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Random exchange effects in antiferromagnetic quantum spin chains: A Monte Carlo study
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We have carried out Monte Carlo studies of a random-exchange antiferromagnetic spin-% chain.
For systems with XY-like (anisotropic) and with Heisenberg (isotropic) coupling, our results confirm
the existence of a disorder-induced low-temperature (7) divergence in the long-wavelength S*-S*
susceptibility X which was previously predicted by real-space renormalization-group (RSRG) treat-
ments. Over the finite temperature range studied, these results are consistent with a 1/( T In*T)
behavior of X, and hence in qualitative agreement with the RSRG results. As in the XY-Heisenberg
regime, we also find a disorder-induced enhancement of the low- T susceptibility for a system with
Ising-like exchange coupling which, over the finite temperature range studied, is again consistent
with RSRG results. However, there are inconsistencies between the RSRG predictions in the Ising-
like regime at very low temperatures, and the exact results for the random-exchange Ising chain and
the low-temperature behavior of X in the Ising-like regime may in fact be more complicated than
predicted by RSRG. Finally, we also present results for the antiferromagnetic susceptibility and
structure factor. For both Heisenberg and Ising-like systems, we find that disorder suppresses the
long-range antiferromagnetic correlations at low T.
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I. INTRODUCTION

During recent years, one-dimensional (1D) disordered
spin systems have received a great deal of theoretical at-
tention.!—6 Experimentally, this was stimulated, in part,
by the unusual magnetic properties of certain tetracyano-
quinodimethane (TCNQ) compounds.”~!° For example,
quinolinium (TCNQ), is found to exhibit at low tempera-
tures T a power-law divergence in the magnetic suscepti-
bility,”1°

Xe«1/T, (D

where a is typically less than but close to unity.

The magnetic behavior of this material is commonly
described as that of a quantum spin- chain'® with a ran-
dom and possibly anisotropic antiferromagnetic exchange

coupling as given by the Hamiltonian

H=35 3 Jj(ojo}1+0%0) 1+vo50% ). 2)
I<j<N

Here, N denotes the number of lattice sites, o7, 0%, and o5
are the Pauli matrices for a spin at a lattice site j, J;
denotes the exchange coupling between spins at sites j and
Jj+1, and v is the (site-independent) exchange anisotropy
ratio. The J;’s are assumed to be randomly and indepen-
dently distributed according to some probability distribu-
tion P(J) [where P(J)=0 for J <0].

Several real-space renormalization-group (RSRG) treat-
ments of (1) have been proposed which indeed indicate the
possibility of a disorder-induced low-T divergence of the
long-wavelength magnetic susceptibility.>~® Namely, for
the Heisenberg case’>~% (y =1) and in the XY-like regime,’

35

0<y <1, the RSRG results predict that in the presence of
disorder the susceptibility exhibits a divergence of the
form (1), however, with an exponent « that is slowly tem-
perature dependent. More specifically, it was suggested
that for 0<y <1 and T—0, X (as obtained from numeri-
cal solution of the RSRG equation) can be represented as’

X=A/[TIn"™(T/Ty)], (3)

where the exponent m is close to 2 and only weakly
dependent on ¥ or the distribution of exchange coupling.
These results are in contradiction to an earlier cluster ap-
proximation treatment of the Heisenberg case (y=1),'
which predicted that X(7T) diverges at T =0 only if the
distribution P (J) has a corresponding singularity at J =0.
They are consistent, however, with exact solutions of the
XY case (y =0), where it can be shown that, for arbitrari-
ly weak disorder in the J;’s, X exhibits a low- T divergence
of the form (3) with an exponent m =2,'"!? even for non-
singular distributions P(J). Based on these results, it has
been conjectured® that the 1/(7T In*T) law might be the
universal T—0 behavior of X for 0<y <1 and for arbi-
trary nonsingular distributions P(J). However, the
RSRG treatments’~> involve uncontrolled approxima-
tions so that a test of their reliability by comparison to
numerical Monte Carlo (MC) results is of interest.

Aside from the long-wavelength properties, the effects
of randomness on the long- and short-range antiferromag-
netic (AF) order are of interest. Exact solutions'3—!3
show that in the absence of disorder, the Hamiltonian (1)
in the XY Heisenberg regime (0 <y < 1) exhibits a gapless
excitation spectrum and AF spin-spin correlations at
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T =0 decay algebraically, e.g., with a power law as a
function of distance in real space. In the Ising-like regime
(y > 1), a finite gap, A, appears in the spectrum and the
ground state exhibits long range AF order, e.g., AF spin-
spin correlations that approach a nonzero constant at
large distances. For nonzero temperatures, the algebraic
(0<y <1) or long-range (y > 1) correlations are damped
exponentially at large distances with a finite correlation
length §. As T—0, £ diverges in a power-law fashion if
0 <y <1 and exponentially, like exp(A/T), if y > 1.

In the presence of disorder, an exact solution has been
obtained only for the Ising limit (y— o) of (2).1!7 Al-
though randomness does not destroy the long-range order
of the ground state in the Ising chain, it does reduce the
gap in the excitation spectrum. In fact, if the distribution
P,(J?) of the random 0”-0” couplings J7, extends to arbi-
trarily small values of JZ the spectrum is gapless. At low
but finite temperatures, the suppression of the gap, in
turn, reduces the long-range spin-spin correlations, i.e.,
the magnitude as well as the strength of the low-T diver-
gence of the correlation length £.'® One would expect to
observe similar effects for the quantum spin system (2).
In fact, preliminary MC results for the Heisenberg case'’
indicated that disorder tends to suppress the AF spin-spin
correlations at large distances.

In the present paper, we report a more detailed MC
study of both the long-wavelength and the AF (short-
wavelength) spin-spin correlation functions and suscepti-
bilities of (2). Section II contains a brief outline of the
MC procedure. In Sec. III, we discuss the results obtained
for the long-wavelength susceptibility and compare them
to the RSRG results. We also present results for the AF
spin-spin susceptibilities and correlations. A summary is
given in Sec. IV.

II. NUMERICAL METHODS

We have used the world-line (WL) algorithm?® to simu-
late the disorder averaged longitudinal susceptibility and
static structure factor at wave vector q,

B -
X(q):% [ ar{s5msT 0
)
S(g)=- (5057, (0)) .

Here, B=1/T is the inverse temperature, { - -+ ) and =
denote the thermal and the disorder average, respectively,
and

Sg(r)= 5 S exp(—igl + H7)of exp(—HT)
1

is the g component of the magnetization at imaginary
time 7. The exchange couplings J; were chosen randomly
for each bond (j,j +1) according to a rectangular distri-
bution of width 2AJ,

P =1/QAD, |J—1| <AJ (5

and vanishing otherwise. [Here, we have set the energy
units such that P(J) is centered around J;=1.]

The disorder averages were obtained by performing MC
measurements on typically 20—50 different J; configura-

tions (depending on lattice size). For each J; configura-
tion, 1000—2000 WL configurations®® were sampled, each
of them generated from the preceding one by at least ten
updating sweeps through the space-time lattice.?® The
number of time slices?® L was typically chosen such that
Ar=B/L =0.2 for the measurements reported here. No-
tice that for any finite value of A7 our WL results will ex-
hibit a systematic error that vanishes only in the limit of
infinite L (with f3 fixed). For certain quantities, measured
with sufficiently large (i.e., too large) values of A7, this er-
ror can become significantly larger than the statistical er-
ror (of typically a few percent), as has recently been
found?' by comparing such world-line data for the ¢ =7
structure factor of the one-dimensional 1D Heisenberg
chain with exact solutions for this model. We have there-
fore carried out additional measurements with A7=0.1
for a few parameter values B, ¥, and AJ to determine the
magnitude of such systematic errors due to this finite A7
effect. Within statistical error (typically less than 5% for
T >0.2 and of the order of 10—15% for T <0.2), the re-
sults for X(g) did not show any detectable A7 dependence.
We conclude, therefore, that for the data presented below,
this systematic error is less than the statistical error. An
additional test for such systematic errors is provided for
the case ¥y =0, by comparing the WL data to those ob-
tained with the “real-frequency” method?* described
below. As shown in Fig. 1(a), these data are in satisfacto-
ry agreement.

Since the WL algorithm evaluates thermal averages in
an ensemble with a fixed total magnetization (S;_,
=const),?’ we cannot determine X at ¢ =0. To obtain the
long-wavelength susceptibility, we have therefore mea-
sured X at the smallest possible nonzero values that g may
attain in an N-site system, namely at g =2w/N,
47 /N, ..., 2mm /N with m <<N. To study the AF order
in the presence of randomness, we have measured S(q)
and X(q) at and in the vicinity of ¢ =#. The spatial lat-
tice size, N, in our simulations was chosen proportional to
the inverse temperature, such that S/N =0.2. In addi-
tion, measurements were taken with /N =0.1 and with a
constant N =160 for several values of the parameters f3,
¥, and AJ. Since the different values of X(g) for g small
thus obtained agree within statistical error (typically a few
percent at high temperatures and of the order of 10—15 %
at low T), we believe that the finite-size effects are negli-
gible in our long-wavelength results. Furthermore, for
N > 20 we find (within statistical error) no difference be-
tween the X(q) values at ¢ =27/N and 4w /N. We are
therefore confident that these values represent accurate es-
timates of X(q¢ =0). The WL calculations were carried
out on an IBM 3081 computer. For the largest lattice
sizes studied, N XL =140 140 (i.e., f=28) a typical run
consisting of 200000 lattice sweeps took of the order of 6
h of CPU time.

Finally, in the XY (y=0) limit, a Jordan-Wigner
transformation maps Eq. (2) onto a 1D system of nonin-
teracting spinless fermions with a random one-electron
transfer J;. The susceptibility X, Eq. (4), is then given by

X=B [~ dof@l1-f(IN@), (©)
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FIG. 1. Long-wavelength magnetic susceptibility X(g —0,T)
as a function of temperature T for several values of disorder
strength AJ and anisotropy ratio y. In (a) the “real frequency”
MC results (Ref. 22) are shown as a solid line. All other data
are WL MC results.

where N (w) is the fermion single-particle-energy density
of states, and f(w)=(eP*+1)~! is the Fermi function.
For the pure case in which AJ =0 with J =1 one has
_ 1

271 —(w/2)2]"%
In this case, the susceptibility remains finite as T—0, ap-
proaching the density of states at the Fermi surface N (0)

N(w) N

2
L

T «<1 8
12 , << (8)

1
X~ 2T

while for large T
1
~—, T>1. 9)
X aT >> (
In the presence of a random XY exchange J, it was shown
by Dyson!! that
A

N(@)~—— . (10)
@) oIn}(w/wy)

This leads to a divergence in the low-temperature
behavior of X of the form given by Eq. (3) with m =2 and
To =yg.

For the XY (y=0) limit, alternative numerical tech-
niques are also available. For example, one can simply
evaluate an average N (w) by an exact diagonalization of
the N-site free-electron Hamiltonian

H=3 (J;,C,\C;+H.c.) (11)
i

with J; distributed according to P(J;). We have done this
for N =140, averaging over 50 configurations giving re-
sults for X(T) with a statistical accuracy of a few percent
for 0.1 < T <4. The lower limit on T is set by the length
of the chain. In order to extend this numerical treatment
of the XY (y=0) system to lower temperatures, we have
adapted a real frequency Monte Carlo technique intro-
duced by Hirsch and Eggarter®? to determine N (w). Here
the effective length of the lattices ranged up to 10* sites,
and the results agreed with those obtained with exact di-
agonalization in the high-temperature regime.

III. RESULTS AND DISCUSSION

In Fig. 1(a), we show the WL data from several dif-
ferent MC runs for y=0 together with the results ob-
tained from the real frequency simulation. They are in
good agreement with each other and with the exact diago-
nalization results [not displayed in Fig. 1(a)]. Whereas, in
the homogeneous system (AJ =0), X approaches a con-
stant as 7 —0, the low-temperature divergence is clearly
developed below T'~0.2 in the disordered systems. To
check whether X has the expected 1/(T In?T)
behavior,>!'!2 it is convenient to plot (TX )~1/2 versus
logoT, as shown in Fig. 2(a). Indeed, the data points for
the disordered systems fall on a straight line, whereas for
the homogeneous case, they exhibit an upward curvature.

In Figs. 1(b)—1(d) and 2(b)—2(d) the analogous data are
shown for nonzero values of y. Note that the XY-like
(y=0.5) and the Heisenberg (y=1) system seem to
behave qualitatively in the same way as the XY system:
Without disorder X approaches a nonzero constant; in the
presence of disorder, it increases as T—0. Considering
the limited temperature range and statistical accuracy of
our WL data, we should caution, however, that these re-
sults do not establish any proof for a universal 1/( T In?T)
divergence of X for T—0. For example, within the limits
of accuracy our WL MC results would also be consistent
with a simple power law. Let us emphasize that a power
law (1/T°, with a close to unity) and a 1/(T1n’T) law
are very similar. They can be distinguished only by accu-
rate measurements over many orders of magnitude in 7.
With our present WL MC methods, such measurements
would require prohibitively long simulation times.
Nevertheless, our results confirm at least qualitatively the
RSRG prediction that X(g =0) is divergent at T =0.

The data for an Ising-like system are shown in Figs.
1(d) and 2(d). In the homogeneous system, X vanishes as
T—0. In the moderately disordered system (AJ =0.6) it
is roughly constant and nonzero over the temperature
range studied; finally, in the strongly disordered system
(AJ =0.95), the data show the same increasing behavior
(as T—0) that is observed in the XY-like and Heisenberg
regime (0 <y < 1). By comparison, the RSRG treatment’
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FIG. 2. WL MC data from Fig. 1 plotted as (TX)~!'/? vs
logo7. In the presence of disorder (AJ=0), the data at low T
fall on a straight line ( ), indicated as a guide to the eye.

predicts that for ¥ > 1 and with a nonsingular, sufficiently
broad P(J) [e.g., for AJ—1 in Eq. (5)], X should first in-
crease with decreasing 7 as in the Heisenberg XY regime
(0<y <) until it reaches a maximum at some tempera-
ture T,, and then decrease to zero for T,, > T—0. For
our parameter values, AJ=0.95 and ¥y =2, one can esti-
mate (from the RSRG results® obtained for AJ =1.0) an
upper bound for T, of the order of 10~ or less which is
out of the range of our WL MC method. Hence, in the
temperature range studied, our data are consistent with
the available RSRG results.” However, they do not allow
any conclusions regarding the very low-temperature
behavior, namely the question whether X exhibits a max-
imum and decreases to zero at very low T.

In this connection, it is worthwhile pointing out that
the low-temperature RSRG predictions® AJ =1 seem to
be inconsistent with the exact solution!®~!® for the ran-
dom exchange Ising chain (y— ). To discuss this it is
convenient to parametrize the system in terms of the o%-o*
exchange couplings, J7, instead of the XY couplings

so that for finite y, P(J) is given in terms of the distribu-
tion of J’s, P,(J9),

P(J)=yP,(yJ) . (13)

We then consider the limit ¥ — oo for fixed J; with J?=1
and hence all J;—0. The exact Ising result for X vanishes
at T=0if

P,(J9)=0, 0<J*<Ap, (14)

where Ap denotes a finite gap in the distribution P,
around J?=0. However, if

lim P,(J%) >0 (15)

JZ0
[for example, for a distribution of the form (5) with a half
width AJ?=1] the Ising susceptibility approaches a
nonzero value as T—0. One would expect that this result
[i.e., limy_ 4 X(¢—0,T)>0 if limjz“,OPz(J")> 0] remains
unchanged if a small XY contribution is added to the pure
Ising Hamiltonian (i.e., ¥ >>1, but finite), since the quan-
tum term generally tends to enhance fluctuations and
hence X(g =0) in an antiferromagnetically coupled sys-
tem. The RSRG approach,® on the other hand, predicts
that X vanishes as 7—0 for a distribution of type (15).

In line with these remarks, it is important to note that
the RSRG treatment® has a general tendency to overesti-
mate the gap in the excitation spectrum, as pointed out al-
ready in Ref. 5. As a consequence, it underestimates the
low-temperature susceptibility. For example, for a
Heisenberg chain (y =1) without disorder, RSRG leads to
a vanishing X at T =0, in disagreement with our MC re-
sults [Fig. 1(c)] as well as earlier exact diagonalizations?’
of finite-size chains which indicate that X is finite and
nonzero at 7 =0.

These observations raise the interesting question as to
whether the low-T7 behavior in the Ising-like regime may
in fact be more complicated than suggested by the RSRG
approach.’ Although X certainly vanishes at 7=0 in an
Ising system with Ap >0 [Eq. (14)], this may not be true
any more in the presence of a sufficiently strong XY term:
Note that for a strongly disordered Ising system with a
very small gap Ap in the distribution P,(J?), also the gap
in the excitation spectrum,

A=2Ap (16)

is small (compared to the average exchange coupling J Z,
say). If we now introduce an XY term with an average
strength J=J,/y it may well be possible that the gap in
the excitation spectrum vanishes if J becomes of the order
of or larger than Ap. This, in turn, will change the low-
temperature behavior of X from an exp(—A/T) depen-
dence to something like a power law. It can in fact lead
to a nonzero, even divergent, value of X at 7' =0.

To be specific, let us consider the class of distributions
P,(J?) of the form (5) with a half width AJ?. The Hamil-
tonian is then parametrized by the two quantities y and
a=AJ?/J% One can construct a ground-state phase dia-
gram in the a-y plane with phase boundaries that separate
different regions characterized by

Xo= lim X(g =0) (17)
T—0
being either zero, infinite, or nonzero and finite. The

RSRG phase diagram is shown in Fig. 4(a): There is one
phase boundary at y=1 which separates the XY Heisen-
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FIG. 3. Susceptibility ground-state phase diagram of H, Eq.
(2), in terms of anisotropy y and disorder strength a=AJ /J. (a)
RSRG prediction; (b) and (c) possibilities suggested in text.

berg regime, 0 <y <1, with Xg= oo from the Ising-like re-
gime, ¥ > 1, where X,=0. Based on the foregoing discus-
sion, we suggest that other possibilities, sketched schemat-
ically in Figs. 3(b) and 3(c), cannot be ruled out. First of
all, sufficiently strong fluctuations and disorder may lead
to a region of infinite X, extending into the Ising-like re-
gime, as indicated in Fig. 3(b). Furthermore, it is possible
that the region of infinite Xy may be separated from the
Xo=0 region by an intermediate phase where 0 <X < .
In concluding our discussion of the g =0 susceptibility,
let us emphasize that our MC results for y =2 [Figs. 1(d)
and 2(d)] are not inconsistent with these possibilities.

We now turn to a brief discussion of the effects of ran-
domness on the antiferromagnetic order. In Figs. 4 and 5,
we show WL data of the T dependence of the susceptibili-
ty X(q =) and the structure factor S (g =), respective-
ly, for values of y =1 and y =2. In both quantities, one
observes a suppression of the low-temperature divergence
with increasing disorder strength. Also note the differ-
ence in the scale of both X and S between the Heisenberg
(y=1) and the Ising-like (y =2) system. The suppression
in the low- T divergence is accompanied by a reduction of
the AF correlation length. In Fig. 6, we have displayed
the g dependence of S(gq) near ¢ =7 for a disordered
(AJ =0.6) and a homogeneous 60-site system (AJ =0) at
an inverse temperature S=12. In the Heisenberg case
[Fig. 6(a)], the correlation length & (roughly the inverse
width of the peak at g =) at this temperature is less
than the system size both for the disordered and the
homogeneous system. As expected, the peak at ¢ =7 is
broadened (i.e., £ is reduced) by the disorder. In the
Ising-like case [Fig. 6(b)], on the other hand, the correla-
tion lengths are much larger than the system size as evi-
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FIG. 4. Antiferromagnetic susceptibility X(g =) as a func-
tion of temperature T for several values of disorder strength AJ,
Eq. (5), and anisotropy ratio y.

denced by a jump in S(g) by almost 1 order of magnitude
as we go from ¢ =7m—2m/N to g =m. Nevertheless, the
broadening of the peak at g =7 due to the disorder can
still be observed in the wings of the peak (at
q=m—1w/N, m—4w/N,...). These data are qualita-
tively similar to the results for various exactly solvable
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FIG. 5. Structure factor S(g =) as a function of tempera-
ture T for several values of disorder strength AJ and anisotropy
ratio y¥. All data shown are WL MC results.
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FIG. 6. Structure factor S(q) as a function of wave vector ¢
at temperature T = le- for a homogeneous (AJ =0) and a disor-

dered system (AJ =0.6) and different anisotropy ratios y.

random spin chains,'® where an analogous suppression of
the long-range correlations is found.

IV. SUMMARY

In conclusion, our MC results confirm that disorder
can give rise to a low-temperature divergence in the long-

wavelength (g =0) susceptibility X of an XY-like
(0<y <1) or Heisenberg (y =1) antiferromagnetic quan-
tum spin chain. In the temperature range studied, they
are consistent with recent RSRG results,>~° in particular,
with a 1/(TIn’T) dependence of X as T—0. We have
also pointed out certain inconsistencies in the RSRG re-
sults’ for the low-T behavior in the Ising-like regime
(¥ >1). We discuss alternative phase diagrams for this re-
gime which are consistent with our MC data and the Ising
limit. Finally, we have studied the AF susceptibility
X(g =m) and structure factor S(q¢ =m) of a Heisenberg
and an Ising-like system in the presence of disorder. We
find that in both cases randomness tends to reduce the AF
correlation length and hence X(g =) and S(q =7).

We should mention at this point a recent publication®*
which proposes an “exact” numerical treatment of 1D
quantum spin systems. Based on the “checkerboard”
breakup,zo the method is, in principle, applicable to the
random exchange Hamiltonian (2).

While this work was being completed, we received the
results of an analogous WL MC study?’ of the Hamiltoni-
an (2) for the Heisenberg case ¥y =1. The data for the T
dependence of X(¢—0) and X(g =) in Ref. 24 are, essen-
tially, in agreement with the ones presented here.
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