
PHYSICAL REVIEW B VOLUME 35, NUMBER 7

Frustrated XYmodel with screening
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We consider a Josephson- or proximity-coupled superconducting array with finite geometrical in-
ductance. The finite self-inductance is shown to screen the vortex-antivortex interaction in the ar-
rays, converting the logarithmic interaction into a 1/r interaction at large separations in analogy
with the effects of screening found by Pearl for a homogeneous superconducting film. We explicitly
calculate the screening length in terms of the geometrical inductance and the intergrain Josephson-
coupling strength. For typical arrays, the screening length is found to be of order 10 cm, indepen-
dent of the plaquette dimensions of the array, although the length can be made smaller for strong
couplings. An analogous type of screening is shown to occur in the cooperative-ring-exchange
model of the fractional quantum Hall effect. In this latter case, the screening arises from the vibra-
tions of the two-dimensional Wigner lattice in the presence of a strong Inagnetic field, producing
fluctuations in the flux per lattice plaquette. The screening in this case also produces 1/r interac-
tions between the elementary excitations of the system. However, the screening is very slow, and
hence only effective at very long times.

I. INTRODUCTION

The collective properties of many systems can be
described in terms of a local phase variable PJ defined on
a lattice whose sites are labeled by the index j. (We will
consider several explicit physical examples below. ) Impli-
cit in the notion of a phase variable is the understanding
that the configuration of the phases is periodic under the
transformation $1~/~. +2'. For some purposes, it is
convenient to think of PJ as specifying the orientation of a
fixed-length planar spin; such systems can thus be
described by a model of the XY class. A common feature
of such models is that the spins couple to an additional
field, which we will call the vector potential A;J, which is
defined on the bonds of the lattice. In the presence of a
vector potential, the interaction between two nearest-
neighbor lattice sites is minimized when p; —

QJ =A;1.
When the A;j are such that the various contributions to
the interaction energy cannot all be minimized simultane-
ously, the model is said to be frustrated.

Examples of physical systems that can be well described
by a frustrated XY model are abundant. We will consider
three explicit two-dimensional examples here, each of
which is illustrative of different limits of the general
model we consider in this paper.

Example 1: The most obvious example is an array of
coupled Josephson junctions, or Josephson-coupled grains
in a granular superconductor, in a transverse magnetic
field. ' Here Pz is the phase of the superconducting order
parameter on grain j. (Fluctuations in the magnitude of
the order parameter are assumed to be unimportant. ) A;J.
is partially determined by the flux N through plaquette a
according to the relation

g A;~ =2m.f

where f =C&D, 4o ——hc/2e is the quantum of supercon-
ducting flux and the sum runs over the bonds that enclose
plaquette a. The fact that Eq. (1) does not fully specify
A;j is a reflection of the gauge invariance of the system; a
transformation in which A 'j ~A j+co' cd and
P;~P;+co; for any co; leaves the system physically un-
changed.

Exarnp/e 2: The second example we consider arises
from a recently developed semiclassical theory of the
low-temperature properties of the two-dimensional elec-
tron gas in a high magnetic field, relevant to the fraction-
ally quantized Hall effect. The classical ground state of
this system is a triangular Wigner crystal. Kivelson, Kal-
lin, Arovas, and Schrieffer (KKAS) considered the
corrections to the classical ground-state energy of this sys-
tem due to cooperative ring exchanges, which they identi-
fied as being the most important class of quantum fluc-
tuations for producing a commensurate lock-in between
the electron density and the magnetic flux density.
KKAS showed that the sum over cooperative ring ex-
changes is equivalent to a classical spin mode1. This
equivalence is best expressed in terms of a discrete Gauss-
ian model, but that in turn is related via a duality
transformation (see below) to an XY-like model. The ex-
act physical meaning of the phase variables is thus diffi-
cult to identify directly. Roughly, however, they derive
from that fact that each ring exchange contributes to the
energy with a well-defined phase which arises in part
from the Aharonov-Bohm effect (and is proportional to
the enclosed flux) and in part from Fermi statistics. The
contribution of each plaquette to the overall phase can be
expressed, as in Eq. (1), in terms of an effective vector po-
tential. However, in this case, the effective flux which
enters Eq. (1) is given by f =N /No ——,', where the fac-
tor of ——,

' results from Fermi statistics and %0——hc/e
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rather than hc/2e, as it is for the superconductor. (For a
fractional filling of the lowest Landau level v=g, Np/B,
the average "flux" per plaquette is f~=v ' ——,'.) As in
the previous example, A;~ is defined only up to a gauge
transformation.

Example 3: Perhaps the most widely studied example
of a frustrated phase model is that relevant to a charge-
density wave interacting with a periodic substrate poten-
tial, where now P; represents the relative phase difference
between the substrate potential and the charge-density
wave at site j. Here, A,J. represents the difference in the
natural periodicity of the charge-density wave and the
substrate. This system is quite different from the other
two, however, in that it is not invariant under the gauge
transformation described above. We will therefore have
little to say about this system.

The frustrated XY model has been moderately well
studied. While many questions remain as to the exact
nature of the interplay between the continuous
Kosterlitz- Thouless transition and the discrete order-
disorder transitions which occur in this model, some as-
pects of phase diagram are well understood, particularly
at low-order rational uniform frustrations. The new in-
gredient introduced in the present work is that the flux
variable f is a fluctuating quantity as well. In the
Josephson arrays, this is equivalent to including the effect
of the finite geometrical inductance of the array. In the
quantum Hall example, it is the plaquette areas them-
selves which fluctuate. The effect of this will be seen, in
both cases, to screen the vortex-vortex interaction and so
to destroy the Kosterlitz- Thouless transition, " leaving
only various order-disorder transitions. We will see that
for the case of the Josephson-junction arrays, the screened
interaction falls off as 1/r for large separations, and that
the screening length is typically larger than the size of
most currently fabricated arrays, so that the effect is of
little practical importance at present in this case. In the
quantum Hall effect, the interactions also fall off as 1/r
at large separation, but the screening is much stronger, so
that it plays an important role in determining the proper-
ties of the quantum Hall system.

We turn now to the body of the paper. Section II
presents the frustrated XY model, including the effects of
geometrical inductance as they apply to Josephson-
junction arrays. The screening fields are eliminated in
favor of the vortex variables, leaving a screened interac-
tion between vortices which is shown to differ little from
the original logarithmic interaction in the range of
greatest current experimental interest. Section III de-
scribes the analogous model for the fractionally quantized
Hall effect, as described in the KKAS model. Here the
screening is strong, but dynamic (i.e., retardation) effects
are important. Similar retardation effects also play a role
in Josephson arrays with finite capacitance. Finally, Sec.
IV gives a brief discussion of our results and presents our
conclusions.

H~y ———g K Jcos(P; —PJ —A; ),
(V)

(2)

54~(t) =@0g M~pIp(t),
p

(6b)

Here E,j is the coupling energy due to the Josephson cou-
pling between grains i and j (assumed to be nearest neigh-
bors for simplicity), x; is the position of the center of
grain i, @p——hc/2e is the superconducting flux quantum,
P; is the phase of the superconducting order parameter on
the ith grain, and A is the vector potential. The coupling
K;~ is related to the critical current I, flowing through
link (ij) by KJ I,(h——/2e). Model (1) omits the charging
energy which may be significant in Josephson arrays with
small capacitance; when A is taken as arising from an
externally imposed magnetic field, it also omits screening
currents. Finally, it also leaves out dissipative effects as-
sociated with the normal current carried in parallel with
the supercurrent in the so-called resistively-shunted-
junction (RSJ) model of Josephson junctions; such dissi-
pative effects may play an important role in the phase
transition when the grains have small capacitance. '

To include the effects of screening in the model, we add
to the Hamiltonian (1) the field energy

Hf(e]d ——( 1 /2c) J (Jo+J, ) ( A~+ A& )d x (4)

where Jp represents the external current source producing
the external vector potential Ap, J& is the induced super-
current flowing in the Josephson links, and A& is the cor-
responding vector potential. The first term in (4) involves
only the external fields and currents and plays no role in
the properties of the array. The two cross terms in (4) are
equal because of the linearity of Maxwell's equations.
Each may be transformed into a summation of the form

H'=(1/c) QI 0& =(@0/c ) g(M ') p@ 54&p, (5)
a, p

where I is the current through the ath closed loop in the
array, N~ is the corresponding external flux, 54 is the in-
duced flux, and M is the mutual-inductance matrix dis-
cussed below.

We wish to express this Hamiltonian entirely in terms
of the flux variables +~. To do this, we make two ap-
proximations: (i) We assume that I is small so that it is
related to the induced flux 5@ by a linear relation

5N (t)=&Op J drm p(t ~)Ip(r), — (6a)
p

where 4&o ——hc/2e is the superconducting flux quantum.
(ii) We assume that the response function m p(t) has a
characteristic response time which is short compared to
the characteristic time over which the screening currents
Ip can change. Thus,

II. SCREENING IN SUPERCONDUCTING
ARRAYS IN A MAGNETIC FIELD

where M is the mutual inductance matrix,

M~p= dtm~p t (6c)

We consider an array described (in the absence of
screening) by the following model Hamiltonian:

We generally expect approximation (i) to be valid in
Josephson-junction arrays, where the characteristic field
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strengths for nonlinear response are expected to be of or-
der the critical field B, of the bulk superconductor. To
consider the validity of approximation (ii), we note that
the characteristic response time for m p(t) is the time re-
quired for a signal to propagate across the sample at the
speed of light, whereas the time characterizing the rate of
change of the screening currents is the shorter of the I.C
response frequency or the 1./R damping time. For typi-
cal superconducting-normal-superconductor (S-N-S) ar-
rays, the capacitive energy term in the RSJ model can be
neglected, and the important time is the I./R damping
time. If we make the crude estimate L =a/c, where a is
the grain spacing and c is the speed of light, and use for
the signal time a/c, then approximation (ii) is valid if the
junction resistance R (R0/137, where R0 ——A/e is the
Thouless resistance and 137 is the fine-structure constant
Pic/e . Thus, we expect the nonretarded approximation to
be valid only for very high-coupling S-N-S arrays. It may
sometimes be necessary to consider retardation effects, al-
though we will not do so here for the array problem. In
the following section, we will return to this problem, and
consider the case in which the time-retarded nature of the
response function is included.

With these two approximations, the total Hamiltonian
can be expressed in terms of dimensionless flux variables

f~ =@~/0&p as

H =H~r+(@p/2c ) +5f (M ') p5fp,

where Hzr is given in Eq. (2). This expression is some-
what inconvenient since the phase variables which appear
in H&z are defined on the direct lattice while the flux
variables are defined on the dual (plaquette) lattice. How-
ever, it is well known that the free energy of the frustrated
XY model can be expressed approximately as the sum of a
spin-wave piece, Fsw, which is relatively innocuous, and a
vortex piece, in which the vortices are defined on the dual
lattice. This decomposition is exact for a frustrated Vil-
lain model, which has the same symmetries as the XY
model, and so is believed to be in the same universality
class as that model. Thus, many important properties of
the system, in particular its behavior in the scaling re-
gime, can be derived from an effective Hamiltonian de-
fined in terms of plaquette variables alone:

b(k)= gAp e

where the sum on k runs over the first Brillouin zone and,
for an ordered lattice, the off-diagonal element 6 p

———1

if plaquettes a and P have a bond in common, and zero
otherwise, while b, = —g@& ~4 tt. (The definition of
G can be straightforwardly generalized to a disordered
lattice. )

We now integrate over thermal fluctuations of the
screening currents. Up to an unimportant constant Jaco-
bian factor, this is equivalent to integrating over all flux
configurations 5f . Because the effective Hamiltonian is
a quadratic form in 5f, this integration can be done ex-
actly. First, we bring the Hamiltonian into a diagonal
form by Fourier transform:

H = (vrJ/2N) g ~
nq fq ~

G(q)—
q(&0)

+ (& p/c') g 5f,M '(q)fq
q(&0)

+(ep/2¹ ) y ~5f
~

M '(q),
q(~0)

where X is the number of plaquettes and the integrations
involve all wave vectors in the first Brillouin zone. The
function G(q) is the Fourier transform of the Green's
function G ~ and varies as A/(q a ) for small q, where
A is a constant of order unity (equals 1 for a square lat-
tice) and a is the lattice constant. The Fourier transforms
are defined by the relations

fq ——N 'gf exp(iq R ), (10)

of flux hc/2e, and f" and 5f are the applied and in-
duced fluxes through the ath plaquette in the same units.
The integers n represent the vortex charges on the pla-
quettes labeled by e and can take on any positive or nega-
tive integer values. G p is the lattice Green s function,
which is defined by the relation

1 ik. (R —R )

Gp ——g e

H = (mJ/2) g(n f )G t3(nt3 f—p)—
a, p

+(@p/c') +5f (M ') ttfft3
a, p

+ (4p/2c ) +5f (M ') p6fp .

fq ——N 'gf exp(iq R ),

5fq=fq —fq

nq
——N 'g(n —f)exp(iq. R ),

(12)

(13)

a, p

Here J is the effective vortex charge (equals vrJ for an or-
dered square lattice, U'3~J for a honeycomb lattice), f is
the flux through the ath plaquette in units of a quantum

where f is the average flux per plaquette. We now carry
out an integration over 5f and then invert the Fourier
transform to obtain the following effective partition func-
tion, in terms of the vortex variables n

Z=Zp g exp (~J/2) g(n f )G"p(np ftt)— —
In a, p

(14)

where Zp is the contribution of the spin waves plus Gaussian fluctuations and f is the applied flux through plaquette a
in units of N0. The screened interaction G "p takes the form
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~JG"p ——(I/%) gexp[iq (R —Rp)][[M(q)c /&o]G(q)/[vrG(q)JM(q)c /No+1]I, (15)

where S is the area of one of the plaquettes. The first of
these conditions follows from the continuity of magnetic
flux lines: The total flux through all the plaquettes in-
duced by current flowing around one plaquette (including
the flux through that plaquette itself) is zero. The second
condition arises from the fact that the field produced by a
current loop behaves at large distances like a magnetic di-
pole field. Equation (16) implies that M(q=0) =0.
Equation (17) implies (in two dimensions) that M(q) is
linear in

~ q ~

at small values of
~ q ~:

M(q)~m. S
~ q ~

/c (18)

Substituting (18) into (15) and using G(q) —I/(q a ) for a
square lattice, we get the following result for the interac-
tion between vortices, valid at large separation (R »a):

~JG "&—J ln(
~

R & ~

/A, ), R &~ A. ,

—JA./i R i,
where k, the screening length, takes the form

(19)

(20)

where 6"p represents the screened interaction between
vortices.

To make further progress, we must determine the form
of the mutual inductance matrix M(q) at small q, which
in turn controls the behavior of the screened interaction at
large separation. This is determined by two conditions on
M~p..

gM p=O, (16)
P

M p S/(~R —Rp~ c ) as R —Rp~ oo,

superconducting films, as first obtained by Pearl. " The
present work shows that this result is obtained also in the
lattice case, at length scales large compared to the lattice
constant a. More importantly, it also pertains at high
magnetic fields where the density of vortices is not small.

III. DYNAMIC SCREENING IN A
FRUSTRATED XY MODEL

We now consider the case of a frustrated XY model in
which the screening fields have nontrivial dynamics. One
example of this is the Josephson array with finite capaci-
tance. However, the example we will treat explicitly here
is a model of the two-dimensional electron gas (2DEG) in
a high magnetic field, recently proposed by Kivelson,
Kallin, Arovas, and Schrieffer to account for the frac-
tionally quantized Hall effect. ' Their model is based on
a semiclassical analysis. Thus, they start from the classi-
cal ground state of the 2DEG, which at the relevant den-
sities is a triangular Wigner crystal. They then consider
quantum fluctuations about this classical ground state.
KKAS argue that the quantum fluctuations which deter-
mine the important zero-temperature properties of the
system are cooperative-ring-exchange processes, that is,
processes in which the electrons around closed polygons
of various sizes exchange positions by a coherent transla-
tion around the circumference. The phase with which
each ring contributes to the free energy is determined by
the enclosed area via the Bohm-Aharonov effect. There
are thus two natural units of area in this model: (i) an
area which is inversely proportional to the electron densi-
ty, which in the model of KKAS is the area of a plaquette
of the triangular Wigner crystal, and (ii) the area per
quantum of magnetic flux,

A, =C&o/(~J) . (21) 2wl p ——Np/B,
It is interesting that this form is "universal, " i.e., indepen-
dent of the lattice constant. For typical couplings (J- 10
K), A, is of order 10 cm, larger than the dimensions of
many arrays. We may conclude that screening of this
kind is unlikely to alter the Kosterlitz-Thouless transition
in Josephson-coupled arrays at zero applied field, nor any
of the many transitions at finite fields, unless either the
arrays are made much larger or the coupling considerably
stronger.

Form (21) has been obtained previously by Lobb, Abra-
ham, and Tinkham' by a completely different argument.
These authors translate the usual formula for the trans-
verse penetration length of a homogeneous, but highly
resistive, superconducting film, to the case of two-
dimensional arrays. However, the present work is the
first to take explicit account of the discrete structure of
arrays.

Note that our basic result (logarithmic vortex-vortex in-
teractions at short range, 1/r at long range) is the discrete
(lattice) analog of the vortex-vortex interactions in thin

where B is the applied magnetic field and 4p ——hc/e is the
flux quantum for the normal electrons. The quantity v,
which is the number of electrons per flux quantum, is
therefore the ratio of these areas. If the plaquette area is a
half-integer multiple of 2mlp, then one can show that all
ring exchanges add in phase. (In this case, the Bohm-
Aharonov phase factor exactly cancels the + 1 or —1

factors which arise from the Fermi statistics for exchange
processes. ) When the plaquette area is an irrational multi-
ple of 2vrlp, the model is frustrated in the sense that dif-
ferent ring exchanges interfere in a complicated fashion.
KKAS showed that the effects of the collections of all
ring exchanges could in fact be approximately represented
as a uniformly frustrated XY model.

The screening which occurs in this model is formally
similar to that in the superconducting arrays, but its phys-
ical origin is quite different; in the case of the 2DECs, the
screening is due to the vibrational modes (magnetopho-
nons) of the electron lattice in a strong magnetic field.
These modes alter the flux through a plaquette by varying
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the area of the plaquettes, and hence changing the frustra-
tion. The screening is intrinsically dynamic because the
modes have characteristic frequencies associated with
them and cannot be taken as infinitely fast, as was done
for the response of screening currents in the supercon-
ducting array. In particular, the long-wavelength magne-
tophonons„which are responsible for the screening at long
distances, have vanishingly small frequencies (see the Ap-
pendix).

Because of the nontrivial dynamics, it is most con-
venient to compute the partition function Z in terms of a
path integral of exp( —S/A') where S is the Euclidean ac-
tion, which has dynamics in imaginary time, r =pR Thu. s
we write the partition function in the form

X g exp[ —S[h (r),q (r)]/R],

(22')

where S is an action which in the adiabatic approximation
is

PA
S/A'= f drKQ [q (r) —h (r)]G ~[q~(r) —h~(r)]

a, P

dr f dr'(1/P') $ h~(r)g~p'(r 'r)hp( 'r) . —
a, P

(23)

In formula (23), q (r) is the vortex charge at time r (a
positive or negative integer); h (r)= —,

' [(4 (r)/4p —1)],
where 4~(r) is the flux through plaquette a at time r.
The integral + &h is a functional integral over all

lattice configurations; the prime denotes that the func-
tional integral is to be carried out subject to the constraint
that charge neutrality is preserved at all times, i.e., that

[q (r) —h (r)]=0 at all r. Finally, G p is the same

lattice Green's function defined in Sec. II [e.g. , Eq. (8)],
and gap is related to the longitudinal part of the magneto-
phonon propagator (it is discussed below and in the Ap-
pendix). This latter propagator describes the vibrations of
the electron lattice in a high magnetic field, and is respon-
sible for the density fluctuations which screen the interac-
tions between the vortices. The second term in (23) thus
refers to the retarded interaction between the extra flux in
the various plaquettes produced by the lattice vibrations.
The notation g(~ )

indicates the sum over all integer
&a

values of the vortex charges, q (r), associated with each
plaquette.

There is one additional subtlety associated with the ex-
pression in Eq. (23). The cooperative ring exchanges,
whose effects are expressed in terms of the vortex charges
q (r), do not occur instantaneously, but rather over a
characteristic imaginary time scale rp. Therefore, q~(r) is
undefined at time scales less than 7 p. To get an estimate
of rp we note that q~(r) is approximately related to the
curl of the tunneling current at plaquette a. The frequen-
cy 1/rp is of order a tunneling prefactor (in imaginary
time) for the motion of a charge from one plaquette to
another. ' Since the relevant excitations of the lattice are
magnetophonons„ this frequency is of order a zone center
magnetophonon frequency, and may be estimated as
A/rp e /el, where 1 is the lattice constant of the Wigner
crystal and t is the background static dielectric constant.
Strictly speaking, therefore, Eq. (23) is correct only if the
integral is interpreted as a double summation over time
slices of width rp as discussed by KKAS.

Except for the complication of dynamic screening, the
action (23) is essentially the same as that treated in Sec. II.
Just as in Sec. II, therefore, the action can be Fourier
transformed, and the integrals over the Fourer com-
ponents of the fields h can be carried out, since these in-
tegrals are Cxaussian. The result is

~~ d~d~'S' /fi=IC f f g [q (r) —h]G ~(r —r')[qp(r) —h],
o o (pR)

(24)

where G ~ is the screened interaction, whose Fourier
transform is

which has an asymptotic logarithmic dependence on
separation, it varies as

G(k, co) = [G '(k)+Kg(k, co)] (25) G(k)-1/(Dk ) (26)
Here G(k) is the spatial Fourier transform of the bare
vortex-vortex interaction, G(R —R~), while g(k, co) is
the Fourier transform of the longitudinal propagator for
the Wigner lattice in the limit of strong magnetic fields.
The nature of the screened interactions at large separa-
tions is now determined by the behavior of 6 and g at
small k and an appropriate range of frequencies. Note
that the form of Eq. (25) is the same as that of Eq. (15),
but G(k) and g(k, co) differ from the corresponding
quantities for the superconducting case. This causes cer-
tain differences in the screened interactions in the two
cases.

Since G(k) is the Fourier transform of an interaction

g '(k, co) =X(k)[co +g (k)],
X(k)-(k~/k) as k —+0,

g (k) —V(k)(k/kz) as k~0,

(27)

(28)

(29)

where ki and kq are defined in the Appendix. Note that
there is a plus rather than a minus sign in Eq. (27); this

at small values of k, where D is a constant of order unity.
The magnetophonon propagator g(k, co) has a more com-
plicated dependence on its arguments, but can be calculat-
ed straightforwardly; details are given in the Appendix.
The result takes the form
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sign arises because we are dealing with a formalism in
imaginary rather than real time. Note also that in the
limit of small k and co, Eqs. (27)—(29) lead to a resonant
frequency co„,—k, the well-known long-wavelength
behavior of magnetophonons in two dimensions. '

Equations (25)—(29) can easily be combined to obtain
the asymptotic form for the screened interaction at zero
frequencies and small k;

G (k, cu =0)= 1/( Ak +Bk), (30)

where 2 and B are related to the other constant of Eqs.
(25)—(29). This asymptotic form is the same as that ob-
tained in the preceding section for the screened interaction
between vortices in a superconducting array, and leads to
the same static interaction between vortices: logarithmic,
for separation less than a screening length A, and (e )/er
for greater separations, where e'=ev, the charge per
quantum of flux, is the total charge in the screening cloud
surrounding the vortex and e is the background dielectric
constant. Thus, we see that, near a "magic" density where
h =m is an integer [that is, v= 1/(2m + I )], Eq. (24) can
be interpreted simply to be the action of a dilute gas of
quasiparticles with core size k and charge e*. The quasi-
particle creation energy (that is, the energy to create one
vortex) is

Egp IC f ——G (r) . (31)

IV. DISCUSSION

When K ~ A/~0, which seems to be the case in the 2DEG
at most relevant densities, A, is of order the lattice con-
stant l, and hence E&p can be seen to be roughly
E~p —0.05(e*) /el. Because of the retarded nature of the
screening in Eq. (24), the quasiparticles have complicated
dynamics. While we expect that in the dilute limit, at
least, the quasiparticles should have the same dynamics as
point particles of charge e" in a large magnetic field, we
have not been able to demonstrate this from Eq. (24).

Finally, we note that if the bare interaction between the
electrons in the Wigner lattice were not the Coulomb in-
teraction, V(r)=e /er, but rather some other shorter-
ranged interaction, the results would not be fundamentally
changed. The quasiparticle interaction still has a ln

~

r
~

core for r & A., where A. is again the core radius, but for
r &I, the interactions vary as V(r) so long as V(r) is
shorter range than ln

~

r
~

.

but the screening length proves to be larger than the size
of the sample in most cases of practical interest. In the
case of a Wigner lattice in a strong magnetic field, the
screening between the elementary excitations is due to the
magnetophonons of the lattice, which couple to the ap-
plied magnetic field by causing the area, and hence the
flux per plaquette, to vary dynamically. Once again, in
the static limit, the logarithmic vortex-vortex interaction
is converted to 1/r at large separations by the effects of
screening.

The basic Hamiltonian discussed here, consisting of a
frustrated XY model with an additional screening term,
no doubt has other applications It is suggested, for exam-
ple, whenever a tendency for a commensurate lock-in
transition of a vortex liquid (embodied in the frustrated
XY model) competes with a tendency for the liquid to
remain at a fixed density (embodied in the screening
term). Our results show that the screening can be treated
in a straightforward way to result in a repormalized in-
teraction between the excitations of the system.
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APPENDIX: DERIVATION OF MAGNETOPHONON
PROPAGATOR

In this appendix, we derive Eq. (27) for the inverse
magnetophonon propagator, g(k, co), needed for calculat-
ing the screened interaction for the cooperative-ring-
exchange model. This propagator is simply the phonon
propagator for a two-dimensional Wigner crystal in the
limit of a strong magnetic field. It is more easily derived
from the Euclidean action

dkRSp= f « —~ g xpR/(2I0)0 R d7

We have presented in this paper a model Hamiltonian
consisting of a frustrated XY model with screening, and
have applied the model to two physical examples: a su-
perconducting array in an applied transverse magnetic
field, and a two-dimensional Wigner lattice of electrons in
a strong magnetic field, dominated by cooperative ring ex-
change among electrons. In the first example, the screen-
ing is produced by Josephson supercurrents flowing be-
tween the superconducting grains in response to the ap-
plied magnetic field. The magnetic field generated by
these supercurrents screens the interactions between the
fractionally charged vortices in the array, converting them
from logarithmic to 1/r at sufficiently large separations,

+ —$$4R.D« —R').4R
R R'

(A 1)

Here R labels the direct lattice to which the lattice of pla-
quettes is dual, and PR is the displacement of the electron
at site R from its equilibrium position. D(R —R ) is the
dynamical matrix for the Wigner lattice in the absence of
a magnetic field, while the first term denotes the addition-
al contribution to the action, f (1/c)J Adr, arising from
the presence of the magnetic field.

Next, we introduce a vector operator 5, which relates
the field h through the ath plaquette to the displace-
ments PR..
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h = g& O' R.
R

(A2) S= g f dr[h /[2b. Kk 10]+Vh /(2b, )I

(4 is the discrete gradient operator. ) We Fourier-
transform the action (A 1) to obtain

= gg ih(k, co)
~ g '(k, co), (A6)

S = f dr+ i — )&P|, (2io)+
I
k'Pk

I
'[V(k)/2]

d~

+ ~1 &&y„~'[K(k)/2] (A3)

which can be written more conveniently with the decom-
position

Pk ——uk+ukxz (A4)

as

S= f g [ [Kk /2][u iu/(Kk 1—)o] +u /(2Kk io)

+2k Vu /2Idr .

We now integrate out U and make the substitution
h (k) =b(k)ul, . The resulting expression for S is a quad-
ratic form in h:

=X(k) [co +0 (k)], (A8)

where g
' is the Fourier transform of the propagator in

Eq. (23). Here

X(k)=1/[2rob, (k)K[klo]"]~(k, /k) as k~O,
0 (k) = (ro) V(k)K (k) [klo] ~(k /ko ) as k ~O .

The final expressions follow from the fact that b, (k) —k
and V(k) e/-(ek) at small k, and K(k) -tcs at small k,
where ~& is the shear modulus. Note that the propagator
involves a denominator of m +A instead of u —0 .
This difference of sign is a result of the integration over
imaginary time appearing in the action.

When Eqs. (A8) —(A10) are used in screening the in-
teraction between quasiparticles in Sec. III, the remaining
results follow in a straightforward way.

where the sum over m runs over Matsubara frequencies
co =2trn /13ft and

g '(k, co)=(ro/2)[(coro ') /(b, Kk lo)+ V(k)/b, ] (A7)
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