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Transport anisotropy and percolation in the two-dimensional random-hopping model
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We consider hopping transport on an anisotropic two-dimensional square lattice. The displace-
ments parallel to one axis are governed by uniform, nearest-neighbor hopping rates c, while the dis-
placements parallel to the other axis are governed by static but spatially fluctuating rates w .
Adapting a new class of generating functions recently introduced for the random-trapping problem,
we are able to obtain expressions for the mean-square displacement in the fluctuating direction
through an exact decoupling of the effects due to displacements in the uniform direction. The re-
sulting expressions for the low-frequency diffusion coefficient D(E) are exact in the limits c~O
[D(0)=( 1/w) '] and choo [D(0)=(w)]. Moreover, when the condition of long-titne isotropy
is imposed we obtain expressions which are, to lowest order in the fluctuations, identical to results
obtained in the effective-medium approximation for the square lattice with fluctuating rates in both
directions. The present method offers the possibility of systematic improvements to the effective-
medium results for the dc conductivity and frequency corrections.

I. INTRODUCTION

In many amorphous materials hopping transport be-
tween localized states is the basic mechanism underlying
electronic conduction, the incoherent migration of spin
states, and the transport of excited electronic and vibra-
tional energy. ' ' Accordingly, several simple but in-
sightful models have been developed to understand such
phenomena. The random-hoppi ng model is one such
model in which a particle jumps between localized states
that are separated by random barriers of varying heights.
The randomness in the barrier heights give rise to a distri-
bution of symmetric hopping or jurnp rates which, typi-
cally, are assumed to be independent stochastic variables
governed by a single probability distribution func-
tion. ' ' In this paper we focus on the random-hopping
problem in two dimensions.

It is important at this point to distinguish the random-
hopping model from the random-trapping model, ' ' in
which the particle performs a series of uncorrelated jumps
on an ordered array of random wells of varying depths. It
is now the randomness in well depths that produces a dis-
tribution of jump rates. The symmetry condition relating
forward and backward jumps is different, however, from
that which is imposed in the random-hopping model.
Alexander has shown that the two models display signifi-
cant qualitative differences for dimensions d & 1. Consid-
er, for example, the random-trapping-model expression
for the diffusion coefficient

Do ——( I/w)

where w is the hopping rate and angular brackets denote
an ensemble average over the hopping rates. Equation
(1.1) for Do is exact for the random-trapping tnodel in
any spatial dimension. ' ' On the other hand, only for
d=1 does (1.1) give the correct diffusion coefficient for
the random-hopping model. ' ' Perhaps the most strik-

ing difference between the two models lies in the fact that
the random-hopping model is applicable to dynamical
percolation, which arises whenever the distribution func-
tion contains a variable but finite concentration of zero
jump rates. ' As normally implemented, however, the
random-trapping model can never lead to a percolation
transition. Indeed, from (1.1) it is straightforward to
show that any finite concentration of zero jump rates
causes the diffusion constant to vanish. For d ~ 1 the ex-
act form of Do for the random-hopping model is a com-
plex, and in fact, unknown function of the moments of w.
Effective-medium theories have been developed for the
random-hopping model, ' '' ' and approximate expres-
sions obtained for the diffusion coefficient, but theories
which provide systematic corrections to the effective-
medium results have proven elusive.

We demonstrate in this paper a new approach to the
random-hopping model in two dimensions which does
offer the possibility of yielding systematic corrections to
transport properties as calculated in effective-medium
theory. The method is based, in part, upon a new kind of
generating function, which we adapt from an exact calcu-
lation performed recently by Kundu and Phillips' for the
random-trapping model. Starting from an appropriate
master equation we introduce two generating functions to
describe the displacernents along each direction of a
square lattice. Analysis of the resultant equations leads to
information about the long-time transport properties of
the system. We defer to a future publication a full treat-
ment of the general random-hopping model and, instead,
consider in detail a system with fluctuating transfer rates
in one direction and uniform rates in the other. For this
system we investigate general effects arising from strong
transport anisotropy, recovering exactly the limits in
which transport in the uniform direction is infinitely fast
(Do ——( w ) ) and infinitely slow (Do ——(1/w ) '), the
latter being the exact one-dimensional result. When we
require that the long-time properties of the system be iso-
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tropic we obtain expressions which are, to lowest order in
the fluctuating rates, identical in most cases to those ob-
tained in effective-medium calculations, but which may,
for this particular model, be systematically improved by
considering successively higher-order terms in a general
expansion. These results include the existence of a
percolation-type transition for appropriate distributions.
A simple modification to the theory is described which al-
lows us to recover the exact effective-medium-theory re-
sults for the percolation problem.

In the next section we introduce the random master
equation and the definitions of the generating functions
that we will use to analyze the problem. These lead
straightforwardly to coupled integral equations for the
generating functions. We adapt these equations in Sec. III
to treat the case where there are uniform rates in one
direction and fluctuating rates in the other. An analysis
of that problem follows. Emphasis is placed upon the
long-time value of the diffusion constant for displace-
ments in the fluctuating direction and on the form of
low-frequency corrections. We conclude with a summary
of the major results of the paper.

II. EQUATIONS FOR THE CxENERATING
FUNCTIONS

We now proceed to define and obtain a set of coupled
integral equations for the two generating functions which
form the basis of our calculation. We start with the mas-
ter equation

Pn, m m+1, (Pn+1, m Pn, m ) n, m(pn, m Pn —1,m )

+ Wn, m+1(Pn, m +1 Pn —m ) Wn, m (Pn, m Pn, m —1)

(2.1)
for the probabilities p„(t) of finding the transport parti-
cle at the ( n, m)th site of a two-dimensional square lattice
at time t. In (2.1) the r„and w„are random nearest-
neighbor rate constants governing hops in the x and y
directions, respectively. They are presumed to be indepen-
dent and distributed according to functions p„(r) and
p~(w). Note that, by construction, the rate constant from
a given site to its neighbor is equal to that for hops in the
opposite direction, thus defining a random barrier, as op-
posed to a random-well problem.

We now introduce two new quantities P„(t)=p„
—p„1 and Q„(t)=p„—p„1which permit us to
write the mean-square displacement as' '

x= —g r„P„ (2.2)
n, m

= gr„P e' (2.6)

g2(k, t) = g w„Q,e'"'" (2.7)
n

for displacements along the x and y directions, wherein
k& and k2 are the x and y components of the reciprocal-
lattice vector k, and n denotes a direct-lattice vector with

components n and m. With these definitions it is
straightforward to show, for example, that

and

x ( t) = lim [g1(k, t) +2i Bg, (k, t) IBk1] . (2.8)
k~O

Similar equations in terms of g2 and its derivative with
respect to k2 hold for y and y . From Eq. (2.8) we see
that the components of the diffusion constant, if they ex-
ist, may be readily obtained from a knowledge of g] and
g2. For example,

2D = lim lim [gz(k, t)+2iBg2(k, t)/Bk2] .
taboo k~O

(2.9)

We comment in passing that the generating functions in-
troduced in (2.6) and (2.7)—which are precisely of the
same form as those introduced by Kundu and Phillips' in
their analysis of the random-trapping problem differ
from the generating functions typically used in lattice-
diffusion problems of this sort by the inclusion of the fac-
tors r„or wn in the sum over lattice vectors. It is pre-
cisely this feature which in the random-trapping problem
facilitates a straightforward expansion of the mean-square
displacement in terms of the inverse moments of the hop-
ping rates. In the present context we note from (2.8) that
there is an additional simplification over standard treat-
ments in the fact that only first derivatives of the generat-
ing function are required to obtain the mean-square dis-
placement, rather than the usual two. As we shall see,
this simplifies the extraction of long-time properties con-
siderably inasmuch as the remaining derivative becomes
trivial to perform.

From the definitions (2.6) and (2.7), the definitions of
P„(t) and Q„(t), and the original master equation
(2.1), it is a simple matter to obtain the collective equa-
tions of motion

Here x and y are the (dimensionless) mean positions of
the particle along the two orthogonal directions of the lat-
tice, and the total mean-square displacement is
r =x +y (These definitions naturally refer to averages
taken over walks with a fixed realization of the rates r„
and w„. We shall continue to denote averages taken
over the ensemble of rates by angular brackets, such as
(r )(t), etc. )

We now introduce two generating functions

g1(k, t)= g r„P„exp(ik1n)exp(ik2m)
n, m

g exp(ik. n)P„= —2(1 —cosk1)g1(k, t) —[1 exp(ik1)][1 ——exp( ik2)]g~(k, t)—,
n

g exp(ik. n)Q„= —2(1 —cosk2)g2(k, t) —[1—exp(ik2)][1 —exp( —ik1)]g1(k, t),
n

(2.10)
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which relate the time derivatives of P„and Q„ to the two
generating functions. We now wish to take Laplace
transforms over the time variable. Consider first the term

dt e " exp ik.n P„=t- exp ik.n „c
0

FI (k—,o), (2.1 1)

where f„(E) is the Laplace transform of P„(t) and the
quantity

F
~ (k, 0)= g exp(ik. n)P„(0)= [1 ex—p(ik ~ ) ] (2.12)

arises from the initial conditions, P„(0)=5„06 0. The
first term on the right-hand side of (2.11) can now be
rewritten as

g (k, k', E) = s (2~) g P„exp[i (k —k') n],s +2(1—coskq)

(2.22)

and where a„=—(c/r„) —1; I3„=(c/w„)—1.
It should be obvious that the solutions to the Eqs. (2.15)

and (2.16) cannot depend explicitly upon the constant c,
which is at this point somewhat arbitrary. However, by
choosing c judiciously we can greatly affect the conver-
gence properties of the equations that result from iteration
of (2.15) and (2.16). It is to be emphasized, however, that
Eqs. (2.15) and (2.16) are exact regardless of the value
chosen for c.

III. UNIFORM RATES ALONG ONE AXIS

c, g exp(ik. n)[(1/r„) —(1/c)+(I/c)]r„f„(e)

A ~(k, k') =(I/c) g [(c/r„) —1]exp[i(k —k') n], (2.14)

s =c/c is a scaled Laplace variable, and integrations over
wave vectors are to be understood as running over the
first Brillouin zone —~ (k&,k2 (~. The quantity c is an
as-of-yet unspecified constant which we have introduced
into the equations, anticipating the possibility that at long
times (or over large enough length scales) the system will
behave as a uniform system with a frequency-independent
diffusion constant. Similar manipulations may be per-
formed upon the term in (2.10) involving Q„(t) which al-
low us to write the following coupled equations for the
Laplace transforms, respectively, of the generating func-
tions g, (k, t) and g2(k, t),

G&(k, e) =a, (k, E) b&(k, s)G2(k,—E)

dk'A k, k', c G] k', c (2.15)

G2(k, E)=a 2(k, E) —b2(k, E)G ) (k, E)

—fdk'g (k, k', E)G, (k', E), (2.16)

where

sG=, (k, e)+(2vr) fd k sA', ( k, k')G~( k', E), (2.13)

where G&(k, e) is the Laplace transform of the generating
function g& (k, t), the kernel A

&
is defined by

G) ——a] —b]G2,

G2 ——a2 —b2G] —JG2,
(3.1)

in which we have suppressed the dependence upon k and
c, and where

zI . I—= fdky(k, k', E)I

It is straightforward, starting from (2.15) and (2.16), to
systematically decouple G

&
from G2 and thereby using

(2.8), investigate general features of the usual random-
hopping model. We intend to present results based upon
this approach in a separate publication. For the present,
however, we wish to use (2.15) and (2.16) as the starting
point to investigate a special case of the more general
random-hopping model, a case which is certainly more
tractable than the full problem, but one from which signi-
ficant insights can still be obtained. We consider, specifi-
cally, the situation in which the rates associated with hops
in the x direction are sharp, that is, take on a single value
r, which we, at this point, set equal to the constant c in-
troduced in the last section. This allows us to investigate
how transport in the fluctuating direction is affected by
hops perpendicular to that axis. For example, particles
faced with a (locally) vanishing hopping rate in the y
direction can "get around" the obstacle, by making hops
in the x direction until a more favorable environment is
found.

Under the assumptions stated above Eqs. (2. 15) and
(2.16) simplify, since the kernel A (k, k', s) now vanishes
identically. As a result, we obtain

a
&

——[1—exp(ik& )]/[s +2(1—cosk
& )],

a2 ——[1—exp(ikz)]/[s +2(1—cosk2)],

b~ ——[1 exp(ik~ —)][1—exp( —ik2)]

)& [s +2(1 —cosk
& ) ]

b2 ——[1—exp(ik2)][1 —exp( ik
&
)]—

(2.17)

(2.18)

(2.19)

The motion along the x direction, being uniform, is now
strictly diffusive with diffusion constant c. Hence, in-
sofar as we are primarily interested in displacements along
the (fluctuating) y direction, we may formally solve (3.1)
for the relevant generating function G2,

G2 ——[1+(1 bzb& ) 'I] '(1 —b—zb& ) '(a2 —b2a& ) .

(2.20)

(2.21)

X [s +2(1—cosk2)]

A (k, k', c.) = g a„exp[i (k —k') n],s (27r)

s+2 1 —cosk&

(3.2)

One could now proceed to analyze Eq. (3.2), which is an
integral equation involving the operator J, by expanding
the factor involving J on the right-hand side, and per-
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forming the averages term by term using p~(w). Instead,
we have decided to follow a slightly different approach by
separating Gz into two parts: the first part is independent
of c upon averaging and describes the very-long-time
properties of the system. It defines the diffusion constant
(when it exists) for displacements along the y direction.
The second term, which does depend upon c, describes the
approach to diffusion (it contains what are sometimes re-
ferred to, perhaps misleadingly, as "non-Markovian"
corrections). The details of this separation, which is
somewhat lengthy albeit straightforward, are provided in
Appendix A.

The integral equation which results may be expressed in
the form 6 =[9 + Ã'(E)]f, where the operators S and
9''(e) make manifest the aforementioned separation, and
where

1 —exp(ikz )f(k, e)=
(s/2)(1 —a ) + 1 —(1—a )coski —(a )coskz

(3.3)

=-,= (a ) (1—a ) -'58,
:"i——(a ) (1—a )(b, —b, i, 0)58(1 b—,58)

After averaging over the fluctuations the matrix 5B, and
hence =o, is zero. Also, in taking the limit k~0, the fac-
tor involving 6—Ak o causes =& to vanish as well. Nei-
ther of these terms can contribute, therefore, to either the
diffusion constant or the frequency corrections, and so we
ignore both of these terms in the discussion which fol-
lows.

The operators (1—bi58) ' and (1—I )
' appearing in

(3.5) and (3.6) may now be expanded in a geometric series
and averaged over the fluctuating rates in the usual
fashion to obtain for D~~(0) and its frequency-dependent
corrections a systematic expansion in moments of the de-
viations (5a„) of the spatially fluctuating quantity
a~=w„/(c+w„) from its average value. It will be noted
that (5a„) is a reasonable expansion parameter in this re
gard insofar as the inequality

~
5a„~ (1 is always satis-

fied.

=2(1/(c+w)) 'W (0) . (3.4)

Similarly, the approach to diffusion can be expressed sole-
ly in terms of the small-c behavior in the zero-wave-vector
limit of S'(kE), by which we denote the diagonal part of
the averaged operator (S'). The operators 8 and S'
are given explicitly by (see Appendix A for a derivation):

29'0=8+ (1—a ) '586,58(1—hi58) '+=0,
2(1—a ) S'=58(1—b,58) 'I"(1—I ) '+= i,
where hi h(s =0), b2 ——b, —6&, I——=6258(1 —6,5B)

[B]qq ——(2m) ga„exp[i(k —k') n],

(3.5)

(3.6)

(3.7)

[M]i, i, =(2ir) g 5a„exp[i(k —k').n], (3.8)

and

s /2+ cosk 2
—cosk ]

b, (s,k) =
(s/2)(1 —a ) + 1 —(a )cosk2 —( 1 —a )cosk i

(3.9)

The quantity 5a„appearing in (3.8) is defined as
a —(a ), and the operators =q and:-, have the following
definitions:

is a function that is independent of the fluctuations. In
(3.3) we have introduced the quantity (a ) = (a )= ( w„/(c +w ) ) .

We note that in the zero-wave-vector limit, the quantityf goes to zero and its derivative with respect to k2 be-
comes independent of c. This, coupled with the fact that
the averaged system is translationally invariant (and
hence that ( 8' ) (as well as ( 8') ) is a diagonal operator
[i.e., (8 )q i,

——9' (k)5(k —k')]), means that we can use
(2.9) to express the zero-frequency diffusion constant for
the y direction in a particularly simple form:

D„~= lim lim [i9 (k)BEf(k, e)/Bk2]

A. The diffusion constant D»(0)

Let us first consider the expansion (3.5) for the zero-
frequency, i.e., c.~O, limit of the generating function,
from which we may obtain the diffusion constant Dyy
through Eq. (3.4). By expanding (3.5) we obtain

2(8' ) =(a)+(1—a) '(586, (58)

+ (1—a ) '(586, i58b, i58 )

+(1—a) '(5Bbi5BbiMbi58)+
(3.10)

While it is possible, in principle, to continue this expan-
sion to any desired order in the fluctuations, let us consid-
er first the lowest-order theory that results when we trun-
cate (3.10) following the first term and write
2(S ) =(a). This approximation to the full sum (3.10)
yields the following expression for Dyy.

D, =( )(1/( + ))
=(w/(c+w)) (1/(c+w)) (3.11)

Dyy (1/w) d 1 (3.12)

which was obtained previously for both random-

Equation (3.11) demonstrates explicitly how the diffusion
constant for displacements in the y direction depends
parametrically upon the uniform value c of the hopping
rate in the x direction. By changing the value of this rate,
therefore, it becomes possible to investigate effects of
transport anisotropy which might arise in amorphous sys-
tems.

As an example of obvious interest, let us consider the
limit c~O, in which transport in the x direction stops
and the system reduces to a set of isolated random one-
dimensional chains. In this limit a„—:1 for all n, and the
fluctuations (5a„) vanish identically. The zeroth-order re-
sult then becomes exact and we recover the known one-
dirnensional result
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trapping' and random-hopping models. ' We point out,
however, that in the present case the result follows quite
naturally from a systematic expansion of the generating
function and not as a consequence of a self-consistent ap-
proximation. [Indeed, the result could have been obtained
in an even more straightforward way by setting b2 ——0 in
the original coupled equations (3.1) and proceeding along
similar lines. ]

As a second interesting example, consider the opposite
limit in which the motion along the x direction is ex-
tremely rapid, i.e., c~ oo. In this limit a„~0, hence the
fluctuations 6a„also vanish and presumably, again, we
fimd the exact result

Dyy ~ (w) .
C~ oo

(3.13)

The result (3.13) can be interpreted physically as a kind of
motional averaging produced by the rapid motion along
the x direction, which forces the moving particle to ex-
perience the "average" environment for hops in the y
direction.

In between these two limits of course there is a wide
range of behavior, and for a given distribution p~(w) we
expect that there will be a unique value of c which will
make the two-dimensional system isotropic at long times,
that is, which makes (x (t)) —(y (t)) at taboo. Since
displacements in the x direction are uniform in time, this
state of eventual isotropy is determined by equating the
respective long-time diffusion constants in each direction:

c =((a ) + (1—a ) '(5Bb, ,5B )

functions. In particular, we note that for a percolation
distribution p~(w)=p5(w —W)+. (1—p)5(w), where 1 —p
is the fraction of broken bonds and 8'is the rate associat-
ed with a normal bond, the condition of long-time trans-
port isotropy induces a percolation-type transition on this
system with a percolation concentration p, = —,', the exact
result for two dimensions. Indeed, at the value p, = —, ,
the diffusion constant for the y direction D~~ vanishes to
all orders in the fluctuations. For p &p, the diffusion
constant predicted by (3.15) takes the form

D(p)=c =2&(p —p, ), p)p, . (3.16)

which is well known from EMA.
We have obtained Eqs. (3.15) and (3.16) from the

lowest-order term in the expansion of the generating func-
tion. It is also possible to consider corrections to (3.16)
which arise from the higher-order terms. We emphasize
that although our results are similar to those of EMA, the
corrections to (3.16) apply only to the model system we
have been considering (with uniform motion along one
direction) and do not necessarily converge to the result for
the fully fluctuating lattice. However, they are useful as a
rough indication of the rate of convergence of our expan-
sion and as an approximate analytic measure of the mag-
nitude of the corrections that arise in the fully fluctuating
case.

We consider first the degree of anisotropy 6 that actu-
ally arises in this system when we impose the approximate
isotropy condition (3.15). The next nonzero correction is
of order (5 a ) (5 a ) and we find

+ ( 1 —a ) '(5BAi5Bb i5B ) + ) ( 1/(c +w) )

(3.14)

e—=(c —D„)/c = —4g(5 a)(5 a)+O((5 a))
=g'(1/8p')(1 —p)'(2p —1),

(3.17)

(3.18)

2 (3.15)

This, it may be recognized, is precisely the condition
which arises in the effecti ue medium -approximation
(EMA) for determining the diffusion constant for a sys-
tem which has fluctuating rates in both directions. ' To
lowest order in our calculation, then, we recover for this
system the numerous results that have been obtained
within the EMA for many different classes of distribution

If we again truncate the series at lowest order we obtain
the approximate isotropy condition:

(c/(c+w)) =(a) =(w/(c+w))

the latter being the percolative result. The constant g ap-
pearing in (3.17) and (3.18) arises from the averages of the
matrices appearing in (3.14), and is defined explicitly in
Appendix B. A numerical evaluation of the lattice sums
gives /=0. 36. The results suggest that (3.15) tends to
slightly overestimate the diffusion constant but is still
valid to within 1%.

An alternate approach to the correction terms is ob-
tained by simply truncating the full isotropy condition de-
fined by (3.14) at some high-order fluctuation correction.
The isotropy condition correct to fifth order linearized
around (a) = —, ,

c =[(a)+(1—a) '() (5 a)(2a —1)+P(5 a) (2a —1)+g(5 a)(5 a))](l/(c+w)) (3.19)

contains two new constants y =0.73 and /3=1. 1 which are
defined in Appendix B. For the percolative case (3.19)
yields a fifth-order equation for c which may be solved
numerically. The results of this procedure again agree
with (3.15) to within a few percent and vanish at p, = —,.

B. Frequency-dependent corrections:
The approach to diffusion

We now focus on the approach of the transport proper-
ties to the long-time diffusive limit. This information is
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contained in the expansion of Eq. (3.6) for the operator
9'', and we therefore define a frequency-dependent dif-
fusion constant through the relation

D (s) —D (0)=(s'/2) &y'(s) )

=2% '(c,,k =0)( 1/(c +w) ) (3.20)

(3.21)

We now restrict our attention to those distributions p~(w)
for which the inverse moments of w exist. Thus as c~0,
we can use (3.21) and the fact that in this limit
(1—a ) —(c/w ) to write (3.6) in the asymptotic form

In light of our discussion regarding the diffusion constant,
it should be clear that the manner in which the system ap-
proaches the diffusive limit at long times will depend
strongly upon the value of the uniform hopping rate c.
Let us consider some of the examples discussed in the
preceding section. For the case in which the motion along
the uniform x direction is the fastest (ch oo ) the matrix
5B~O. It follows, therefore, from (3.6) that in this limit
the frequency-dependent corrections vanish entirely, and
the system is strictly diffusive in the y direction.

Obtaining the proper frequency corrections for the
one-dimensional limit, ' in which c~0, is slightly more
complicated but still straightforward. It is relatively easy
to show that in this limit the operator A&6B goes to zero
as c itself. Moreover, expanding the expression (3.8) for
small c allows us to write 5B(k,k') ——(c/w)5b(k, k')
where

5b(k, k') =(2ir) g (w„'/( w ') —1)exp[i(k —k') n] .

2S'= (c/w )5bh5b(1 —(c/w)65b) (3.22)

=b. '(k, s),
where cr=(E/w). Thus, (3.22) becomes

2S' =5bh'5b(1 5'5b—)

(3.23)

=5bh'5b+5bh'6bh'6b+ . - . (3.24)

Now each factor of 6 brings with it an additional multi-
plicative factor of o (i.e., of E), so that in the small fre-
quency limit the leading contribution comes from the first
term in the expansion (3.24). Hence, we obtain for small E

Dz~(E) D~~(0) ——( 1/w ) (5 (1/w) )(2m )

X fdkIo/[o+2(1 —cosk2)]J

——, (1/w) ' (6 (w '))s'i +O(E),

(3.25)

which has also been obtained by other methods for both
the random-trapping' and random-hopping ' models in
one dimension.

Finally, let us turn to the isotropic limit which we will
again treat to low orders in the fluctuations of 6a . If we
expand (3.6) in terms of the operator I and substitute into
(3.20), we obtain

To obtain (3.22) we used the fact that b, i5B~O for small
c. Hence b z5B =(b, —b i)5B=b5B in the small-c limit.
From the definition (3.9) of b, , we find that

lim (c/w )h(k, s) =o [a +2(1—cosk2)]c~0

D (s}—D (0)= (6B(1—b, ,5B) '(I +I'+1'+ . ))((1—)) (3.26)

From the definition following (3.6) it will be seen that the operator I is proportional to the function b,q. This function
has been defined previously to be

(s /2)(1 —cosk z )
b2(s, k) =5—b. , = [(s/2) (1—a ) + 1 —(a )cosk2 —( 1 —a ) cosk i](1—(a )coskz —(1—a )coski )

(3.27)

The proportionality of Az (and therefore of 1 ) to s im-
plies that the terms in (3.26) containing successively
higher powers of I will go to zero as successively higher-
order functions of c. The leading order correction to the
zero-frequency limit, therefore, comes from the first term
in (3.26) which contains only one factor of I,

when we define c by the lowest-order isotropy condition
(3.15), for which (a ) = —,

' . This condition makes all
terms of odd order in the fluctuations vanish as a conse-
quence of a resultant symmetry in the integrals (see Ap-
pendix B). Retaining only the second-order term from
above then yields the approximation

(3.28)

Dyy(E) Dyy(0) c(5B[1 b iM] bq6B[1 b i6B] )

X&1—a)
D~„(s) D~~(0)-c(5 a ) (1—a )—(2')

X f b, 2(k, s)dk . (3.29)

To proceed, we now expand each factor of [1—Ai5B]
and collect terms of the same order in moments of (5"a ).
The first two terms are c (5Bb,26B ) (1—a ) which is of
order (5 a ) and c(6Bhi6Bb25B+5B625Bb25B )
(1—a) which appears to third order in the fluctua-
tions. Let us now consider the expressions that result

(5 a )4EK(4/(s +4) )
m.(s+4)(1—a )

(3.30)

Substituting the definition of b.z(k, s) into (3.29) and per-
forming the integral, we obtain
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where K(x) is the complete elliptic integral of the first
kind. Using the known asymptotic properties of the ellip-
tic integral, we finally obtain

D~~(e) D—z~(0) ——(2/m. )(5 a) slnE+O(s), (3.31)

x ElnE+O(E) . (3.32)

Let us assume that c(E)=co+c~(E). The new isotropy
condition,

[co+c~(s)](1—2a) = —(1—a) '(2~) '(5 a)Elns,

(3.33)

now requires that we equate diffusion constant as well as
the approach to the diffusive limit along the two axes of
the crystal. Substituting in the moments associated with
the percolation distribution and retaining the lowest
nonzero orders in E and c~(s), we find

D~~(s) =co+c&(c.)

=2(p —p, ) 8' —[(1 p)/4n. (p —p, )]Bin—E. (3.34)

Thus, as in the EMA, to obtain sensible results for the ful-
ly fluctuating system it is necessary to assume a
frequency-dependent rate. '" The novel feature of the
present derivation, however, is that we obtain the results
by equating the long-time transport properties along dif-

which exhibits the c. inc dependence of the leading fre-
quency correction characteristic feature of hopping trans-
port in two-dimensional disordered systems. ' '

In deriving (3.31) we have assumed that the quantity c
defining the motion in the uniform direction was a con-
stant, that is, independent of c. It comes as no surprise
therefore that for specific distributions the coefficients of
the frequency correction predicted by (3.31) with a con
stant Ualue of c do not agree with the EMA results for the
fully fluctuating system. For example, in the percolative
case (3.31) yields —2(5a)/m. = —(1 —p)/2mp for the
coefficient of Elns, whereas the corresponding effective-
medium result is —[(1—p)/4m(p —p, )]. This disagree-
ment stems from an actual difference between the physi-
cal models. To illustrate, as p approaches p„and c~O,
the model treated here reduces to a set of isolated random
chains consisting of clusters of connected sites separated
by barriers. Absolutely no transport between the chains is
possible. In an actual percolative system, however, even
though the diffusion constant in the x direction goes to
zero as p~p„ transport in this direction is still possible
over length scales comparable to the mean interbarrier
spacing. This residual transport will obviously influence
the motion in the y direction in ways which we have al-
ready discussed.

The EMA approach of Webman" and Odagaki, Lax,
and Puri treats the uniform hopping rate as a frequency-
dependent parameter, c(s). Because none of our deriva-
tions hinge on c being independent of frequency, we now
treat c in the manner suggested by EMA theories. '" To
lowest order, the frequency-dependent diffusion coeffi-
cient in the y direction is

D~~(e)=c(a)(1 —a) ' —(2~) '(1 —a) (5a)

ferent directions of the crystal, rather than as a result of
averaging over local deviations from the effective medi-
um.

IV. CONCLUSIONS
In this paper we have introduced a method for analyz-

ing the transport properties of random-hopping models
that is substantially different from most existing methods
currently employed in the analysis of disordered systems.
The method is innovative in two particular respects.
First, it extends to random-hopping models a new type of
generating function recently introduced by Kundu and
Phillips for the random-trapping problem. ' The utility
of this approach is derived from a natural extension of ex-
pressions introduced by van Kampen' for the mean-
square displacement of linear chains. We believe that gen-
erating functions of this kind can offer several advantages
over transitional ones, especially in the treatment of
strongly disordered systems. ' '

The second new feature of our method is the introduc-
tion of separate generating functions to describe displace-
ments along each direction of the lattice. While this may
at first sight appear to be somewhat of a complication, we
believe that the process of decoupling the displacements in
one direction from those in the other provides insight into
important mechanisms that can affect hopping transport
in amorphous systems. Indeed, this concept in part pro-
vides the motivation of our calculations of Sec. III, where
we have specialized our method to treat the case in which
transport along one of the directions is uniform. We find
that in many respects, such as system resembles one with
fluctuating rates in both directions, as is evidenced by our
derivation of effective-medium results for the diffusion
constant and characteristic low-frequency behavior.

It is of obvious interest to ask how well such a model
actually represents a system with fluctuations in both
directions, and in particular, how relevant the corrections
we have calculated for the diffusion constant are to real
percolating lattices and other disordered systems?
Answering such questions obviously requires an analysis
of the fully coupled equations (2.10) and (2.1 1) to which
Eqs. (3.1) may be considered as an approximation.
Indeed, one could take the view that our isotropic calcula-
tions of Sec. III represent an attempt to determine an ef-
fective medium for displacements along the x direction as
seen by the fluctuating y direction. Seen in this light, our
derivation of effective-medium-type expressions is not
surprising, and in fact yields further insight into the
meaning and applicability of effective-medium theory.
Nonetheless, it seems certain that in simplifying (2.10)
and (2.1 1) to the form of (3.1), we have neglected correc-
tions that could prove important when the rates in the x
direction are also allowed to fluctuate. We comment in
closing that tentative calculations on the three-
dimensional analog to this problem have yielded some in-
teresting preliminary results. As in the two-dimensional
case, the lowest-order results again recover the predictions
of effective-medium theory —including the existence of a
percolation threshold at the (incorrect) effective-medium
value p = —, . The correction terms which arise, however,
unlike the situation we have presented here for the square
lattice, do not vanish at the effective-medium value for p, .
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This suggests the possibility of obtaining a higher-order
self-consistent (i.e., isotropic) condition of the type dis-
cussed in Sec. III which comes closer to predicting the ac-
tual value p, = 4.
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2[M]z k ——(2'�) g [(c/w, ) + 1]exp[i (k —k') n]

(s /2) +coskp —cosk i+ (2m. )
(s /2) +2 —cosk

&

—cosk2

&& QP„exp[i(k —k').n] . (A2)
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APPENDIX A: SEPARATION OF G2

(s /2) +cosk2 —cosk ~

b,o(k}=
(s /2 ) +2 —cosk2 —cosk

&

(A5)

With these definitions, it is a straightforward exercise in
algebra to express the operator 1+ J2J&

' appearing in
(A3) in the form L b,058—. This leads to the following
expression for the generating function:

2Gq B(L—— 6058—) 'a
3

=B(1—658 ) 'f, (A6)

+ (1—a ) '586,58(l —658) '+=,]f, (A8)

where the second line again follows from an application
of the identity (1—x) '=1+x(1—x} '. We are now in
a position to let s ~0 in the remaining terms, thereby iso-
lating the long-time behavior. This is most easily done by
separating h(s, k) into components b, &(k)=A(s =O, k) and
Az ——6—6]. After only a slight amount of algebra we
then obtain

where the functions b, =L 'b, o and f=L 'a3 are given
explicitly by (3.9) and (3.3), respectively. Now, using the
identity (1—x) '=1+x(1—x) ', with x =658, along
with the previously mentioned identity B=(a )+M, we
obtain from (A6)

2G2 [8+——8658(1—658) ']f
=[8+(a)658(1-658) '+58658(1 658) ']f—.

(A7)

When the second term in (A7) is averaged and the limit
k~O taken, the quantity b, which multiplies the left of
that expression will appear only in its k =0 value
( 1 —a ) '. We therefore separate out this term and
denote the deviation from it by "&.

2G2 ——[8+(a ) (1—a ) '58(1 —658)
+58658{1 —658) '+ =)]f

=[8+(a)(1—a) 'M

2G, =(&'+ &')f, (A9)

=J( '(1+J2J| ) 'a3 (A3)

where the inverse of J~, which we denote by B, is well de-
fined and given by Eq. (3.7). We now introduce an opera-
tor 6B, and two functions L and 60, which will allow us
to express (A3) in a more convenient form. The operator
M, whose components are given explicitly in Eq. (3.8),
represents the deviation of the operator 8 from its average
value (,8)=(a); the functions L and b,o are defined as
follows:

(s/2)(1 —a ) + 1 —(a )cosk2 —( 1 —a )cosk,L(k)=
(s /2) +2—coskq —cosk

&

(A4)

Let us write this as M= —,[J&+J2(s)], which implicitly
defines J~ and J2(s) through Eq. (A2). With this notation
the generating function can then be written

G2 ——[J(+J2(s)] 'a3

where the operators S and 9'' are defined explicitly in
Eqs. (3.5)—(3.9).

APPENDIX 8: CALCULATION OF AVERAGES

In this appendix we discuss the calculation of averages
which appear in expansions such as (3.10), (3.14), and
(3.24). For example, all terms required in the expansion
(3.10) for the diffusion constant can be expressed in the
general form

X„=(58(hi58)' '), (B1)

which is of order r in the random matrix 5B. After
averaging, (Bl) is a diagonal matrix in the k representa-
tion. This is just a statement of the translational invari-
ance of the averaged system. Nonetheless, it is sometimes
more convenient to work in real space. For example, the
(n, m)th element of X, is given by



3476 KALYAN KUNDU, PAUL E. PARRIS, AND PHILIP PHILLIPS 35

nl, n2, . . . , n

n), . . . , n

( 6a „6a„5a )z„„z„„z„ (82)

where 5a„5„ is the (n, m)th element of 6B and z„ is the discrete Fourier inverse of the function b, ~(k). From the defi-
nition of b ~ as the s ~0 limit of the function A(s, k) we find

zn = exp —t I„at I„' bt —I„' at I„bt dt, (83)

where I„(x) is the modified Bessel function, (b) = (1—a ), (a ) =(tp/(c+rp)), and I„'(x)=—, [I„+r(x)+I„~(x)].We
can now proceed to perform the averages in (82) using the facts that (5a„)=0 and that the fluctuations on different
sites are uncorrelated. Thus, e.g. , (5a„6a ) = (6 a )6„,etc. Let us consider some examples. The next three terms in
the expansion of the diffusion constant beyond the first are

(5B6~6B)„=(5a„5a )zp ——(6 a )zp5„

(5Bb ~6BA~5B )„m= g (5a„6a„6a~)z„„z„m= (6 a )(zp) 5„~,
(84)

(85)

(5Bb,~6Bb,~5Bb~6B)„= g (5a„5a„6a„5a )z„„z„„z„
nl, n2

=(6 a)(zp) 6„„,+(6 a) (zp) z„+(5a) zp g(z„) 6„+(6a) (z„)'.
nl

(86)

(5 a ) (53a ) g (z„)" 5„=(5a ) (5 a ) g .
nl

(87)

All other terms that arise from fifth order vanish because
of the reasons discussed above. By numerically

' per-
forming the integrals in the sum in (87) we obtain
/=0. 36.

When (a )~—, the contributions (84)—(86) do not van-
ish, and their evaluation becomes more difficult. As we

Notice that these are all functions of
~

n —m
~

only, as
one would expect of operators which are diagonal in k
space. Let us now consider what happens to these terms
when the approximate isotropy condition (3.15) is im-
posed. With this choice for the value c, the quantities
(a) and (b) both become equal to —, . Equation (83)
shows, however, that in this limit zn becomes antisym-
metric under interchange of the components n& and n2.
Therefore, when (a ) = (b ) = —,

' the quantity zp, which
appears throughout Eqs. (84)—(86), vanishes identically.
In addition, when evaluating the diffusion constant we re-
quire only the k~O limit of the operators which appear
in these equations. Thus terms such as the last one in
(86) which contain factors of z„will end up being
summed over n —m. The antisymmetry of zn under in-
terchange of components then insures that those terms
which contain odd powers of zn will vanish along with
zo. Indeed, it is possible in this way to show that all
terms which are of even order in the fluctuations will van-
ish in the limit (a ) = (b ) = —,

' .
In fact, the next nonzero contribution in this limit is of

fifth order in the fluctuations and has the form

have argued in Sec. III, however, we might expect that the
corrections that result from keeping higher-order terms
will lead to only slight (i.e., linear) deviations of (a ) from

We thus must consider the expansions of these terms
about this limit. We do this by first introducing the devi-
ation X= —,

' —(a ) = (b) ——,', and then taking derivatives
with respect to A, . For example, we write

zp(A, ) =zp(0)+Abp

where

b, = [az, (X)/aX], ,
=2 J t exp( —t)[Ip(t/2) —(2/t)Ip(t/2)I~(t/2)

I
&
(t/2)]dt—

=4( 1 2/rr)— (88)

so that near (a ) = —,', zp bpk=p(2a —1) with y=0.73.
From this result, we see that many terms in (84)—(86) are
of higher order in k than the first and may therefore be
neglected to this order of approximation. Thus, the
third-order corrections (85) may be neglected entirely,
along with the first two terms in the fourth-order correc-
tion (86). We now identify the three terms which appear
within parentheses in Eq. (3.19) as arising from, respec-
tively, the second-order term (84), the last two terms of
the fourth-order correction (85), and the nonvanishing
term from the fifth-order contribution (87). The quanti-
ties g and y appearing in (3.19) have already been dis-
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cussed. The quantity P which appears in (3.19) arises
from the expansion of the fourth-order corrections around
(a ) = —, and is given explicitly by

b =[Bz (1,)/M, ]g o

=4 dt exp —2t t I„" t I„ t +I„ t I„" t

P=2+ (1+—,b„)[z„(0)]',

where z„(0) is given by (B3) with (a ) = (b ) = —,', and

(B9)
(B10)

In (B10) primes denote differentiation with respect to the
argument. A numerical evaluation of (B9) leads to the es-
timate P= 1.1
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