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We present a complete Hamiltonian treatment of a kink with an internal degree of freedom,
namely the double sine-Gordon (DSG) kink. In this formalism we assign two canonical coordinates
and their associated momenta to describe the motion of the center of mass of the DSG kink and the
relative motion of its two subkinks. We show that the canonical coordinate representing the separa-
tion of the two subkinks describes a nonlinear oscillatory degree of freedom. Consequently, the
DSG kink behaves like a "molecule" (4~ kink) comprised of two "atoms" (each of a single 2~ kink)
held together by a nonlinear potential. As an application of our formalism, we obtain the solutions
for the nonlinear internal motion of the DSG in the absence of the radiation field.

I. INTRODUCTION

There has been increasing interest in the double sine-
Gordon equation (DSG) because of the large number of
physical phenomena which involve DSG kinks or solitons.
DSG kinks have been used to model systems in condensed
matter, ' quantum optics, and particle physics.
Condensed-matter applications include the spin dynamics
of superfluid He (Refs. l and 2), magnetic chains,
commensurate-incommensurate phase transitions, surface
structural reconstructions, and domain walls. ' In quan-
tum optics and quantum field theory DSG equation appli-
cations include self-induced transparency and quark con-
finement, respectively.

The many realizable applications of the DSG model
have spurred investigations into its basic structural,
dynamical, thermodynamical, and critical properties. '

Burt" has derived multiple soliton solutions for the DSG
equations, while Iwabuchi' studied the commensurate-
incommensurate phase transition in the DSG system. De
Lillo and Sodano' proposed an ansatz for the analysis
of the internal small-oscillation mode, subsequently,
Giachetti et al. ' attempted to explore its effect on the
statistical mechanics of DSG kinks, while de Martino
et al. ' investigated the critical properties of the quantum
DSG version. Condat et al. ' have also explored the
thermodynamical properties of the DSG chain in the dif-
ferent regimes of the DSG potential. Furthermore,
Campbell et al. ' studied, numerically, the DSG kink-
antikink interactions where they demonstrated the ex-
istence of resonance exchange of energy between the
translational and internal degrees of freedom of the
soliton-antisoliton pair. Recently, we have extended the
analysis of the small oscillations about the DSG kink
beyond the ansatz level and were able to derive the com-
plete set of eigenfunctions. '

In this paper we develop a complete Hamiltonian
dynamics for a DSG kink where in addition to the sine-
Gordon field we introduce two particle variables X(t),

R(t) and their conjugate momenta as canonical coordi-
nates. The variable X(t) is the coordinate of the center of
mass of the kink and the variable 2R(t) is the distance be-
tween the centers of the two subkinks that make up the
DSG kink. We show that R(t) describes an internal non-
linear oscillatory degree of freedom. Consequently the
DSG kink behaves as if it were a "molecule" (4~ kink)
composed of two "atoms" (each of a single 2' kink) held
together by a nonlinear potential. Since the introduction
of the variables X, Pz, R, and Pz increases the number of
canonical variables by four, it becomes necessary to add
four constraint conditions so that the total number of in-
dependent degrees of freedom of the problem is conserved.
The present work is a generalization of the approach
developed by Tomboulis' in field theory for the single
sine-Gordon kink to the case of the DSG kink. In previ-
ous papers ' ' we demonstrated that the Tomboulis' ap-
proach could be generalized to the discrete sine-Gordon
case. In this paper we carry out the derivation in the con-
tinuum limit; however, the analysis of the discrete case
proceeds in the same manner provided that the derivatives
and integrals are replaced by finite differences and sums,
respectively. For convenience we treat the kink motion
nonrelativistically.

The organization of this paper is as follows. In Sec. II
we introduce the equations for the constraints and derive
the canonical transformation to a Hamiltonian that in-
cludes the four-particle variables as canonical coordinates.
We derive the equations of motion in Sec. III. In Sec. IV
we discuss some significant special cases. We solve the
nonlinear equation of the internal motion of the DSG
kink in the absence of the radiation field in Sec. V. Sec-
tion VI contains the summary and conclusions.

II. CANONICAL TRANSFORMATION
AND HAMILTQNIAN

We start with the Lagrangian for the discrete lattice
case, anticipating future lattice applications, then we take
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the continuum limit for this paper. The Lagrangian for
the DSG chain is

m g yn+1 yn2 2
w~ yn

2 a
, (2.1)

where an overhead dot indicates a time derivative. a and
8'/2 are the period and amplitude of the underlying
periodic potential V, respectively. p is the force constant
of the springs, m is the mass of the particle, and y„ is the
displacement of the nth particle from the 2nth trough of
the underlying potential. When we introduce dimension-
less variables in Eq. (2.1), we obtain

L—:(a p) 'L

=-,' gg„——,
' g(g„+,—g„)'—,g V(g„),

4l,

00

0
~SS

0

0„00

o0

(b)

where Q„—:y„/a, the dimensionless time is r:—,co t,—the
square of the frequency cu is co =4@/m, Ip is the di-
mensionless coupling constant which is defined as
la=(n/2) (co /co, ), where co, =—2m a (8'/m). A large
value of lo corresponds to the case where the harmonic
forces between the particles are larger than the force due
to underlying periodic potential.

When we take the contiuum limit of Eq. (2.2), we ob-
tain

2

(4n-)'L = f dxW= f dx
2 Bx

o
I

X (ARBITRARY UNITS)

FIG. 1. (a) The double sine-Gordon potential for W) 1.25,
(b) solution to the DSG equation showing the two constituent
subkinks separated by 2R, (c) the small oscillations wave func-
tion Ocr/BX corresponding to the Goldstone mode, and (d) the
approximate small oscillations wave function Ba./BR corre-
sponding to the internal degree of freedom.

where

where 4~Q„~, n~x, and

'2

V(P)
Ip

(2.3)
277

o ( x,X,R ) =o.so (x —X)+R
lo

27'—oso R — (x —X)
lp

(2.5b)

—V(P)—:4( coshR ) —,
' sinh R( cosP —1)

1+ cos+
2

(2.4)

P(x, t) =o(x,X(r),R(r))+X(x,t), (2.5a)

The DSG potential V(P), qualitatively, exhibits three dis-
tinct topographies depending on the parameter R. Each
of these topographies has a completely different set of
solutions associated with it. A complete classification of
these regimes of V(P) as a function of R and a detailed
analysis of the associated solutions are given in Ref. 17
and in terms of an alternative parameter q in Ref. 13. We
should point out, however, that V(P) of Ref. 13 is not
normalized as a function of g, while that of Ref. 17 is
normalized such that the bottom of continuum of small
oscillations about the DSG kink is always unity. We
should also mention that the parameter R in Eq. (2.4) is
the same as the variable R in Sec. V of Ref. 17. In the
present paper we will consider only the regime defined by
R )0; the configuration of the system in this regime is
shown schematically in Fig. 1(a).

We now express P as the static kink solution of the
DSG, which is shown in Fig. 1(b) and which we denote by
cr, plus a radiation field X such that

and

oso(x)=4tan '[exp(x)] . (2.5c)

(2.6a)

where we use the fact that the field g is an independent
dynamical variable, i.e., it does not depend, explicitly, on
X(t) and R (t), and we define

2&
2 sech R + (x —X)277

lo lo

+2 sech R — (x —X)2~
lo

(2.6b)

Equation (2.5b) expresses the interesting fact' '' that the
static kink solution of the DSG equation can be rigorously
expressed in terms of the single kink solutions of the
sine-Gordon equation. The parameters X and R in Eqs.
(2.5b) and (2.5c) are now to be promoted to dynamical
variables X(t) and R (t) in order to proceed to develop a
Hamiltonian formalism' ' in which they become canoni-
cal coordinates. The time derivative of Eq. (2.5a) is
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ao =2sech R+ (x —X)2&
aR lo

—2 sech R — (x —X)2~
lo

(2.6c)

which are shown in Figs. 1(c) and 1(d), respectively.
We now substitute Eq. (2.6a) into the first term on the

right-hand side of Eq. (2.3) and obtain

II= . =P; sr=
aj

aw
ax

(2.12a)

aI . aI
P~ —— ——MIX; Pg —— ——MgR .

ax
'

aR
(2.12b)

We observe that both Mz and Mz are independent of X.
(In the discrete lattice case Mz and Mz depend on X and
the cross-term integral variable does not vanish. ) The
canonical momenta are defined as

—, f de (x)= —, fdx X +R +Xax aR

if we were to require that

2

Px ao- P~ aoH=~+ ax+ M, aR
(2.13)

When we substitute Eqs. (2.12) in Eq. (2.6), we obtain
(2.7)

and

C2 = dx 7=0
ax

C4= f dx X=O,
aR

then Eq. (2.7) becomes

—,
' f dx(t (x)= —, f dx

2 2

ax +
aR

(2.8a)

(2.8b)

(2.9)

and the kinetic energy can be expressed in terms of the
momenta as

—,
' J'dx j'(x)= + ' + ,

' fdx-n (x) (2.1.4)
2M' 2M'

The constraints required to make the transformation' '

from P, rr to X(t), R(t), P„(t), and P~(t) canonical are

Ci = J dx X(x,t)=0; C2= f dx rr(x, t)=0,a(7 ao
ax ' ' =

ax
(2.15a)

As we will see below, Eqs. (2.8a) and (2.8b) are two of the
four constraints needed to render the transformation from
P variables to the X, R, and X variables canonical. We
carry out the integrations in Eq. (2.9) and obtain

x dx = —,M~X + —,M~R + —, dx g

(2.10)

C3 —= dx g x, t =0; C4—= dx ~ x, t =0
aR ' ' aR

(2.15b)

We note that C2 and C4 are just the conditions of Eq.
(2.8). The old variables satisfy the canonical Poisson
bracket relations

where

2

[y(x),y(x ) j = [11(x),11(x') j =0,
[y(x), II(x ) j =5(x —x ) .

(2.16)

and

M~ = dx
ac7

ax
32m 2R1+
Io sinh(2R )

(2.11a) If we assume that the new variables satisfy
[X(x),rr(x') j =5(x —x'), we find that the Poisson brack-
ets of the constraints lead to

M, —= f dx
ao
aR

8lo 1— (2.11b)
sinh(2R )

[ Ci, Cp j =Mx, [ C3, C4 j =M~,

[ Ci, C3 j = [ Cl, C4 j = [ C2, C3 j = [ C2, C4, j =0,

f dx
ao
aR

=0

The cross-term integral vanishes, and
which violates our requirement that C& ——C2 ——C3
=C4 ——0. In Dirac's terminology these are second-class
constraints. To make the constraints strong requires a
modification of the conventional brackets. The Hamil-
tonian formalism for a constrained system leads to a new
canonical bracket

[X(x),vr(x') j =5(x —x') —[X(x),C2 j [[C2,C& j ] '[C&,n(x') j —[X(x),C4 j [[C4,Cq j] '[C3, rr(x') j

=5(x —x') —[X(x),C2 jMx '[Ci, ~(x') j —[X(x),Cg jMg '[C3,~(x') j

a~(x), a~(x )=5(x —x'—
aX

M
aXX

e~(x), a~(x )

aR aR
(2.17)
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where we have set [X,Px j = [R,P~ j =1, while all other Poisson brackets vanish. Furthermore, we used the relation

P =o +X, and Eq. (2.13) to obtain the final form of the Poisson bracket relations of Eq. (2.16).
It can be easily shown that Eq. (2.17), together with [X,Px j = [R,Pz j = 1 and the constraints given by Eqs. (2.15) con-

sistently satisfy the Poisson brackets of Eq. (2.16). Consequently, the transformation to the new variables X, m, I, Px, R,
and PR is canonical and the new dimensionless Hamiltonian is

H= + + —,
' f dx vr (x)+ —,

' f dx[X'(x)+o.'(x)]
2M~ 2M'

—4 ( coshR ) dx —, sinh (R)[ cos(cr+X) 1—] — 1+ cos
2~ —2 1 ~

o.+X
Io 2

(2.18)

III. EQUATIONS OF MOTION

We obtain the equations of motion for our canonical variables from the Poisson bracket relation 0= [O,H j where in
general 0 depends on X, Pz, R, PR, 7, and ~, and does not depend explicitly on time. We use the relationships which
follow from Eq. (2.17),

aG acr(x), i, acr(x') aG acr(x) M, i. d, ao.(x') aG
aX(x)+ aX ~ ""

aX aX(x)+ aR ' f" aR aX(x') '

aG ao(x) M, l. d, acr(x') aG acr(x) M, d, ao(x') .aG=
a~(x) ai ~ "

aX a~(x ) aR ' aR a~(x )

(3.1)

(3.2)

The equations of motion for X, R, and 7 are

X=[X,H j =Mx 'Px', R =[R,Hj =Mg 'P~,

X= [X,H j =m(x) — Mz f dx' m(x')a~(x), , a~(x )

BX ax
„,a~(x) .

(3.3a)

(3.3b)

where the second equality in Eq. (3.3b) follows from the
constraint conditions C2 ——0 and C4 ——0.

It is necessary to consider the variable R more carefully
before obtaining the equations of motion for the canonical
momenta. Up to this point the same symbol R has been
used for two different physical quantities which we must
distinguish. First the variable R in Eq. (2.4) for the po-
tential V(P) is a fixed parameter that is determined by the
physical system. For example in the case of the recon-
struction of solid surfaces the variable R in V(P) is deter-
mined by the effective interaction of the surface atoms
with the underlying substrate. From here on we will
denote this parameter by A so that Eq. (2.4) becomes

V(P)~v~(P) = —4 ( cosh%') 4 sinh (A)( cosP —1)— 1+ cos
Io Io 2

(3.4)

The second use of R is as R(t) the dynamical variable which first appears in Eq. (2.5). We retain the symbol R(t) for
the canonical variable. The crucial point is that in the dynamical motion of the DSG kink the distance R between the
centers of the subkinks will vary with time and thus R will be a function of time, whereas the potential energy function
V(P) is given a priori and fixed for the particular given physical system and thus M is a fixed parameter. The equations
of motion for the momenta are

8+067rr= [~,H j =X=
Bx Bx

av.- (~+x)
ax

a~(x), a~(x ) a'X
2 gX 2

dx' +
a V (x')
aX(x')

1

Mg

2
~ Px

Px = [Px H j = +
2Mx

av (x) I

aX(x')
ao(x)

d , aa.(x') a X a2cr
dx +

aMX PR aMR r, a ( ') a'X a'
BX 2MR2 aX J ax ax 2 ax 2+ 2 + g

dx' +
av (x)
aX(x )

(3.5)

, aa(x') a X a o.
dx +2 gX 2

av (x')
aX(x') (3.6)
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t. d, acr(x') a X a o
J gR g 2 g 2

a V.- (x')
ax(x )

(3.7)

When we substitute Eq. (3.3a) for the momenta into Eqs.
(3.6) and (3.7), we obtain1,ao.(x') a X a o

dx +
M BX ()

av (x')
(3.8)ax(x')

where the second equality in Eq. (3.6) follows from the
fact that in the continuum limit M~ and Mz are indepen-
dant of X. (In the discrete lattice" M» and Mz do de-

pend on X.) The equation for P~ is

aM, P' aM
P +

BR 2M BR

)
acT(x) 1

d
a cT( x )

aX M aX

BR M BR

8Vg

ax
o+

c)x Bx

a~(x) — a~(x)
(3X BR

R2 al~V, X2 aM~
X R+

2 BR 2M BR

We can write Eq. (3.5) in an alternate form

(3.11a)

(3.11b)

(3.12)

, a l~VV,R= ——,R
BR

X' ~Mr
2MR BR1,ao.(x') a'X a'cr

dx
MR aR ax ' ax ' aX(x')

(3.9)

where we used the equations of motion (3.8) and (3.9). Al-
though Eq. (3.10) [or equivalently Eq. (3.12)] is the equa-
tion of motion for g there is still an additional transfor-
mation we can perform that will be useful later when we
linearize the equation of motion for 7. The static DSG
solution cr(x,X,R) defined in Eq. (2.5b) is a solution of the
equation

We can write Eq. (3.5) in the form

~X (3oX=(l —H» —H~ )
Bx Bx

av
ax

(3.10)

where the projection operators Hz and Hz are defined
by the relations

a o.(x,X,R)
C)X

a VR [cr(x,X,R)]
Bo

(3.13)

where the crucial point is that the parameter R in the po-
tential Vz is the same R that appears as the parameter R
in cr(x,X,R). When we substitute Eqs. (3.13) in Eqs.
(3.10), (3.8), and (3.9), we obtain

a2X aX=(1—H» —Hg ) + (Vg[o(R)] —V~[c7(R)+X])
Bx

X= dx' + ( Vg [o(x',R )]—V~[o(x', R )+X])1,ao.(x') a X(x') a
M~ 3X (j '2 Bo.

(3.14)

(3.15)

BlnM~ 1 X2 BM~

BR 2 M (3R

1,ao(x') a X(x')dx'
2 + Vz o. x', R —V~ o x', R +7

Mg aR g~ 2 a~
(3.16)

Equations (3.14), (3.15), and (3.16) constitute the com-
plete closed set of canonical equations of motion for P,
X(t), and R(t).

In the next two sections we consider some relevant lim-
iting cases of the equations of motion.

where 0—:(1—H» —HR )O. The operator A is

and 5 is defined as

IV. LINEARIZED EQUATION
OF MOTION FOR X(t) S= V~[o(x,R)]—V~[ r(xc,R)] . (4.2)

When we linearize Eq. (3.14) for X by expanding
V~[cr(R)+X] to first order in X we obtain

X =(1—H» —Hg )AX+(1 —H» —Hg )S=AX+S,
(4. 1)

The prime indicates a derivative with respect to o.. Figure
2 provides two typical examples for the spatial depen-
dence of 5 corresponding to &=2.4 and &=3.2 with
R =2.3 and 3.1, respectively. The explicit expression for
Vg [cr(x,R)] is
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V~[cr(x,R)]= 2K

lp
—I+ tanh W cos[cr(x, R)]—sech A'cos2 2 tr(x, R )

2

2K

lp

2

—1+ tanh A
2cosh R —sinh [x —X(t))

lp
T

cosh R+ sinh [x —X(t)]
lp

—sech A'

cosh R —sinh [x —X(t)]
lp

cosh R+ sinh [x —X(t)]
lp

(4.3)

where we used the expression

cos o(x,R )

2

cosh R —sinh [x —X(t)]
lo

cosh R+ sinh [x —X(t)]
lp

(4.4)

We can obtain an explicit expression for S by substituting Eq. (4.4) into Eq. (4.2),

2
lp

S(x,t) =
2K

coshR sinh [x —X(t)]277

lo

cosh R+ sinh [x —X(t)]
lp

[—4sech R(t)+4sech A]

2~4 coshR sinh
p

x cosh R —sinh2 22~
X

lp

[ tanh R(t) —tanh W] . (4.5)
~ 2 2'

cosh R + sjnh x
lp

The linear operator A is time dependent because the
operator V~~ [o[x,R(t),X(t)]J depends on time through
R(t) and X(t). We show below that R(t) has an oscillato-
ry time dependence and consequently so does A(t). In ad-
dition, if the center of mass X(t) is accelerating it will
also contribute to the time dependence of A(t). Conse-
quently, we define a time-independent operator AscH in
the following manner.

a' —V~[o(R(t),X(t))]
Bx
a2 —V~ [cr(M,Xp)]

Bx

a'
As cH + V~ [o.(W, Xo ) ]

Bx
(4.7)

where AscH is the "Schrodinger" equation associated with
the DSG equation, i.e., the linearized DSG equation about
the static kink solution o(A, XO). The operator 5A(t) is
given by

5A(t) = V~[o(A,XO)]—V~[cr(R(t),X(t))] (4.g)

and derives its time dependence from the motion of the
center of mass X(t) and internal oscillation R(t). Analyt-
ic expressions for the eigenfunctions and eigenvalues of

+ I V~ [0'(W Xo )]—V~ [cr(R ( t) X( t) ) ) I

Q2g

at2 +AscHP (4.9)

where

—:—AscH+ 5A(t), (4.6)
are given in Ref. 18. The spectrum of AscH consists of
the two discrete eigenvalues corresponding to the Gold-
stone mode and the shape mode in addition to the contin-
uum which starts at ct) =271/lp. The shape mode is
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of Eq. (4.9). If we consider a linear deviation from equili-
brium in the original field variable P=o(R)+X, we ob-
tain

lJ
4C

o o
lA

Z0
I

Q

CC

O

M

oo
lh 9
z0

O

gg

I I

-20 -15 -10 -5
I

10 15 20

(b)

5p= M+X,
BR

where X satisfies Eq. (4.1). Thus we expect that

Bogb(x)- M+X
BR

because gb is a small first-order correction about the stat-
ic solution cr(A) T.he authors of Ref. 17 observed that
for R )2 their numerically evaluated g~ approached
Ocr/BR. We find that the difference between the exact Pb
and 5cr/BA is less than 1% for A) 2. Consequently, we
find that the contribution to Pb from X is negligible for
small 6R, except in the small range of 1.25(M(2.0.
However, it is possible that this contribution may become
appreciable for deviations M where nonlinear effects are
important. There are two additional situations where g
will be important: First, if we have external phonons
which are either high or low intensity; second, if the DSG
kink radiates spontaneously, the radiated field will be
described by X. The source of spontaneous emission is
S(x,t) given by Eq. (4.5). We return to a discussion of
spontaneous emission at the end of the next section after
we have solved for R(t) which is needed for a discussion
of radiation.

V. SOLUTION FOR R(t)

-20 -15 -10 -5 10 15 20

277 277
gb(x) = sa tanh ax + tanh (x +R )

lo Ip

2m 2%+ tanh (x —R ) —tanh x
Ip Ip

FIG. 2. Spatial dependence of the radiation source term S for
(a) A' =2.4 and R =2.3, and (b) A' =3.2 and R =3.I.

In this section we shall discuss the solutions of the
equation of motion for the collective variable R(t) in the
absence of the radiation field X. We then obtain the cor-
responding solutions for P(x, t) by substituting R (t) in the
function o.[x,R (t)], i.e., for X=0 the time-dependent
solution of the DSG equation is, simply, a dynamic ver-
sion of the static solution with the parameter N replaced
by the collective canonical variable R (t). For ease in pre-
sentation we will go to the center-of-mass frame, which
allows us to set the variable X equal to zero. When we set
X=0 in Eq. (3.16), we obtain

3 ln2M
R+ —,R

BR

where

2'
cosh ax

0

—S

(4.10)

where

1

MR BR
(5.1)

sinh(2R)
sinh(2R ) —2R

s= —,[—1+(1+a 8tanh R)' ],
and the eigenfrequency

U~(R) —= f dx
1 Ocr(x, R )

2 Bx

2

V~ o(x,R)2&

lp
(5.2)

cob= (1—s )
2' p f/p

lo

We refer the reader to Ref. 18 for a complete discussion

We observe that we could have obtained Eqs. (5.1) and
(5.2) more directly by returning to Eq. (2.18) setting X,
Pz, 7, and vr equal to zero leaving us with a one particle
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o

Hamiltonian for R(t). Ho
dtstmguish carefully bet St'~ ~ ~

owever, in that case wee have to
y e ween and R (t) so that

PR
H R,I'a —— +u~(R)

R
(5.3)

o: o
which is identical to Eq. (5.2). The res

. )'

o

u~(R) =8 2'
lo

0 I

2 3 4 $6 7 8 9 10

X )+ tanh ~
tanh2R

+2R cothR
sinh2R cosh A

R

FIG. 3. The effective nive nonhnear potential u~(R) for &=2 4~ ~ tanh A' coshR
2sjnh R

(5.4)

LL0 d

00
0.0 1.0 4O

p ~(p) versus p, where p—=R —W, forIn Fig. 3 we lot u
=2.4. We get a quantitatively different but qualitative-
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co0——M~ u~(R)
BR

2n M
1

(3—A~ coth&)+ (A tanhW —1)—1 2M coth&
sinh W cosh2& cosh Hsinh H

(5.5)

where M~ is given by Eq. (2.11b). For large A', co0(M)
approaches zero as 8(2n/l0) e . While in the limit
W~O, co0(A) approaches a constant. In Fig. 4, we plot
era(W) versus W. For W(1.15 the potential V(P) has
one minimum, only instead of the two minima of the
DSG. Furthermore, in that range of M~, era(9F ) is
resonant with the continuum and the soliton will couple
strongly to the phonon field. Consequently, we only
present co0(%) in the range of A~) 1.15. In Ref. 17 the
authors obtained an approximate expression for the fre-
quency of small oscillations of the DSG kink, cob where

2
COb =

2
3

sinh M
1 sinh (2M~)+298

cosh A sinh (2&~) —2A'

(5.6)

We find that for W) 1.25 cob(W) and co0(%) differ by
less than 1%.

We obtain the nonlinear solution for P(x, t) =a (x,R (t) ),
where we have set X =0, by solving Eq. (5.1) in the
center-of-mass frame where X=0. In Fig. 5 we show a
typical solution for the R ( t) motion; where we plot
p(t)=R (t) —A' as a function of time, for &~=2.4 and
p(0) = —1.0. The solution is periodic in time, but
displays an asymmetry in rho where the positive swing is
nearly double the negative one. Subsequently, we substi-
tute the R(t)=A'+p(t) solution in the expression for
cr(x, R (t)) given in Eq. (2.5b), setting X =0. The resulting
expression for P describes a nonlinear internal oscillation
of the DSG kink where the distance between the two sub-
kinks, namely 2R, follows a time evolution governed by
the nonlinear potential u~(R). We have investigated the
behavior of this motion by taking the time Fourier
transform of P(x,R(t)). We obtained a set of evenly
spaced harmonics in the frequency spectrum. In Fig. 6
we show the spatial dependence of the lowest two har-
monics; we have also plotted, on the same figure, the
shape mode Bo./BR for comparison. We notice that the
first harmonic has the same general shape as Bo./BR,
however, the extrema of the former appear at larger p
values as to be expected from the large asymmetry in the

p oscillations. We also observe that the higher harmonics
have increasing number of nodes. In a future publication
we will carry out a comprehensive analysis of the non-
linear oscillations including the investigation of the cou-
pling of higher harmonics, with frequencies overlapping
the radiation continuum (co) 2m/10), to X, and its contri-
bution to the damping of this motion.

dynamics for a kink with an internal degree of freedom.
We introduced, in addition to the sine-Gordon field, two
particle variables and their conjugate momenta as canoni-
cal variables. The coupled equations of motion of the two
canonical coordinates X(t) and R(t), as well as, those of
the radiation field 7 have been derived. Furthermore, a
linearized version of the 7 equations of motion have been
obtained.

As an application of our formalism we solved the equa-
tions of motion in the absence of the radiation field 7, but
with the full nonlinearity in the motion of the R coordi-
nate. This provided us with a powerful tool to analyze
the highly- nonlinear internal motion of the DSG kink.
However, our solution is valid only for N) 1.25. For
smaller M the effect of the radiation field is expected to
be substantial, thus implying that our approximation
(X=O) is invalid in this range. Our expectation is sub-
stantiated also by the linear analysis of Ref. 18 where we
showed that for small A the normalization of the contin-
uum eigenstates is M~ dependent; this points to the fact
that in this range of the parameter the phonon modes are
rigorously influenced by the presence of the kink.

Our analysis can be regarded as a canonical and fully
nonlinear treatment of the motion of a wobbling kink in a
model which exhibits an exact topological soliton with an
internal mode. This is relevant not only for the dynami-
cal properties of kinks in the numerous systems modeled
by the DSG equation but also if extended to the study of
the polaronlike solutions in polymer models could reveal
interesting properties of such systems.

Finally, within the DSG model we can cite some in-
teresting applications to our approach. One such exten-
sion of our analysis would be to inclued the effect of sto-
chastic noise on the kink dynamics of this model. This
will allow for a more detailed study of the thermodynami-
cal properties of the DSG equation. It will also provide
the tools for the investigation of a stochastic activation
mechanism of the DSG kink shape mode. Another irn-
mediate application of the Harniltonian dynamics of DSG
kink is the investigation of the scattering problem of a
DSG kink pair and a kink-antikink pair which has been
recently studied, numerically, by Campbell et al. ' We
are currently working on these problems.
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