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Time-reversal invariance and universality of two-dimensional growth models
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We study a model of interface dynamics which describes a surface-tension-biased process of
simultaneous deposition and evaporation of particles. The control parameter of the model is the
average translational velocity (v) of the interface which is determined by the difference between the
rates of deposition and evaporation. For v =0 the dynamics is reversible and the two-dimensional
problem can be solved exactly by mapping the system onto a kinetic Ising model. For the case of ir-
reversible growth (v&0), we use Monte Carlo methods to calculate the dynamic structure factor,
S(k, t), of the surface. We find that S(k, t) obeys dynamic scaling: S(k, t)-k +"f(k't) with g=0
for all v, whereas z =2 for v =0 and z =

2 for v&0. These results suggest that the long-
3

wavelength, long-time limit of our interface model can be described by Burgers' equation and, furth-
ermore, that the change in the dynamical exponent z is related to the breaking of time-reversal sym-
metry which occurs as v becomes nonzero.

I. INTRODUCTION

A number of interesting phenomena can be described in
terms of the motion of an interface between two phases of
matter. Crystal growth, dielectric breakdown, fluid dis-
placement in porous media, and electrodeposition are a
few examples which are important from both the theoreti-
cal and practical point of view. ' Although the equa-
tions describing these processes are well defined, theoreti-
cal advance is hampered by the fact that the surfaces are
highly convoluted, display large fluctuations, and, as a
consequence, even the question of how to characterize
them (i.e., what to calculate) is largely open.

Since the clusters formed by interface evolution are
often scale invariant, and since the large fluctuations in
surface configurations are reminiscent of critical fluctua-
tions in equilibrium systems, it is natural to try to charac-
terize the surface by means of critical exponents, i.e., by
the scaling dimensions of various macroscopic quantities.
For complicated processes such as diffusion limited aggre-
gation one needs an infinite number of scaling dimen-
sions in order to describe the active zone of the surface
through the highly singular growth-probability mea-
sure.

There are less singular surface-evolution models, how-
ever, such as the Eden process or the ballistic deposition
model. ' They seem to be describable in terms of simpler
quantities such as the width of the active zone, and Monte
Carlo simulations" ' indicate that two exponents are
sufficient to characterize these growth processes.

The appearance of two exponents may be explained as
follows. We let the growth process take place in a re-
stricted geometry, for example in a strip in dimension
d=2. The long-time limit of the surface evolution in this
case is a stationary process. If one assumes that the
steady-state fluctuations are in some sense analogous to
equilibrium fluctuations one naturally arrives at the fol-
lowing two exponents. The static critical exponent g
determines the scaling of time-independent quantities

(e.g. , the width of the active zone, g, is proportional to the
magnitude of fluctuations in the surface position, and
consequently scales with the linear size of the system, L,
as g-L' "'~ ). The dynamic critical exponent, z, on
the other hand, specifies the scaling of the characteristic
time scale which might be taken to be the relaxation time
of steady-state fluctuations (r-L').

If the analogy with equilibrium critica1 phenomena is
sound, then g and z are universal, i.e., they depend only
on such general features of the system as the dimensiona1-
ity, the symmetries of the steady state, and the sym-
metries of the equation of motion. Thus one might try to
classify simple growth processes according to the values
of g and z, and, furthermore, these exponents may be cal-
culated from highly idealized field theoretic models which
retain only the relevant features of the growth process.

A significant development in the above program has
been the recent introduction of a field theoretic model of
deposition by Kardar et al. ' Their model is an improve-
ment over an earlier theory' which already contains the
essential features of the deposition process —smoothing by
surface tension and the effect of the average translation of
the surface. Edwards and Wilkinson, ' however, used a
linearization procedure and, as a consequence, the effect
of the uniform motion was lost. The relative surface fluc-
tuations became independent of the velocity of the average
translation. Kardar et al. ' realized that the average
translation affects the surface fluctuations significantly
and included in the equation of motion the simplest non-
linear term which might be produced by the uniform
motion of the surface. The result is Burger's equation'
which has been analyzed by renormalization group
methods. ' ' The average translation is indeed found to
be a relevant perturbation; without it (equilibrium case)
the critical exponents take on their "free-field" values, '

g=0 and z=2, while g=0 and z = —, in the nonequilibri-
um case of a surface advancing with an arbitrary nonzero
velocity. Monte Carlo simulations of both the ballistic
deposition model"' and the Eden process' yield g=0
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and z=1.5 indicating that Burgers's equation may be a
prototype equation for describing the long-wavelength and
low-frequency properties of a large class of growth
models.

In order to study the extent of the universality class of
Burgers's equation and to investigate the effects of a mov-
ing interface, we introduce in this paper (Sec. II) a simple
growth model which contains the average translational
velocity (v) as a parameter. In the equilibrium case
( v=O) the growth algorithm is microscopically time-
reversible and an exact solution (Sec. III) leads to q=O
and z=2 which characterize the unstable fixed point' of
Burger's equation. When v&O and time-reversal symme-
try is broken we find by Monte Carlo simulations (Sec.
IV) that the exponents (g=O, z = —,

'
) of the nontrivial

fixed point of the Burgers's equation describe the evolu-
tion of the interface. The change of z from 2 to —, can
thus be interpreted as being due to the breaking of time-
reversal symmetry. Since various values of v can be stud-
ied we also observe crossover between the two types of
behavior. Finally, on the basis of Monte Carlo simula-
tions of a second simple model (Sec. V) we present further
evidence that the origin of the change in the critical ex-
ponent z may be the breaking of time-reversal symmetry.

P- P+

0

ia La

FIG. 1. Model I of deposition-evaporation governed interface
evolution. The sites at which deposition (evaporation) occurs at
a rate proportional to p+ (p =1—p+ ) are denoted by + ( —).
The t=O state is a "Aat" substrate. The equivalent lattice gas
model which is obtained by replacing every surface element of
slope —1 with a hard-core particle is also shown.

II. A MODEL OF INTERFACE DYNAMICS
(MODEL I)

The model of interface dynamics which we study is
designed to mimic some of the essentials of simple deposi-
tion processes such as near-equilibrium crystal growth
and the Eden process. The two elementary steps—
deposition and evaporation —which define the surface
evolution are illustrated in Fig. 1 for the particular case of
the square lattice. Although we shall be working with
this lattice throughout this paper, generalization to other
lattices and higher dimension should be obvious from the
construction.

As one can see from Fig. 1, the particles in this model
are squares with sides of length ~2a. The motion of the
surface is restricted to an infinite strip in the [1,1] direc-
tion of the square lattice. The width of the strip is al
and periodic boundary conditions are employed in the
direction perpendicular to the strip.

Time is discretized t =t„=nw and in a unit of time ~
either a new particle is deposited at one of the local rnini-
ma of the surface or a particle evaporates from one of the
local maxima. The probability of deposition and evapora-
tion are p+ and p =1—p+, respectively, and the place
where the event occurs is chosen randomly from the avail-
able sites. As an initial condition we use a "flat" substrate
as shown in Fig. 1.

Further motivation for introducing the above model
comes from the observation that the density fluctuations
in a one-dimensional hard-core lattice gas are described'
on a coarse time and length scale by Burgers's equation.
Kardar et al. ,

' on the other hand, arrived at Burgers's
equation when studying the dynamics of the coarse-
grained slope of a moving interface. Thus, identifying the
density of the lattice gas with the slope of the interface we
see the equivalence of the two systems on a coarse-grained

level. The equivalence can be brought down to the micro-
scopic level by considering the lattice gas model with half
the sites occupied and identifying occupied and unoccu-
pied sites with surface elements of slope —1 and + 1,
respectively (see Fig. 1). To complete the identification,
the deposition and evaporation rates (p+ and p ) must
be equated to the rates with which the particles hop to the
right and left, respectively.

The advantage of introducing this "discrete-slope" sur-
face model is that a two-state variable is associated with
every lattice site and the system can thus be treated as a
kinetic Ising model and, as a consequence, analytic results
can be obtained at least for the case of p+ ———, (Sec. III).

We note here that recently Meakin et al. ' have arrived
at the p+ ——1 limit of the above model by a different
route. They studied the ballistic deposition model' and
noted that on the average the height difference of neigh-
boring columns was of the order of 1 lattice site. It was
then a natural simplification to restrict the height differ-
ence to +1 and to treat the system as a spin model.

Returning to the properties of the surface formed in the
process defined above we note that the surface can be
described by the single valued function h~. which is the
height of the surface measured from a reference level at
sites xj ——ja, j = 1,2, . . . ,I . Once the time evolution of
hj(t„) is measured in a Monte Carlo simulation or calcu-
1ated analytically, various macroscopic characteristics of
the surface can be obtained. A trivial quantity is the aver-
age surface height which is given by

(h(t, )) =—y (h;(t„))=(2p+ —1)

where we have chosen the average height of the initial
state as the reference level. The averages ( ) in (1) are
over the normalized distribution function P ( [ h I, t„)
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which gives the probability that a configuration
I h j =

I h], hz, . . . , hl j occurs at time t„.It is clear from
(1) that unless p+ ———,', which we shall call the equilibri-
um case, the surface moves on the average with a nonzero
velocity. In order to characterize the intrinsic fluctua-
tions in the co-moving frame one can consider the width
of the surface zone, g, defined as

L
g'(L, r) =—g ([S,{r)—(S (r) ) j') .J (2)

S(k, t) = (hk(t)h k(t) ),
where

L
h„(r) = g (I],(r) —(I] (r) ) )e'"'k

(3)

(4)

with k =2nm/L, n =0,.+1,+2, . . . , +(L/2 —1),L/2.
In the long-time limit the evolution of the surface is ex-

pected to become a stationary process and g (L, t) and
S(k, t) become time independent. The relaxation toward
this stationary state may be characterized by the time
correlations in the stationary state

+( k, t) = lim (hk(t+ t')h k(t') ),S(k, t)
(5)

which describes the dynamics of near-stationary-state pro-
cesses. The far-from-stationary-state dynamics, on the
other hand, can be investigated by using the relaxation
function:

$(k, oo ) $(k,r)—
S(k, oo ) —S(k,0)

(6)

Since, in this model, there is no mechanism which re-
stricts the long-wavelength fluctuations, one expects that
the fluctuations diverge (g~ oo ) in the limit L ~ oaond

this limit may be considered a critical point of the system.
Consequently, for large enough I., one anticipates a
dynamic scaling form for the functions (3), (5), and (6),
i.e., the long-wavelength long-time limit of the structure
factor, for example, may be analyzed in terms prescribed
by dynamic scaling theory for finite-size systems:

$(k, r) -k ~+"f(k't, kL),

where the static (g) and dynamic (z) exponents determine
the universality class the model belongs to. The results of
Monte Carlo simulations presented in Sec. IV confirm
these expectations. Before turning to the simulations,
however, we show that the equilibrium limit (p+ ———, ) can
be solved exactly with the result q=O and z=2 and,
furthermore, present arguments which suggest that the
p+& —, case is in one universality class with the field
theoretic interface model studied by Kardar et al. '

In order to derive analytical results it is convenient to
work with the continuous time version of our model
which is defined through the following master equation:

More detailed information about the surface structure
may be obtained by calculating the time-dependent struc-
ture factor

I
= —g t]];(Ih j)P(Ih j,t)

i=1
L

+ g t]];( Ih j;)P(Ih j;,r) . (8)

Here w;( I h j ) is the rate of deposition or evaporation at
site i:

p+ /~0, if site I.
'

is a local minimum,

]U; ( I Il j ) = ' {1 —p+ )/70, ]f site i ]s a local max]mum,

0, otherwise .

III. ANALYTICAL RESULTS

The mapping of the continuous time interface dynamics
onto a one-dimensional kinetic Ising model is based on the
observation that the height difference, h; —h; ~ between
neighboring points on the surface can only be + a or —a.
Thus all the intrinsic properties of the surface may be
described in terms of a set of Ising variables I o j= I c7],o 2, . . . , crl,'0 J + ] cr] j wher——e

h; —h; =+1 .

The master equation (8) then becomes an equation for the
probability distribution Pz(jo j, t) of the Ising states:

aP, (I j,r) = —g ~ "(I~})P,(I~},r)

+ g wI '( Io }i.)PI(I oj;,t), .(12)

(9)
In Eq. (9) ~0 is a parameter which sets the time scale and
the configurations I h j; ]n (8) differ from I h j by the ad-
dition or removal of a particle at site i provided that the
configuration I h j allows such a change in the surface.

Clearly, the discrete and continuous time versions of
the model are identical in the sense that particles deposit
or evaporate independently and at a rate proportional to
p+ and 1 —p+, respectively. The time scales of the two
models, however, are related in a nontrivial manner. If we
call the deposition or evaporation of a particle an event
and measure time in the number of these events then time
flows uniformly in the discrete time model, t„=nr, while
the continuous-time version displays fluctuations in the
time increments due to fluctuations in the number of local
minima and maximum of the surface. The two times can
be related, however, by equating the average number of
events (n(t)) in the continuum version to n of the
discrete model:

L
(n( )r)= J g (w;)dr=n = —" (10)

i=1 70

thus yielding the required relationship t„=y(t), provided
that one can calculate (w; ). As we shall show in the next
section, (w; ) and the various correlation functions of in-
terest (3), (5), and (6) can be calculated analytically for the
particular case of p+ ———, in the continuum model by
mapping this system onto a kinetic Ising model.
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where the state [crI; differs from [o.] by flipping both o;
and o.;+1 and the flip rate is given by

w '( [o } ) = [1—o;cr;+)+a(o;+( c—r; )]l 1+

r
i

1
L m

6h, =h —(h)=ct g o —g g o,.
m=1 m=1i =1

and, consequently,

(15)

with a=2p+ —1. One can easily see that w ' is nonzero
only if cr; &cr; + &, i.e., if there is a local minimum or max-
imum in the surface at site i. Furthermore, w; '=p+/'Tp
for the case of a minimum (o; = —1, o;+ ~

——+ 1) while
w '=(1 —p+)/ro for a maximum (o;=+1, o;+~ ———1)
in agreement with (9). We note that these spin-flip pro-
cesses conserve the total magnetization and that the
periodic boundary conditions in the original model force
the number of up and down spins to be equal.

The advantage of the spin formulation of the problem
is that one can easily derive a closed set of differential
equations for the two-point correlation functions:

g (L,t)=((6h, )2)

2 L L i jXX X XC —.(t»
i =1j=1m=1n =1

(16)

where we have assumed that the initial state is translation-
ally invariant (e.g. , the initial state shown in Fig. 1 and
the same state shifted horizontally a distance a are mixed
with equal probability) and thus (cryo ) can be written as
(o~o ) =CJ (t). Furthermore, we have used the fact
that g,. o; =0 yields the following identity for the corre-
lation functions

&~, a)=y~, ~ p, ([aj,t) (14) 1+—g (cr o' )=0.2

m, j)1
(17)

and the width of the surface region g(L, t) and the struc-
ture factor S(q, t) can be expressed in terms of (o/cr ).
Indeed, the deviation of the surface height from the aver-
age height at site i is given by

The equation for C (t) can be derived by following
Glauber's method. Taking the time derivative of Eq.
(14) and using the master equation (12), one finds, for
/j —m /)2:

a
270

~
(crj'cr ) = —4&cr, cr )+(cr, +(cr ) + &cr, )cr ) + &cr, cr +) ) + &oj'oat

—a((o),crjcr ) —(o;cr cr +, )+(cr)o,o.. ) —(o;o, ,o )), (18a)

while the m =j + 1 equation is given by

a2r (cr.o, ) = —2(o. o. ))+(o. ~o.+, )+(o o +, ) —a((o. ,o o ~) —(cr o+,o +,.)) .at (18b)

In the case of equilibrium growth (a=O), Eqs. (18a)
and (18b) contain only two-spin correlation functions and
this makes the problem solvable as we shall show below.
For a&0, the three-spin correlations appearing on the
right-hand side do not, in general, cancel due to the lack
of reflection symmetry in the kinetic Ising model [see Eq.
(13)]. In turn, the lack of reflection symmetry can be
traced back to the loss of time-reversal invariance for
a=2p+ —1&0. A consequence of this symmetry break-
ing is that equations (18a) and (18b) couple to a hierarchy
of equations for the many-spin correlation functions and
we are unable to solve these equations exactly. We shall
return to the problem of nonequilibrium growth in Sec.
IIIB, but first the exactly solvable case of &x=0 will be
discussed.

A. Equilibrium dynamics: a =0

We assume a translationally invariant initial state.
Equations (18a) and (18b) then reduce to a set of L/2
equations:

roC1 ——Cz —C1,
(19)

C (t) = g e''t""-. J'C(q, O)
1

I —1

&& exp( —A,
~

t /ro),

where the sum is over the following values of q

q = n, n =0, +1,+2, . . . , +(L/2 —1)
2&

(20)

(21)

and the relaxation rate per unit time is given by

A,~=2[1—cos(q)] . (22)

Furthermore, C(q, O) is the Fourier transform of the ini-
tial correlations C (0). For the particular initial state
shown in Fig. 1, C(q, O) has the form

The remaining correlation functions follow from the
periodic boundary conditions: CL rz+ J ——CL r2 J. (We
note that L must be even since g,. o; =0.) Actually, it is
more convenient to consider (19) for j =1,2, . . . , L and to
seek solutions which obey the aforementioned symmetry
CI p2+j

——CL&2 J. They are found by Fourier transforma-
tion of Eqs. (19), with the result:

7oCj:Cj12Cj+Cj+1)j)2J C(q, O) = —1/cos(qL /2) . (23)
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The result for the equilibrium ( t ~ co ) width
1/2

g(L, m)=a I +1
12

(25)

indicates that the surface is rough. It is noteworthy that
the result (25) can also be derived by simply assuming that
the spins o.; are + 1 or —1 with independent and equal
probabilities and subject only to the restriction that
g,. cr; =0. This similarity to free-field behavior is also
seen in the time-independent piece of (24) which consists
of independent modes decaying in a simple exponential
fashion. The only difference from the discretized version
of the free-field theory of deposition' is that the values of
q =2qrn/(L —1) (Ref. 21) are slightly shifted from those
expected for a system with periodicity L (k =27m/L).
This shift, however, is negligible in the limit L ~~ and,
consequently, for large t, g(L, t) obeys dynamics scaling
following from the free-field theory

After substituting (20) and (23) into (16), a tedious but
straightforward calculation yields a simple expression for
the width of the surface zone:

1 2 L+1 1 1
g (L, t) = ——g exp( A—qt/. ro) .a12Z(q(~o)kq

(24)

+ —Q (k't, kL), (31)

where the correction to scaling term Q (k t, kL ) /k may be
obtained by transforming the remainder of the sum into a
principal value integral and expanding expressions of the
type L/(L —1) in powers of L '. The correction is
negligible in the scaling limit discussed above and, com-
paring (31) to (7), one can see that q) =0 and z= 2 as was
suggested by the scaling form of g(L, t).

g, (h; —(h &)=0. We note that there are no singular
terms in (30) since the possible values of k and q are never
equal to each other.

In order to see the scaling of S(k, t) we consider Eq.
(30) for small k and large time or, more precisely, in the
limit kL =2qrn, k t =m (n, m fixed) and L~ co. In
this limit the sum in (30) is dominated by the
q =+q(n)=+2~n/(L —1) terms since Aq(„) —Aq-L
while A.q A.k-—L for other values of q —L '. (We
note that there is an exponential cutoff in the contribution
from larger q's because of the condition k t =m. )
Separating the q(n) terms and using A.k=k, one can
write

1 1S(k, t) = [ I —exp( —k t/ro)]

g(L, t) =L 'i'f (t/L') . (26)
B. Nonequilibriurn growth: a&0

Since the structure factor S(k, t) is related to g through

g'(L, t) =—g S(k, t),L

Eq. (26) implies that the exponents g and z are equal to
their classical values q =0, z=2, provided that the sum in
(27) is dominated by the contribution from small k and
S(k, t) scales as given in Eq. (7). In fact, we do not need
the above assumptions to find g and z since S(k, t) can be
calculated directly. We note, however, that S (k, t) cannot
be read off from the comparison of (27) and (24) because
the sum in (27) is over k =2vrn /L while the values of q in
(24) are shifted: q =2~n/(L —1).

The simplest way of evaluating S(k, t) is to Fourier
transform (4) the identity

a C (t) =a (a;a;+
=2g„(t)—g ~(t) —g +~(t),

where

—(h; —h; &))=(a;)=gv;Pi()o(, t)
1

IaI
(32)

can be obtained by taking the time derivative of (cr; & and
using the master equation (12). The result is

It would be of great interest to extend the above calcu-
lation to the case of the moving interface (p+~ —, ) and to
see if the exponents r) and z change their value. Unfor-
tunately, the loss of time-reversal symmetry associated
with the moving interface complicates the equations to a
degree that we are unable to solve them. As suggested by
the mapping of the interface model onto the driven hard-
core lattice gas, however, one can relate the properties of
the interface, at least in an approximate way, to the field
theoretic model of Kardar et al. ' To do this we shall
focus on the average slope of the interface instead of the
pair-correlation function.

An equation for the average slope

g (t)=((hj —(h&)(hj+ —(h&)& . (29) +~&a.;(a;+)—o; )) & . (33)
The right-hand side then becomes kkS(k, t) while the
left-hand side is determined by using the solution (20) for
C (t). The result for k&0 is

1 1

, S(k, t)=a2 ' (L —l)A, k

1 1
exp( A,

q
t /ro), (30)—

L 1
( o)

while the k=0 value, S (O, t) =0, follows from the identity

Some insight into the behavior of the model can now be
gained by comparing (33) with Burgers's equation:

0U 8 U BU=V +AU +
Bt Q~2 BX BX

which can be obtained' from a simple Langevin equation
describing the evolution of the profile h (x, t) of an inter-
face:
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'2
a~ a'~ ~ a~+— +g (35)

Here the term a h/ax accounts for the relaxation of the
surface due to surface tension effects, (Bh/Bx) is the sim-
plest nonlinear term which can appear as a result of the
uniform motion of the interface, ' and il(x, t) represents
Gaussian white noise. The connection between (34) and
(35) is through

ah
u(x, t) =

ax
(36)

i.e., Eq. (34) is for the slope of the interface, as is Eq. (33}.
The similarity between (33) and (34} can be made more
transparent by averaging (34) over the noise

1 a a A, aU
, (u)„+—u

v at " a~' " v ax
(37)

and no other obvious conservation laws exist.
Burgers's equation has been studied' ' by dynamic re-

normalization group methods. Three fixed points were

Discretizing this equation and identifying u;(t)=u(x;, t)
with o.;, one can see a term-by-term agreement between
(33) and (34). This agreement, of course„does not prove
the equivalence of the two models since (33) and (34) are
only the first equations in the hierarchy of equations for
the correlation functions. We can further argue for the
equivalence, however, on the basis of universality. That
is, it should be noted that our model contains the two dis-
tinguishing features of the field theoretic model (35): (i)
the particles are deposited in the valleys and evaporate
from the peaks which is essentially a surface tension
driven relaxation process producing the 8 h/Bx term in
(35); (ii) for p+& —,

' the surface moves with nonzero velo-

city and this nonzero velocity is responsible for the
(Bh/Bx) term in (35). We note that A, is proportional to
the velocity of the interface. ' A final point is that the
conservation law of the kinetic Ising model ( g, 0;=0)
has its counterpart in the field theoretic model:

1.4—
8

1.2—

4 & g & 4

0.0 0.1 0.2 0.3
k

0.4
I

0.5 0.6

found. The trivial one (v*&0, A.*=0) describes the free-
field scaling (il =0, z=2) which characterizes the equili-
brium case (p+ ———,

'
) of our model. The nontrivial fixed

point (v'&0, k*&0) determines the scaling form for a
moving interface (i)=0, z= —, ). Since the trivial fixed
point is unstable with respect to A, and since the third
fixed point (v*=0, A,*=0, random deposition) cannot be
reached in the parameter space of our model, we may ex-
pect that the nonequilibrium case (p+& —,

'
) of our model

is in one universality class with Burgers's equation for
nonzero k. This expectation is supported by the results of
Monte Carlo simulations presented in the next section.

IV. COMPUTER SIMULATIONS

In this section the results of extensive Monte Carlo
simulations which we have carried out for our model are
reported. In the preceding section we conjectured that the
evolution of the interface cou1d be described in terms of
two fixed points of the dynamic renormalization group
equations of Kardar et al. ' These recursion relations
predict that for any nonzero a, g =0 and z = —,', whereas
for a=O, g=O and z=2. The exponent q can be deter-
mined from the steady-state ( t~ oo ) limit of the structure
factor S(k, t). In Fig. 2 we display the function

FIG. 2. Steady-state structure factor S(k, oo ) multiplied by
k for the equilibrium (a=0, denoted by + ), full growth
(a = 1: Q ) and the intermediate growth (a=0.5: & ) regime of
model I. The data are obtained by growing %=3000 deposits
for each strip width of L =24, 48, and 96 ( L = 192 has also been
investigated for a=1) and all the points with k ~~/6 are
displayed.

TABLE I. The effective exponent 1/z, ff obtained by use of Eq. (39) for t =L/12 and t =L/6 for
model I for a=O, a=1.0 and a=0.5. The conjectured exponents correspond to g=O, z=2 for a=0,
and q=O, z=1.5 for a&0.

t =L /12
a=O

t =L/6
a= 1.0

t =L/12 t =L /6
a =0.5

t=L/12 E=L/6

24
48
96

192
384
768

1536
3072

0.58
0.56
0.54
0.53
0.52
0.52
0.51
0.52

0.60
0.60
0.57
0.55
0.52
0.52
0.51
0.52

0.65
0.70
0.70
0.69
0.69
0.68
0.68
0.70

0.79
0.76
0.74
0.71
0.71
0.69
0.70
0.71

0.62
0.60
0.60
0.60
0.62
0.62
0.63
0.66

0.69
0.66
0.64
0.63
0.65
0.66
0.65
0.68

Conjecture 0.50 2
3

2
3
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k S(k, bc ) for three values of the parameter a (0,0.5, 1.0)
and for various lengths L. In all three cases the function
k S(k, co ) seems to approach a finite nonzero limit as k
approaches zero, indicating that g is zero or at least very
small.

The exponent z can be determined from the stationary-
state correlation function N(k, t) (5), from the relaxation
function +(k, t) (6) or simply from the width g (L, t) (2)
for short times. If z~1 and t=L, the scaling form of
S(k, t) (7) yields

q(k, t)"
X
X

0.8 x

X

0.6 g

S(k, -)-S(k, t)
S(k, -)—.~(k, o)

g2(L t) t(i —g)/z L(1—q)/z (38)

If one assumes that g =0 one can determine an effective
dynamic exponent z,g from the formula:

1 In[a'(2t, 2L)/g'(t, L)]
z,tr(L ) ln(2)

(39)
0.00 0.05 0.10

where we must insure that 1« t «L'. In Table I we
show the variation of the effective exponent at t =L!12
and t =L/6 as function of L for a=O (equilibrium
growth), a=1.0 and a=0.5. For the smaller substrate
lengths the data are the result of averaging g over as
many as 20000 samples. For the largest substrates stud-
ied (L=6144) between 300 and 400 clusters were con-
structed.

The data of Table I are consistent with the conjecture
(Sec. III) that z=2 for a=O and z = —, for a~O and with

the results of Meakin et al. ' for a=1. Moreover, for
a =0, we can compare the results of the simulations with
the exact solution [Eq. (24)]. In all cases the values of g
obtained from the simulations agree to within 1% with
the exact solution. It is also noteworthy that the effective
exponent still differs from the asymptotic value of 0.5 for
substrate lengths as large as 3072. If one evaluates formu-
la (39) using the exact solution (24) one finds that sub-
strate lengths of order L = 50000 are needed before I/z, ff
reaches the value of 0.50 to two significant figures. These
finite-size effects are presumably due to the contributions
to g from the nonscaling (large k) regions of the Brillouin
zone and should be equally important for a&0.
Nevertheless, Table I provides some evidence that the
nontrivial fixed point of the Burgers's equation deter-
mines the behavior of the model for any nonzero value of
a.

A more detailed and less ambiguous characterization of
the interface is provided by the relaxation function 4(k, t)
[Eq. (7)] and by the stationary-state correlation function
@(k,t) [Eq. (5)]. In Fig. 3 we display qt(k, t) for the
equilibrium growth case (a=0) plotted as function of the
scaled variable k t for L=24, 48, and 96 and several of
the smallest k's. The data has collapsed quite precisely
onto a single curve, indicating that the large finite-size ef-
fects apparent in Table I are absent here. Similar data is
presented in Fig. 4 for the stationary-state correlation
function N(k, t). Once again, a single universal function
of the scaled variable k t describes the decay of fluctua-
tions in the steady state for small k.

In Figs. 5 and 6 the same functions are plotted for
cr = 1.0 (maximum growth rate) as a function of the scaled
variable k't with z=1.55. This value of z produces the

FICx. 3. Relaxation function %(k, t) [Eq. (6)] for the equilibri-
um growth (a=0) regime of model I plotted as function of k't
with z=2. Systems with L=24, D; 48, +; and 96, &( are in-
cluded and at least N=3000 clusters have been grown for each
L. The data points are from the region k & m. /6 of the Brillouin
zone.

0.6—

0.4 9

—0.2 -~
0.00 0.05 0.10

I

0.20

FIG. 4. The same as Fig. 3 but for the steady-state time-
correlation function N(k, t) [Eq. (5)]. The dynamic critical ex-
ponent z is the same as in Fig. 3 (z=2).

best collapse of the data for both P(k, t) and @(k,t), as
judged by eye. The results for the relaxation function
(Fig. 5) are for values of L up to 192, and, on the basis of
this data one could quote the estimate z =1.55+0.1 with
confidence. The steady-state correlation function displays
an effect which we have previously found' in the Eden
model. The data separate into two branches; the upper
branch corresponds to k =2m/L, the smallest nonzero
value of k in the Brillouin zone; the lower branch corre-
sponds to the remaining low-lying values of k. Both
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~I
+(k, t), i O(k, t)=- s(k, -) -s(k, t)

s(k, -)-s(k. o)
%(k, t) l %'(k, t)=- s(k, -)—s(k, t)

s(k, -)—s(k, o)
0.8 -I

0.6-I

0.4-I

0~
I

0.2+—
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FICs. 5. Relaxation function %(k, t) for the full growth (ca=1)
regime of model I plotted as function of k't where z=1.55.
Specifications are the same as for Fig. 3 except that the data are
obtained from growing N=6000 deposits for each L=24, 48,
and 96 and N=3000 deposits for L = 192 (denoted by solid cir-
cles).

FIG. 7. Relaxation function O(k, t) for the intermediate
growth (a=0.5) regime of model I as function of k't with
z= 1 ~ 57. The data is for a strip of width L =768 and the seven
lowest values of k are included.

4 (k, 7. )

0,8

0,6

0.4

X X +
~+

X)C& X +

X

I I

000 005 010 015 020 025 030
k'w

FIG. 6. Same as Fig. 5 but for the steady state time-
correlation function N(k, t) for strips of width L=24, 48, and
96.

branches are reasonably well collapsed for a single value
of z.

Finally we discuss the case of a=0.5 which is inter-
mediate between equilibrium and maximum growth. In
this case we expect, on the basis of the dynamic renormal-
ization group theory of the Burgers's equation' ' to see
the effects of competition between the two fixed points.
We have calculated the relaxation function V(k, t) for L
up to 768. When one attempts to collapse the data onto a
single curve, when plotted against k't, one finds that for a

given L, a single effective exponent z(L) produces well-
converged data for the low-lying values of k correspond-
ing to that particular L. The best convergence of the data
occurs for z(48) = 1.85, z(96) = 1.75, z(192)= 1.70,
z(384)=1.65, and z(768)=1.57. We have plotted 4(k, t)
for L =768 as function of k't with this value of z in Fig.
7. This data was obtained from only 800 samples and is
quite noisy. There is, however, no systematic variation of
the relaxation function with the magnitude of k. We
therefore expect that more extensive simulations would
produce a very well-converged single curve, as occurs for
smaller substrate lengths, and, on the basis of the sys-
tematic decrease of z(L) with increasing L, that the
asymptotic value of z =z ( ~ ) = 1.5.

Thus these simulations are entirely consistent with the
notion that the dynamics of the model are describable in
terms of the fixed points of Burgers's equation. Moreover
the best estimates of the dynamic exponent are obtained
from the relaxation function %(k, t) rather than from the
width g(L, t) of the active zone, as one would expect, since
this function directly probes the scaling region.

Finally, one can qualitatively understand the two differ-
ence values of z in terms of the diffusion of particles in
one dimension. As described in Sec. II, our model is
equivalent to a hard-core lattice gas with the down spins
representing particles, the up spins vacant sites. Deposi-
tion corresponds to a particle hopping to the right, eva-
poration to a particle hopping to the left. Thus, if a&0
there is a drift in the particle motion. In their investiga-
tion of diffusive systems van Beijeren et al. ' found that
in driven systems density fluctuations spread as t
whereas they spread as t' if there is no uniform drift.
The time to reach the stationary state, t,q, can thus be
crudely estimated by requiring that density fluctuations
spread over a distance L. Thus t,q-L -k -k ' with
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z=2 for the equilibrium case and z = —, for nonequilibri-
um growth, in agreement with our results.

V. UNIVERSALITY AND MODEL II

As discussed in the Introduction, the analogies with
critical phenomena suggest that the exponents g and z are

FIG. 8. Model II of interface evolution defined by deposition
and evaporation events. Deposition (evaporation) occurs ran-

domly at any site except at local maxima (minima) denoted by
solid circles (crosses) where deposition (evaporation) is forbid-
den. The rate of deposition and evaporation is proportional to

p+ and p =1—p+, respectively.

universal, i.e., they depend only on general features of the
system such as the dimensionality, the symmetries of the
steady state, and the symmetries of the equation of
motion. The results of the preceding section are in accord
with this expectation since the change in z from 2 to —, is
accompanied by the breaking of time-reversal invariance.

In order to obtain further evidence for or against
universality and to ascertain the role of time-reversal sym-
metry, we investigate, in this section, whether or not g
and z are changed if the growth rules which define the
motion of the interface are slightly modified.

The modified model (model II) is shown in Fig. 8. Par-
ticles (squares in d=2) are deposited with equal probabili-
ty p+ at any site except at local maximum of the surface
at which deposition is forbidden. A particle which at-
tempts to deposit at a local maximum is discarded. Eva-
poration occurs with probability p =1—p+, again at
any site on the surface except at the local minima.

The above rules imitate the effect of surface tension in
the sense that they prevent the divergence of surface fluc-
tuations for large time and furthermore, for p+&p, we
have a uniformly moving surface. Thus the physics is the
same as in the case of model I introduced in Sec. II and
one sees that going from p+ ——p (a=2p+ —1=0) to
p+ 1 =p (a&0) breaks time-reversal symmetry. Conse-
quently, considerations based on the notion of universality
suggest that g=O and z=2 for a=O, while q=O and
z = —', for a&0.

TABLE II. Estimates of (1—g)/2 and (1—g)/(2z) for model II in the zero velocity limit (a=0).
The width of the active zone in the stationary state g(L, t = oo) and in the nonequilibrium regime
g(L, t =L /4) is obtained from Monte Carlo simulations (1000 runs for each strip of width L) The er-.
ror estimates are shown in parentheses in units of the last significant digit. The values of the critical ex-
ponents are obtained by assuming that g(L, t = co )-L (1 —g)/2 and ((L, t =L /4) -L (1 —7) )/(2z).

16

32

64

128

256

512

1024

2048

4096

8192

g(L, t = oo )

1.26(2)

2.29(3)

3.54(4)

5.22(6)

7.44(8)

10.5(3)

(1—g)/2

0.86

0.63

0.56

0.51

0.50

g(L, r =L/4)

0.711(1)

0.987(1)

1.349(1)

1.760(1)

2.279(1)

2.881(1)

3 ~ 571(1)

4.351(1)

5.268(2)

6.367(3)

7.661(4)

9.16(7)

(1 —g) /(2z)

0.47

0.45

0.38

0.37

0.34

0.31

0.29

0.28

0.27

0.27

0.26

If g=0, z=2 0.50 0.25
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The results of our Monte Carlo simulations for the case
of a =0 are shown in Table II, those for a= 1 are shown
in Table III. We have assumed the scaling form (7) of
$(k, t) and calculated g and z by measuring the width
of the active zone both in the stationary state
g(L, t=an)-L" ")~ and at short times, g(L, t =L/4)

L (1—g)/(2z)

The data on the width in the stationary state suggest
that as the system size is increased g~O for both a=O
and a&0. Since g contains contributions from the short
wavelength modes it may, however, display strong finite-
size effects. Thus the conclusion q=O, based on systems
of size L &128, should be viewed with some caution. It
seems, however, that g=O for any one-dimensional sur-
face on which the proliferation of long wavelength modes
(roughening) is not prevented by some long-range forces
or effects. Since we do not see the present of such long-
range forces in our model we made no special effort to
determine g to high accuracy.

Once g=O is taken for granted, z can be estimated
from the short-time behavior of g. One can study systems
with much larger L in this case since the evolution has to
be followed only to times of order L instead of to t -L
or t -L needed to reach the stationary state.

Although we expect finite-size effects to be large in g
and, indeed, do not see complete convergence, the results
shown in Tables II and III are consistent with the expecta-
tion that for p+ ——p, z=2, and that z = —,

' for p+ ——1,
p =0. Thus we find support for the hypothesis that the

breaking of time-reversal symmetry is the underlying
cause for the change of the dynamic critical exponent z.

As is known from the theory of dynamic critical phe-
nomena, z is sensitive to changes in the relevant sym-
metries of the equations of motion, i.e., to changes in the
conservation laws of quantities which couple to the order
parameter. Thus, when attempting to classify the various
growth processes one should carefully check for the pres-
ence of conservation laws. For example, models I and II
seem to be identical from the point of view of conserva-
tion laws. Closer examination shows, however, that this is
not the case.

Using the particle interpretation of model I, one sees
that the number of particles and the number of empty
sites are conserved quantities. If one tries to construct a
similar interpretation of model II, one must assign to the
bond between sites i and i+1 nz' ——h;+~ —h; particles of
type 3 if h;+» h; or nz' particles of type B if h;+& & h;.
The evolution of the surface now corresponds to the hop-
ping of these particles. In addition to the hopping
motion, pairs of AB particles may be created at adjacent
sites and neighboring pairs of AB particles may also an-
nihilate each other. ' Thus, neither the number of 2- or
B-type particles nor the number of empty sites are con-
served quantities. The only conserved quantity is the
difference between the number of type-3 particles and
type-B particles:

g (n„"—n'")=0 .

TABLE III. Same as Table II but for the full growth limit (cx = 1) of model II.

16

32

64

128

256

512

1024

2048

4096

8192

g(L, t =~)
1.88(1)

3.15(1)

4.71(2)

6.70(3)

9.48(4)

13.6(2)

(1 —g)/2

0.74

0.58

0.51

0.50

0.52

g(L, t =L l4)

0.68(1)

1.00(I)

1.42(1)

1.94(1)

2.57(1)

3.32(1)

4.21(1)

5.23(1)

6.44(2)

7.91(2)

9.72(3)

11.99(2)

(1—g)/(2z)

0.56

0.51

0.45

0.41

0.37

0.34

0.31

0.30

0.30

0.30

0.30

0.50 1

3
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The above differences notwithstanding, models I and II
seem to have the same dynamic exponent. The irrelevance
of these "hidden" conservation laws is not obvious, how-
ever, as evidenced by Family's recent results on a simple
two-dimensional model of deposition. In this model the
effect of surface tension is taken into account by defining
the evolution of the surface through the following rule:
three neighboring columns are chosen at random and the
next particle is added to the column with the smallest
height. This model seems to be closely related to the
p+ ——1, p =0 limit of our model II. Nevertheless, Fami-

ly finds z=2, indicating that some of the "hidden" con-
servation laws are relevant in his case. Clearly, more de-
tailed studies are needed in order to clarify the relevant
parameters in the classification of surface-evolution pro-
cesses.
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