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Ferromagnets with weak random anisotropy
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We consider a continuous-symmetry ferromagnet for d =3 with random anisotropy which is
weak compared to exchange (H„&&H,„), in the presence of an external field H. At low fields the
system is macroscopically disordered (the Imry-Ma or correlated spin-glass regime), and the external
field may be treated as a perturbation for H &&H, /H, ', . For large fields the system is basically
aligned, and the random anisotropy may be treated as a perturbation, thus leading to a unique state
with a large but wandering magnetic moment (ferromagnet with wandering axis, or FWA). We
show that the system retains its alignment only for H »H, /H, „. Thus we deduce that there is an
intermediate field regime which is well aligned but not accessible to perturbation theory. In addi-
tion, we consider a number of questions pertaining to the macroscopic collective modes of this sys-
tem. We point out that the prediction of a longitudinal resonance depends upon a perturbation ap-
proach which may not be valid. Also, we observe that, even in H =0, samples small compared to
the correlation length will have a spontaneous moment, therefore defeating the disordering effect of
the random anisotropy. For well-aligned systems with random anisotropy (with the alignment pro-
duced either by an external field or by the fine particle effect, or both), the predicted longitudinal
resonance, assumed to be valid, can be obtained solely in terms of the transverse resonance shift, the
magnetization, and the differential susceptibility. For the FWA we explicitly calculate the anisotro-

py constants for uniform rotations, and we apply them to electron spin resonance.

I. INTRODUCTION
h =—H/H, „, h,:—H„/H, „. (4)

In a recent paper, Chudnovsky et al. ' considered the
behavior of a ferromagnet with random orientational an-
isotropy, concentrating on the weak-anisotropy limit, and
including the effects of an external magnetic field H.
They considered the macroscopic energy density

e= ,
' a(V;M„)(V;M—„)——,

'
P, (M.n) —M H,

where the local magnetization M is assumed to be of fixed
length Mo (determined by the temperature and short-
range exchange constants), the constant a is proportional
to Ja (where J is a microscopic exchange constant and a
is an interatomic separation), and the constant P, is pro-
portional to a microscopic anisotropy D„. (Randomness
enters because one permits the anisotropy axis n to point
in arbitrary directions and to change significantly over a
spatial scale R, .) This model is a continuum version of
the discrete model due to Harris, Plischke, and Zimmer-
mann. It has three characteristic fields: the exchange
field

H„=—~Mo/R

the random anisotropy field

H. =—)33.Mo

where H, «H,„, and the external field H «H„.
Equivalently, there are two small dirnensionless parame-
ters

For this field regime the system has been given the name
correlated spin glass (CSG). ' lt has a large magnetic sus-
ceptibility4'

X —(Mo/H, „)h„ (6)

where Mo is the local magnetization. Moreover, in this
regime one expects a very large ground-state degeneracy.
From (6), the field is a weak perturbation for h « h,".

Naively, for h, «h «1 one would expect the system
to be nearly aligned, with a ground state that is essentially
unique. Using perturbation theory, its properties when
aligned (the ferromagnet with wandering axis, or FWA)
were discussed in some detail in Ref. 1. In particular, the
magnetization M deviates from the saturated value Mo by
an amount

6M-Mo(h, /h)'i

and there is a transverse correlation length

R =—R hF= a

Reference 1 summarizes the well-known result that, for
three-component spins in three spatial dimensions, if
h =0 the system is in a globally disordered state with no
net magnetization, although there is local ferromagnetic
order with a characteristic correlation length '

RF-R, h,
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In the present work, we show that the FWA description
of Ref. 1 is valid only for the regime

h„«h «1 (FWA regime) . (9)

This is done both by elementary and by more analytical
considerations of the effects of the fluctuations in the ex-
change and anisotropy energies. In the elementary ap-
proach (Sec. II) we show that, for d =3, there is need for
an ultraviolet cutoff, so the fluctuations are larger than
one would expect from the simplest of arguments; thus,
for the Zeeman energy to dominate over the fluctuations
in the exchange and anisotropy energies, it is found that
Eq. (9) must hold. In the analytical approach (Sec. III),
we show that the fluctuations in the direction of the mag-
netization cause an increase in the transverse correlation
length, and perturbation theory is only consistent if Eq.
(9) holds. In addition, we indicate how to proceed into the
regime

R
(MOH, „)+ (MO8 )

2a 2R

—[—,(P„MO)+ , (P„M—O8)(R,/R) i ]

—[(MOH)(1 —8 /2)] . (10)

give correctly the smallest H for which the theory is
valid.

As usual, one minimizes the energy, Eq. (1), which is
written as a sum of each of its three contributions, ex-
panded about the angle 0 made by the magnetization with
respect to the field, and with the characteristic scale over
which the magnetization varies taken to be R. To the
terms explicitly given in (1) we also add in the exchange
energy due to local order, and the orientation-independent
part of the anisotropy energy:

h„«h «h„(modified FWA regime),

where the system develops the possibility of more than
one local energy minimum as the field is decreased.

In Sec. IV we consider a number of issues relating to
the macroscopic collective modes of this system. We
point out that the prediction of a longitudinal resonance
depends upon a perturbation approach which may not be
valid. Also, we observe that even in H =0, samples small
compared to the correlation length will have a spontane-
ous moment, therefore defeating the disordering effect of
the random anisotropy. For well-aligned systems with
random anisotropy (with the alignment produced either
by an external field or by the aforementioned fine-particle
effect, or both) we show how the position of the predicted
longitudinal resonance can be obtained solely in terms of
the transverse resonance shift, the magnetization, and the
differential susceptibility. In addition, for the large-field
FWA we explicitly calculate the anisotropy constants for
uniform rotations, and we apply them to electron spin res-
onance.

Section V provides a summary, and indicates the extent
to which experiments support the prediction of an inter-
mediate field regime as described in Secs. II and III.

II. A SIMPLE ARGUMENT AND ITS BREAKDOWN

A. The argument

The second and sixth terms give the increase in the ex-
change and Zeeman energies due to the noncollinearity;
these increases have no terms linear in 0 because 0=0 will
minimize each of these energies. The fourth term gives
the decrease in the random anisotropy energy arising from
the adjustment of the local magnetization to the spatial
fluctuations of the anisotropy axis orientations; it is linear
in 0 because the anisotropy energy is not minimized at
0=0.

Since all three terms in 0 are coupled by the minimiza-
tion conditions, one would expect them to be of the same
order of magnitude. The 8 terms in the exchange and
Zeeman energies lead to the characteristic length Rz given
in (8). RF has the meaning of a ferromagnetic correlation
length because the FWA, although aligned along the field,
preserves a nearly rigid ferromagnetic order only over a
length on the order of Rz. Note that Rz —Rz for h =h„
but Rz &R~ for larger fields h. When Rz becomes com-
parable to R„one has h =1; for larger h the system
maintains its stability about 0=0 dominantly due to the
presence of the field alone.

Note that (8) is independent of the nature of the pertur-
bation to the system, and thus would be relevant to the
case where the perturbation is due to random exchange, as
can occur in reentrant ferromagnetic spin-glass systems.

The full minimization of (10) leads to (8) and the
characteristic tipping angle

8-(R, /Rp) (H„/H)-H„/(H, „H)' —(h„/h)'

According to (6), in a field on the order of h, the sys-
tern becomes nearly aligned. Nevertheless, the system is
not completely ordered, since the random anisotropy
causes the local magnetization axis to "wander" slightly
as one moves about the system. For this reason, we
described the system in this regime as a ferromagnet with
wandering axis (FWA). ' The angle of deviation from
alignment 8 is correlated over a (field-dependent) correla-
tion length RF. To see this, we first present a simplified
qualitative argument, which has the virtue that it correct-
ly obtains both RF and 0; on the other hand, it does not

From 0 one obtains the magnetization deviation via

5M =(Mo/2)82-MOH„/(H, „H)'i -Mo(h, /h)'i (12)

in the approach to saturation. If one now requires that
the leading-order term in the Zeeman energy (i.e.,—MOH)
be of the same order or greater than the nonuniform part
of the exchange or anisotroqy energy, then one finds the
condition that (H„H'~ /H, „)&H, which implies that
h &h, . In fact, as will be discussed below, both the
nonuniform exchange and the random anisotropy energies
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B. Breakdown of the argument

The reason the above argument breaks down is that, in
two or more spatial dimensions, there are so many short-
wavelength degrees of freedom that one must employ a
cutoff, and for d =3 this involves an enhancement by
Rz/R, -h ' in the gradient and anisotropy energies.
(For d =2 there is a log h enhancement, and for d =1
there is no enhancement. ) To see this, we note that, in the
FWA regime, Imry-Ma k-space arguments indicate that
the gradient energy is proportional to

d kk iHi"k
i((V~.)') —= ((V~, )')- f (k +ch)

(13)

[the second and fourth terms in (10)] are actually larger
by a factor of h ' . This changes the above condition to
( H„ /H, „)& H, which implies that the system is well
aligned only if h )h„.

Note that if one employs (8) and (11) in (10), one finds
that in the FWA regime the largest energy density (in
units of MOH ) is the uniform part of the anisotropy en-

ergy [of O(1)], followed by the aligned part of the Zee-
man energy [of O(h)], the randoln average of the aniso-
tropy energy [of O(h„)], the nonuniform part of the ex-
change energy and the fluctuating part of the anisotropy
energy [of O(h, )], and finally the nonaligned part of the
Zeeman energy [of 0 ( h „h ' i

) ].

0=M&& =MX [—H —P„n(M.n) —aV M], (16)

M VM=— (VM )~o

V Mq —(RF) Mi ——h„
zn~(M n), n~—=n —(n M)M.

R,

Combining (17) and (18) yields

[V —(RF) ]M= —(RF) M

h,
(VM ) —

2 n~(M n) .
0 a

which are true for all H. Since H, need not be small in
comparison with H, we must treat these equations with
some care. Equation (16) involves the part of the bracket-
ed term which is perpendicular to the local direction of
M, rather than perpendicular to the applied field H.
Nevertheless, in the FWA regime, where Mj
—:M —H(M H) is much smaller than Mo, we may make
the approximation (correct to second order Mi ) that
H~ = (H/Mo—)M&, where the subscript p denotes the
part which is perpendicular to the local direction of M.
Then, with (8) to define RF, (16) becomes

where we have taken Mzk ——XzH zk, with Hzk the perpen-
dicular component (with respect to the direction of the
external field) of the random anisotropy field, and the
transverse susceptibility Xi —(k +ch) '. [For h =0,
(13) would give the k =0 divergence of Imry and Ma. ]
In the FWA regime, with

~
Hik

~

flat in k-space up to
k,„-a ' (where it goes to zero), (13) yields ((VM ) )
proportional to H, k „rather than H„k,h„—H„(ch) -H„/RF We will det. ermine ((VM ) ) in
detail in Sec. III, using real-space (rather than Fourier-
space) considerations.

Now consider the anisotropy energy, which is propor-
tional to

The part of this which is perpendicular to H satisfies

h,
[V —(RF ) ]Mi = —

z (n~ )i(M n)—
R,

(VM )
~o2

where, to first order in Mj,

(nz )j (M.n) = [ni —(Mi/Mo)(n. H)](Mon H+ Mi.ni)

Moni(ll H) —Mi(n H) +ni(nl MJ )

(20)

(21)

( )Mo+2Mo((Mz nz)&ling ) nii =n H

This establishes that H&"-nzn~~. Hence

d k iHiki
((Mi nl)nii) —f (k +ch)

2-Hr kmax

((M.n) ) =(Mi~n ii)+2(Mi~~nii(M1 ni))

+((Mi ni) )

(14)

(15) [V —(RF) ]Mj ——h M

R,
Ilgn

[i
n

[i
—Il H (22)

In this equation, the terms proportional to Mj have zero
angular average for Mj uncorrelated to random n. Thus
they cannot contribute to (20) to order h„. Moreover,
from (13) we know that the average value of the term in
(VM ) is of order h„. For simplicity, therefore, let us
temporarily drop terms proportional to Mz on the right-
hand side of (21), so that (20) becomes

so that both the nonuniform exchange and the fluctuating
part of the anisotropy are enhanced by the same factor
kmaxRF

III. ANALYTICAL RESULTS

We now turn to a more precise treatment. Minimiza-
tion of (1) for n =3, subject to the constraint that

~

M
i

=MD, gives

This establishes that R~ given by (8) still holds in the
FWA regime, despite the fact that the simple argument
given in Sec. IIA and leading to (8) is no longer valid.
The solution to (22) is given by

~oh„, exp[ —
~

x —x'
i
/RF]

Mi(x) =
z

d'x' Il in ij4~R.'
(23)
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(n j.nzn t~n tI) =((1 n—~~)n ~~)-„exp( —
i

x' —x"
i
/R, )

= —,', exp[ —
i

x' —x"
i
/R, ] .

Use of (24) in (23) then leads to'

(24)

If the anisotropy decorrelates over a distance R„ then
it is reasonable to take'

tion length. This means that the system finds it more dif-
ficult to adjust to the random anisotropy.

In principle, (28) can be solved by an iteration scheme
treating the off-diagonal terms as a perturbation.
Neglecting the off-diagonal terms, one would find an
equation like (22), but with a longer correlation length
given by

and

( i
MJ(x)

I
) = Mp A 167TR

4~R,

exp( —2
i
x —x'

i
/RF )

d x
ix —x'i

4 ]/2
h,=—M p

(5M/Mo)=(MQ M)/Mo= p ( I
~i(x)

l
)

1

2Mp

p
4

15 A

(25)

(26)

(Rp) =R, h —MD ((VM ) ) . (29)

A

MD ((VM ) )= q, RF»R,
15 R.''

One could then require that the term ( ( VM ) ) be
computed in a self-consistent fashion. In principle, the
self-consistency condition could lead to multiple solutions;
however, we will not pursue this question further. For
RF »R„we can easily compute ((VM ) ) from (23),
for then the gradient term dominantly comes from acting
on the denominator of (23). As a consequence, ((VM ) )
is similar to (

i
Mz

i ) of (25), except that one has

i
x —x'

i
in the denominator, thus requiring a cutoff at

x;„-R, to make the integral convergent. The net result
is that

thus substantiating (12).
To obtain the corrections to (22), we substitute (21) into

(20), which yields

so that (29) becomes

(R~ ) =R, (h —+h„) . (31)

h,[V' —(RF) ']Mi = —
2 [Moni —M, (n H)'

R,

+n~n~ M~]— (VM )
Mp

(27)

On the right-hand side there is a pure source term (in-
dependent of M) and three terms which depend on M.
Two of these terms have coefficients which average to
zero if there is no correlation with M, but the term in
(VM ) has a nonzero average. For this reason we wish
to replace it by its average value [of O(h„)], plus a term
that fluctuates. The fluctuations are expected to be of
O(h, ), and therefore they will be neglected. The result is
that (27) can be approximated by

[V —(Rp) +Ma ((VM ) )]I

h, h,
~ [(n H) 1 —nj nj ] .M~ = —

~ [Many],
R, R,

(28)

where 1 is the unit tensor. This is a tensor equation for
the magnetization: the additional random terms have the
effect of making the response anisotropic, in the sense
that a transverse anisotropy field can induce a magnetic
response in the second transverse direction. In addition,
they prevent the response from becoming singular, if the
diagonal part is accidentally zero. However, the most ob-
vious of the additional terms is the one proportional to
((VM ) ), which has the effect of increasing the correla-

If 5M/M0 is recomputed, as in (26), one finds that h is
replaced by h minus a term proportional to h, . Thus, we
again find that the simplest form of analysis can be ex-
pected to hold only for h )h, , since otherwise the mag-
netization deviation becomes too large to be consistent
with our assumption that the system is basically aligned.
Inclusion of the additional random terms can be expected
to further increase the tendency of the system to wander,
but we surmise that they should make themselves felt no
more strongly than the (VM ) term.

IV. MACROSCOPIC MODES,
ANISOTROPY CONSTANTS, AND ESR

In an earlier work we predicted, on the basis of the
three-dimensionality of the ferromagnet with random an-
isotropy, that there are three macroscopic-angle variables
for this system, and therefore that the system possesses a
longitudinal mode. Further consideration of this point is
necessary, in order to properly pursue the analogy to
another three-dimensional spin system —spin glasses. In
the case of spin glasses, the three-dimensionality is due to
the dominant interaction, which is exchange. That in-
teraction is also responsible for the susceptibility, which is
associated with the energy of magnetization. The random
anisotropy serves to produce the energy associated with
the macroscopic-angle variables, and is a perturbation on
the basic exchange-determined system. On the other
hand, for ferromagnets with weak random anisotropy, the
anisotropy is responsible for producing both the third-
angle variable (i.e., the three-dimensionality of the sys-
tem), and the energy associated with it. Thus, the analogy
to the case of spin glasses (where the predicted longitudi-
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nal mode has been observed by Schultz and co-workers '
)

is not a firm one. Properly, it may be necessary to
develop a microscopic theory for this system (perhaps em-
ploying computer simulations like those of Morgan-
Pond, ' and Walker and Walstedt" for spin glasses) to see
if the mode predicted by Ref. 7 is well founded. Alterna-
tively, one could perform the experiment, using for the
theoretical value of the longitudinal resonance an expres-
sion [Eq. (42), which will be developed shortly] involving
the shift in the conventional transverse resonance, the
magnetic field, and the differential susceptibility.

The question of computer simulations brings up finite-
size effects, which usually complicate the analysis. In the
present case, such finite-size effects may be an advantage
because, if the system is smaller than the correlation
length for the low-field CSG regime, then it may be possi-
ble to study a regime in which it is not necessary to have a
magnetic field to defeat the disordering effects of the ran-
dom anisotropy. In fact, by the use of fine particles, it
may be possible to study this case in the laboratory. We
are not aware of previous work, either theoretical or ex-
perimental, directed toward spin resonance in fine parti-
cles of ferromagnets with weak random anisotropy.

Let us now return to a discussion of the FWA system,
assuming a large sample size. We will compute the aniso-
tropy constants Kz and K~~, and then apply these values
to the predicted ESR frequencies. Their ratio has already
been considered for the case of arbitrary random anisotro-
py, using symmetry arguments. It takes the form
KJ /K~

~

(,' +K& /K& ), where K2/K &
——1 for uniaxial

random anisotropy. (Note that, due to a misprint, Ref. 7
has —,

' rather than —', . ) Thus Ref. 7 predicts that
5

Kg /K~~ —,.
We will now explicitly compute both Kj and K~~. To

do this, we begin by noting that, under a rigid rotation by
the arbitrary angle P about the arbitrary axis P, the mag-
netization M changes to

M'=(M. p)/+[M —p(M p)]cosp+(QXM)sing . (32)

=P„((M.n) —(M n)(M. Q)(g.n) —(MXn. g) ) . (33)

For P =H, (33) can be shown to yield

K~~ ——P, ((M H)(H. n)(M&. n)+(M~ n) —(M~XH. n) )

=H„(nii(Mi n)) . (34)

In deriving this result, we employed the fact that n varies
in space much more rapidly than does Mj, so that the last
two terms of the first line nearly cancel. Using (23) and
(24) it is straightforward to show that

( n ~~(Mq n) ) =( —,', )(h„MO)(1+h) . (35)

This result is rather curious, since for h «1 it is nearly
independent of h, in contrast to (25). However, one

The anisotropy constant for rigid rotations about P is then
given by

8 (M.n)K- = ——,'P„(
ay'

2
1 H, Mp

, H„((H—.n)(M& n)) =—
3 H,„

(37)

In deriving this, we used the fact that the last three terms
on the first line nearly cancel. Thus, on comparing (37)
and (34), we obtain the expected result that K~ /K~~

———,
' .

We will now apply (34) and (37) to the resonance fre-
quencies of this system. From Ref. 7, the transverse reso-
nance occurs at

coi =y(H +Ki /M),

and the longitudinal resonance occurs at

(38)

co~~
——y(K~

~

/X )
' (39)

Since (26) implies that g-h ~ for h &h„, (39) predicts
that co~~-H in that regime. More specifically, with
(26) and (36), (39) yields

(40)

Since the FWA corresponds to h & 1, (40) predicts that
the longitudinal resonance (if the associated macroscopic
rotation angle is indeed a dynamical variable) should be
somewhat lower than the transverse resonance frequency.
Note that both anisotropy constants vary as H„/H„ in
this regime (just as for a spin glass), an indication that the
anisotropy is behaving as a perturbation. This is a favor-
able indication (but no proof) that the macroscopic rota-
tion angle may be a dynamical variable, and therefore that
(40) describes a realizable mode of the system. It should
be remarked that co~~ is independent of H, in the FWA re-
gime; this is because both K~~ and X [cf. (39)] are quadra-
tic in H„.

One may also obtain a relation which is even more gen-
eral than (40), in that it reduces to (40) for the infinite sys-
tem, and it includes the case of systems which are well
aligned because their dimension is small compared to the
correlation length (either in zero or finite field). In that
case, (38) gives the anisotropy induced shift in the trans-
verse ESR frequency as

Log =coi —yH =yKi /M . (41)

When this is combined with the relation Kz/K~t ———, and
(40), one finds that the longitudinal resonance frequency
is given by

should keep in mind that the correlation of Mj with the
anisotropy involves the very short-range self-correlation
of the anisotropy, whereas (25) involves the longer-range
(and field-dependent) self-correlation of M~. Inserting
(35) in (34) yields

H, Mp
(36)

15 H,„
Similarly, on using the equivalence of x and y, one finds
that for P=x

Kg ———,P„(5(M.H)(H. n)(M~. n)

+(M~Xn. H) +2(M~.n) —3M~(H. n) )
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co =(5co )
5 pM

II ' 2X
1/2

(42)

This relation should apply to large and small systems, in
the laboratory, in the computer, and in analytic form, so
long as these systems are well aligned.

V. SUMMARY AND DISCUSSION

We have found that there is a field regime where a
continuous-symmetry ferromagnet in d =3 is well
aligned, yet is not susceptible to perturbation theory about
the well-aligned state. This is not merely a matter of
stopping the perturbation expansion at too early a stage.
It is that the system can be expected to have an infinite
number of solutions at low enough fields, and the break-
down of the perturbation expansion is a manifestation of
this. Let us consider this point in more detail.

It is difficult to determine very much about the number
of solutions to the general Eqs. (16) and (17). Analogy to
other disordered systems would indicate that, at low fields
(so that one is in the Imry-Ma, or correlated-spin-glass,
regime), the system has an infinite number of macroscopi-
cally similar solutions that have energy minima separated
by rather small energy barriers. As the external field is
increased, a number of these solutions should coalesce,
thus decreasing the degeneracy of the system. ' This pro-
cess of coalescence should begin when the system becomes
fairly polarized (i.e., near h =h„). At a large enough
field, on the other hand, all of the solutions will have
coalesced into one, nondegenerate, solution, and Eq. (22)
will apply. Let us now reverse the process. As the field is
decreased, one would successively expect (28), which
neglects fluctuations in (VM ), and then (27), which re-
tains such fluctuations, to apply. In both of these cases,
the self-consistency condition on ((VM ) ) could intro-
duce the possibility of multiple solutions. This is
enhanced when one permits this term to have significant
fluctuation. As a consequence, analytic work would ap-
pear to be rather difficult. About all one can say is that
when the high-field regime FWA begins to break down
(i.e., near h =h„), the system should start to develop mul-
tiple solutions. It is implicit in this description that there
be hysteresis in the intermediate-field regime.

The neutron scattering data of Rhyne has produced re-
sults' which support the present work in a number of
ways. First, besides finding a large-field correlation
length varying approximately as H ', in agreement
with previous predictions, he finds a correction for

smaller fields having a sign in agreement with (31). More-
over, there is hysteresis in the scattering intensity for in-
termediate fields, behaving qualitatively as one would ex-
pect: on increasing the field from zero, the system tends
to retain a memory of the relatively disordered zero-field
CSG state, which gives a relatively large amount of
scattering; whereas on decreasing the field from a large
value, the system tends to retain a memory of the relative-
ly ordered high-field FWA state, which gives a relatively
small amount of scattering.

Simulations have been hampered by the large sample
sizes needed to accomodate the weak anisotropy limit. To
date, the most relevant work is that of Scrota and Lee, '

who considered XY spins in one dimension. Unfortunate-
ly, in that case the intermediate regime does not occur.
Nevertheless, their results are of interest, simply to indi-
cate some of the possibilities of this system. Most impor-
tant from our point of view is the history dependence that
they observe: when they equilibrate in a field and then re-
move the field, the system develops a significant magneti-
zation and a lower energy than the case where the system
is equilibrated in zero field (where it develops very little
magnetization). It would be interesting to see if this effect
persists in higher spatial and spin dimension.

It is worth repeating that we have only considered the
case of systems large compared to the zero-field correla-
tion length RF -R,h„. It should be possible to find sys-
tems for which the characteristic size is comparable or
smaller than Rz, such as fine particles, or systems with
artificially introduced (and very weak) anisotropy. Such
systems would not be totally decorrelated in zero field,
and therefore they would have a net moment, yet not be
collinear. Their properties might be rather interesting, as
indicated by our analysis for ESR in Sec. IV.

In closing, we note that our discussion has not exhaust-
ed the possibilities associated with ferromagnets with
weak random anisotropy. It should be clear, however,
that this system is rich with possibilities and, due to the
large number of materials from which such systems can
be fabricated, there should be a wide variety of systems to
which the considerations of the present paper apply.
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