward a critical value of p (which is less than p, )

denoted p'(q). The lower bound on 5M~ from Eq. (6.6)
provides the following upper bound on p'(q):
p*(q)&p&(q), where

5Mq(x, x') = g 5M'™

m"
& +exp —mA +Bm ( —q) —Cl —a

L

2

(6.7) (6.10)

As q~ —ao, p*(q)~0 exponentially fast, at least. The
above argument is rather crude but is given to show defin-
itively that there is a critical value of q below which p*(q)
becomes less than p, .

That there can be two thresholds, the conventional one
for percolation at p =p„and an anomalous one for q suf-
ficiently negative where Mq becomes infinite, is not a to-
tally unheard of phenomenon. In essence, it results from
taking the average of a correlation function which grows
exponentially with a correlation length go which is not
equal to the percolation correlation length g~. The thresh-
old for such a correlation function occurs when p becomes
large enough so that g~ is no longer less than go. Since go
depends on q, this threshold clearly depends on q also.
The converse effect, where the critical point for a correla-
tion function occurs within the ordered phase (as defined
by the thermodynamic functions), is predicted in the
nematic to smectic-A transition. There one has

G ( x) =Gsc(x)e (6.8)

Q(m) = Q(m)exp[ —a (m "/L)"], (6.9)

where Gsc(x) is a normal correlation function which be-
comes long ranged in the low-temperature phase. Ther-
modynamic singularities are regulated by Gsc. The ob-
servable correlation function, G(x), however, does not be-
come long ranged until, within the low-temperature phase,
e "'"' becomes long ranged. Since this occurs at some
temperature below the transition temperature, one sees the
existence of two critical points. Which one is relevant de-
pends on what physical properties are being monitored.

To make closer contact with the multifractal analysis,
we apply finite size scaling to the above argument, i.e., we
consider the application of the above argument to a
finite-sized sample when p =p, . In that case we should
not sum over all values of the number of rungs m, but
rather only over values of m which correspond to ladders
which might actually fit into a finite size box of length L.
Thus we should modify Eq. (6.6) above by cutting off the
sum when the self-avoiding walk of plaquettes has a
characteristic size of order L. This can be done heuristi-
cally by replacing Q (m) by Q(m), where

x"'(p)- ~p*(q) —p ~

', (q &q, ), (6.12)

remains to be clarified, although one might speculate that
it is related to properties of random loop structures. In
view of the fact that cluster statistics for very large clus-
ters away from the percolation threshold are governed by
the fixed point for lattice animals, it seems very unlikely
that yq is expressible in terms of percolation exponents.

by steepest descent. The result is then that the ladder con-
tribution to M~(x, x') when

~

x —x'
~

-L obeys

5M&(L) & exp[const[L ( —2 Bq)"—] ~' "

The meaning of this result is as follows. The present
analysis is restricted to p =p, and q large and negative so
that —Bq & A. Then one sees that the qth moment of the
current grows with L, not as L ' ', as given by de Ar-
cangelis et al. ,

' but rather it grows much more strongly,
~n fact, lnM& -L~ with /=2/(2x —1). We do not claim

have a rigorous identification of P because of the as-
sumptions implicit in the above argument. First of all,
the ansatz that y= 2 is unlikely to be exact. Also, the ex-
ponent x =vs&~ may not be exactly the one to character-
ize the more general structure with hierarchical loops
which gives the minimum current. It may not be easy to
numerically verify our results because, as with all Lifshitz
phenomena, it would require a truly definitive sampling
in order to see the very special configurations which give
rise to the unusually small currents needed for the above
argument. The ladders used here are only the simplest
candidates for small current configurations. However, it
is significant that numerical work does show a large in-
crease for negative q in the scaling exponents —p(q) and
a(q) used by de Arcangelis et al. ' to describe the growth
of V '. Although our series results do not directly probe
the size dependence of the moments of the current, our re-
sults nevertheless do indicate quite clearly that the associ-
ated effect, namely, that p*(q) should become less than
p„does occur.

It should also be noted that the exponential size depen-
dence in Mq(L) only occurs for p &p*(q). For p =p*(q)
we expect that A Bq-p*(q) —p and—thus that X''i' will
exhibit a power law divergence for p~p*(q). The associ-
ated critical exponent yq defined by

where x =vs&~ is the correlation length exponent for
self-avoiding walks. The appearance of the variable
m "/L expresses the fact that the size of the walk is limit-
ed to be L. The values of the constant a and the exponent
y are uncertain, but y should be greater than unity and a
large enough to cause the distribution to decrease rapidly
as m" approaches the size L. For simplicity we set y=2.

We can now perform the sum

VII. CONCLUSION

In this paper we have presented a comprehensive study
of the exponents 1l(q) which describe how the qth moment
of the current distributions scales with the distance be-
tween the source (of external current) and the sink. Our
main results are as follows.

(1) We show both analytically and by series expansions
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that g(q) is a monotonically decreasing and convex func-
tion of q: dfldq &0, d g/dq & 0.

(2) The values of g(q) we obtain from series expansions
agree with previous results in the cases where these are
available.

(3) We construct two approximants for P(q) which are
consistent with the known properties of P(q) and which
provide useful representations of our numerical results for

(4) Using these approximants, we carry out a multifrac-
tal analysis of the type recently suggested by Halsey
et al. For q&0 our results agree substantially with
those of de Arcangelis et al. '

(5) We show that the multifractal scaling behavior
which describes P(q) for q&0 breaks down for q&0. The
power law dependence of Mq on size becomes, for q suffi-
ciently negative, an exponential dependence on size. Thus
the threshold concentration, p*(q), where the resistive
susceptibility associated with 1((q) diverges, becomes a
function of q, for q sufficiently large and negative.

(6) The result (5) suggests that it would be of interest to
establish whether the critical value of q below which this

behavior occurs is or is not equal to zero. Also it remains
to clarify the status of the exponents associated with the
divergence of X'~'(p) for p~p (q).

Tote added. After the completion of this paper, we re-
ceived a copy of work by Bhatti and Essam prior to
publication in which they constructed and analyzed series
for the moments of the current distribution in a random
diode-insulator network in two and three dimensions.
Their estimates of the exponents are consistent with ours.
They also constructed an approximant very similar to the
ones we introduced in Eq. (4.1a).
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