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Quantum-interference device without Josephson junctions
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The behavior of a superconducting ring of homogeneous wire of transverse dimensions d << & and
A and uniform cross section connected to two long leads that carry a measuring current is analyzed
using the nonlinear Ginzburg-Landau equations. When a magnetic field is present the system
behaves like a superconducting quantum-interference device for appropriate values of ring sizes even
though it has no Josephson junctions. A practical realization of such a device is within current tech-

nical capabilities.

Weak links have played a fundamental role in physics,
both in basic research and as a powerful technological tool
ever since the discovery of the Josephson effect.! The
essential feature of a weak link is its ability to produce a
sizable change in the phase of the complex order parame-
ter across it upon the passage of a supercurrent. The gen-
eral expression for the phase difference Agp between two
points in a superconductor? is given by
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where J is the current density, f the amplitude of the
normalized 0O<f<1) order parameter W(x)
=f(x)exp[ip(x)], do=hc /2e is the fluxoid quantum in
Gaussian units, A and £ are the temperature-dependent
penetration depth and coherence length, and A is the vec-
tor potential associated with the magnetic flux density B.

In the bulk of a massive superconductor the contribu-
tion due to the first term on the right-hand side of Eq. (1)
is negligible. However, at a weak link the value of f can
be made very small and this is the origin of its dephasing
properties. Constrictions, point contacts, and Josephson
tunnel junctions (JJ’s) are the most common realizations
of weak links.3

A conventional superconducting quantum-interference
device (SQUID) circuit incorporating two JJ’s is shown in
Fig. 1(a). Such a circuit has quantum-interference proper-
ties which make it possible to construct ultrasensitive
magnetometers. It is the aim of this paper to describe a
circuit without JJ’s, built of homogeneous wire, which
behaves like a conventional SQUID for appropriate values
of its geometrical parameters. The proposed circuit is de-
picted in Fig. 1(b). Our system is a ring of radius R made
of wire of uniform cross section and transverse dimen-
sions d << & and A.

A long lead A-N introduces a transport current [
which leaves through N’'-B after dividing equally (due to
symmetry) over branches 1 and 2. In addition, there is a
circulating current Iz due to the magnetic field. We shall
typically be interested in a range of radii 0 < R /£ <2.

Present day techniques have made it possible to con-
struct circuits of sizes undreamed of a few years ago.*
Networks with the above given dimensions have been
studied by a number of experimentalists® recently, in par-
ticular with regards to the phase transition diagram, con-
firming the predictions of theoretical studies.® However,
since these calculations use the linearized Ginzburg-
Landau (GL) equations the results are not applicable to
systems carrying a finite current.’

We show that if the de Gennes—Alexander® approach is
extended to include the nonlinear terms of the GL theory,
the circuit depicted in Fig. 1(b) has, for a certain range of
R /€& values, quantum-interference properties quite similar
to those of the conventional weak link circuit of Fig. 1(a).
Since d << & in the system of Fig. 1(b), the order parame-
ter may be taken constant over the cross section and the
GL equations for the order parameter along the wires be-
come effectively one dimensional. Calling x the curvilin-
ear coordinate along the wire [normalized by £(#)], and el-
iminating the superfluid velocity Q in terms of the super-
current density J, we obtain from the GL equations:

(a) (b)
FIG. 1. (a) Conventional SQUID circuit incorporating two

weak links 1 and 2. (b) Proposed SQUID circuit: ring built of
homogeneous superconducting wire.
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d—j;+(1—f2—J2/f4)f=O. (2)
dx

Complex current conservation imposes the following con-

ditions at the nodes:®

af
——~=0 and > Q0=0. (3)
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The summations are over all branches joining at a given
node. Equation (2) can be solved exactly in terms of Jaco-
bian elliptic functions.””® After some manipulations, one
obtains the following general analytical form for the
square of the modulus of the order parameter:

AU =f5+14x), 4)

where f; is the value of f(x) at some extremal point and
t(x) is one of the Jacobian elliptic functions which gives
rise to the modulation of the order parameter.

We are interested in the general case where both a
transport current density J and a circulating current den-
sity Jp induced by the magnetic flux are present. For
given sets of values of R/&, J, and Jg we have found
f(x) and f, which satisfy Egs. (2) to (4) along the wire
and with W(x) being continuous along the whole circuit,
thus finding exact solutions for our problem. Detailed re-
sults will be given in a subsequent paper. In order to com-
pare the behavior of our system with that of a convention-
al SQUID circuit [Fig. 1(a)], we choose the relation be-
tween the maximum zero voltage measuring current den-
sity J,, and the magnetic flux. Figure 2(a) shows J,, and
the corresponding magnetic flux ¢, for different R
values, normalized by J,=0.38490 which is the normal-
ized critical-current density of an infinitely long wire.
For comparison the equivalent curve for the conventional
SQUID, normalized by 2i,, is also shown (curve e), i, be-
ing the critical current of each weak link. In each case we
have normalized the current by the intrinsic critical
current of the device.

Also of interest is the relation between the circulating
current density Jp and the magnetic flux for fixed
measuring current [Fig. 2(b)]. This is obtained by in-
tegrating Eq. (1) along the complete circuit which gives

X =A@ +Ap,=(2Jp+J) | Cy | +(2J5—T) | C, | , (5)
where X =m(n —¢/d¢) and
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Here the appropriate values for the normalized current
densities are J/2+Jp along branch 1 and J/2—Jj along
branch 2. The extremal values of f on each branch are
fo1 and fo, as shown in Fig. 1(b). Using the results of our
computations, we have evaluated Eq. (5) numerically for
different sets of values of R /&, J, and Jg. It is illuminat-
ing to compare our results with those of the conventional
S?UID for which the equivalent closed-form expression
is

I /i, =[cos?X —(I /2i.)*]"*tanX (6)

with the phase difference across the SQUID being

8=sin"![I/(2i .cosX)] . (7

Figure 2(b) shows Iz /I, as a function of the flux en-
closed by the ring for I/I,=0.49654 and radii
R /£=0.25,0.5, and 1. For comparison I /i. [Eq. (6)] is
also shown for I/2i.=0.49654 (curve e) where i, is the
critical current of the series circuit. It should be noted
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FIG. 2. (a) Maximum measuring current density J,, as a
function of the corresponding magnetic flux ¢,, for different
values of R/£. Curves a, b, ¢, and d are for R/£=0.1, 0.25,
0.5, and 1. Curve e is the equivalent curve for a SQUID with
Josephson junctions [Fig. 1(a)]. In each case the curves are nor-
malized by the intrinsic critical current of the whole device.
Some computed values are shown. S and N signify supercon-
ducting and normal domains. (b) Circulating current density Jg
versus total magnetic flux threaded by the ring circuit. Curves
b, ¢, and d are for values of R /£=0.25, 0.5, and 1.0. Curve e
shows Ip for the conventional SQUID normalized by i., the
critical current of each Josephson junction [Eq. (6)]. All curves
are for the same normalized measuring current
I/I.=1/2i.=0.49654. Dashed lines indicate unstable or meta-
stable branches.
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FIG. 3. Plot of the phase difference 6 between nodes N and
N’ of Fig. 1(b) due to the measuring current /. Curves b and d
are for R/£=0.25 and 1.0. Curve e shows 8 for the SQUID
with Josephson junctions [Eq. (7)]. All curves are for the same
value of the measuring current as in Fig. 2(b). Dashed lines in-
dicate unstable or metastable regions.

that for small values of R /& the value of J; may exceed
J. as a result of the enhancement of superconductivity
caused by the two long leads.’

Figure 3 shows the angle § imposed by the measuring
current across the SQUID as a function of ¢ for the same
values of J/J.=1I/I, as in Fig. 2(b). This angle is de-
fined by

It can be seen that for the ordinary SQUID §=/2 at the
maximum flux. For the device of Fig. 1(b), 8§ < 7/2 at the
largest values of the flux as shown in Fig. 2. This is a
consequence of the nonsinusoidal character of the

current-phase relation obtained from the solutions of the
nonlinear GL equations.® Figures 2 and 3 are plotted as a
function of the total magnetic flux threading the ring.
Plots as a function of the applied flux with the self-
induction of the ring as a parameter can easily be con-
structed graphically.®!1°

As can be seen from Fig. 2(a) the device described here
can be used for dc measurements in much the same way
as an ordinary SQUID with JJ’s. The system we propose
has, apart from simplicity, the additional versatility that
it can be swept through several characteristic curves due
to the variation of £(¢) with temperature. One other pos-
sible application could be measurements of small tempera-
ture differences with high accuracy.

The Al circuit used in Ref. 4 for the observation of
electron interference effects due to weak localization in
normal metals could be used as a realization of our pro-
posed device. Care should be taken, however, in this case
because of the known variation of the transition tempera-
ture of Al for small sample thicknesses,'! a fact which
might blur the distinction between the two effects.

In conclusion, we have analyzed the properties of a su-
perconducting ring circuit built of homogeneous wire of
uniform cross section which for appropriate values of ring
sizes behaves like a conventional SQUID and could thus
be used as a superconducting quantum-interference device
without Josephson junctions.
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