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The Bethe-ansatz (BA) equation for the classical sine-Gordon (SG) thermodynamics is shown to
reduce to the one for the classical Toda lattice within two approximations; the phonon-phonon in-
teractions are neglected (the harmonic phonon) and solitons are treated nonrelativistically. Within
these approximations the solitons in the SG model correspond to the particles in the Toda lattice.
Making use of an analytical solution of the BA equation for the classical Toda lattice due to Opper,
we obtain an analytical solution of the approximate SG equation. We propose also a similar approx-
imate BA equation for the ¢* model, although the ¢* model does not have the BA equation for the

classical thermodynamics.

I. INTRODUCTION

The Bethe-ansatz (BA) formulation for the one-
dimensional sine-Gordon (SG) system gives a complete
description of the thermodynamics of the system in terms
of elementary modes: solitons and breathing modes (or
breathers, which are bound states of phonons)."”? The free
energy is formally the same as that of the free-fermion gas
consisting of solitons and breathers, although there are in-
teractions between these modes. However, the ‘“‘energy
spectra” of these modes are determined by a set of cou-
pled integral equations, where the effect of the interaction
between the modes is expressed by the integral kernels. In
general these equations are solved numerically. Recently
Chen et al.® analyzed, following earlier works by Fowler*
and by Maki,’ the classical limit of these equations and
obtained the free energy in the form of a double series ex-
pansion in ¢ (the temperature measured by the soliton en-
ergy) and e ~!/%. Their results agree with an earlier calcu-
lation® based on the transfer-integral method. However, it
seems hopeless to obtain the exact solution to these cou-
pled integral equations in a simple analytic form.

In this paper we present an approximate treatment,
which enables us to obtain an analytical solution, of these
equations in the classical limit. We introduce the har-
monic phonon approximation and the “nonrelativistic”
approximation for solitons. The soliton-soliton and the
soliton-phonon interactions are taken into account. The
approximate BA equations thus obtained are shown to be
equivalent to those for the Toda lattice,”® a one-
dimensional lattice with the exponential interaction be-
tween neighboring particles. The SG soliton corresponds
to the particle in the Toda lattice. From the known exact
solution for the Toda lattice,®® we get an approximate but
analytical expression for the free energy of the SG system.
Comparison with the exact numerical calculation!® shows
our approximation is quite good at intermediate tempera-
tures (say 0.1 <t <0.4).

Our approximation not only allows analytical solution,
but also applies to nonintegrable systems like the well-
known ¢* model. The exact BA method works only for
integrable systems. For nonintegrable systems with topo-
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logical solitons, solitons have been treated only within the
ideal-gas approximation (i.e., the soliton-soliton interac-
tion neglected). As an illustration we will describe how
our scheme can be applied to a class of nonlinear Klein-
Gordon systems,” which includes, for example, the SG
and the ¢* systems.

II. TODA LATTICE

In this section we shall review some of known results
for the thermodynamics of the Toda lattice, which will be
used in a subsequent analysis of the sine-Gordon and oth-
er systems. The Toda lattice is a one-dimensional lattice
in which the interaction potential U between neighboring
particles is of the exponential form’®

U(r)=ae b, 1)

where r is the interparticle distance, and a and b are posi-
tive constants. Here we have not included a linear attrac-
tion term in Eq. (1), which can be eliminated by redefini-
tion of the pressure of the lattice.

The classical partition function Y(T,P,N) of the Toda
lattice with N particles under a constant pressure P at
temperature T is calculated as’

N
_lr= dp -~ _glPr
Y= f‘wzﬂﬁ fﬁwdrexp B 2M+U(r)+ rP
) Y 1/2 P N
_ || M —BP/bp | BL
o7 |2 | PYTTT ’
(2)

where p and M are the momentum and the mass of the
particle, B=T"" (we set kz=1), and I'(z) is the I func-
tion. The chemical potential u(T,P), or the Gibbs free en-
ergy per particle, is given by

u=—N"1Tlhy . 3)

Recently the classical limit [#b(aM)~'/2—0] of the
Bethe-ansatz equation for the thermodynamics of the
Toda lattice has been studied.”® In this formulation the
pressure P is given by
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p=T [~ %e ~Bep) @)

1)

as a function of T and u, where the “energy spectrum’
€(p) is determined by the integral equation

2 = dp’ aM '
ep)=L— —pu+T b~'In e P
wm P J_. 2k (p—p')?

(5)

The last term of Eq. (5) is due to the interparticle interac-
tion (1). Opper® finds an analytical solution of this equa-
tion and shows that Eqgs. (4) and (5) lead to Eqgs. (2) and
(3).

III. SINE-GORDON SYSTEM

In this section we shall give an approximate description
of the sine-Gordon thermodynamics in the classical limit,
starting with the exact Bethe-ansatz formulation. The SG
system is a model of the field theory in 141 dimensions

|

u(a)=cosha—-i fw da'm
T —

’

sinh¥(a —a

In[g,(a)]—Bu=In[g (a)]+Bu

1

defined by the Lagrangian

2 2
% 1|3y ¢ |3y
L=2 ~ -
c Jax 2 | ot } 2 | ox
2 2
mc
| e [1—cos(g¢')]J , (6)

where 1) is the dimensionless Bose field, m is the (bare)
mass of the elementary Bose particle (we shall call it pho-
non), and g2 is the dimensionless coupling constant. The
classical limit is achieved by #,g,m —0 and y— « while
¢ =g (the classical field), M =8m /g? (the classical soli-
ton mass), and wo=mc? /4% are kept finite.

A. Classical limit of Bethe-ansatz equations

In the classical limit a set of coupled integral equations
to be solved in the BA formulation of the SG thermo-
dynamics can be transformed into the following set of
equations:>1?

)) In[ Bhiwou(a’)] + i J” da'sechia—a’)lg (@) +g,(a"], 0

1 ® ’ ’ ’
=— cosha + - f;mda sech(a—a')In[u(a’)]

cosh(a—a')+1

1 ©
—— da'l
2wt f—w am cosh(a—a')—1

where t =T /Mc? is the reduced temperature, wou(a) can
be interpreted as the phonon frequency of the wave num-
ber k=(wy/c)sinha, and g,(a) and g (a) are related to
the distribution functions of solitons and antisolitons in
the rapidity (a) space. These equations are simple exten-
sions of those obtained by Chen et al.® and by Timonen
et al.'? to the case of nonvanishing chemical potential u
of the soliton (the chemical potential of the antisoliton is
—pu). The second and third terms of Eq. (7) represent the
effects of the phonon-phonon and the phonon-soliton in-
teractions; the second and third terms of Eq. (8) the
soliton-phonon and the soliton-soliton interactions.

When the coupled integral equations (7) and (8) are
solved for u, g; and g, the thermodynamic potential
Q(T,u) per unit length is obtained by

Bewy Q= f_w Z—:coshaln[ﬁﬁa)ou(a)]

1 r= da
7 J_. 5, coshalgs(a)+gga)] . (9)

The Helmholtz free energy F per unit length is related to
Q by

[8s(a’)+g5(a)], (8)

Q=F—pln;—ng), (10)

where n; and n; are the densities of solitons and antisoli-
tons. Chen et al.> and Timonen et al.'? solved Egs. (7)
and (8) in the case that =0 by iteration and obtained the
free energy F=Q(u=0) in a double series in ¢ and e ~!”,
which agrees with the earlier calculation® based on the
transfer-integral method. Their calculation can readily be
extended to the case of nonzero chemical potential provid-
ed that B(Mc?— |u|)>>1. In Appendix A we give the
double series for the thermodynamic potential Q in this
case.

B. Approximation

We shall now introduce important approximations to
Egs. (7)—(9), which will be reasonable at low tempera-
tures. We first neglect the second term of Eq. (7); this
corresponds to the harmonic phonon approximation. As
seen by insertion of Eq. (7) into Eq. (9), the contribution
from the last term of Eq. (7) to the thermodynamic poten-
tial is higher order in ¢ than the second term of Eq. (9).
So we neglect also the last term of Eq. (7). Then we sim-
ply have u (a)=~cosha, or (in a more familiar form)
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o =(wd+ck?)?, (11)
where w; =wycosha and k =(wy/c)sinha. Second, we in-
troduce the nonrelativistic, or low-energy, approximation
for solitons (and antisolitons); this means that we assume
J

In[g, ()] — Bu =In[g,(a)]+ B — %( I+ 1a?)4In2— # [7 dain

where we have performed the integral
f ” da’sech(a—a’)In(cosha’) = In(cosha + 1)~ In2

to evaluate the soliton-phonon interaction term. It is con-
venient to introduce the momentum p =Mc sinha~Mca
of soliton and a new function &(p) defined by

e PP = B[ g (a)+g:(a)] . (13)
Equation (12) is now rewritten as
2 ’
_P = « _dngl 2—1‘46 —Belp’)
e(p) M #+Tf—w27rﬁ o n > —p e ,

(14)

where the “effective chemical potential” (i is given by
/1'=Tln[2cosh(B,u)]+T1n(ZBﬁw0)—Mc2 . (15)

After these approximations the formula for the thermo-
dynamic potential, Eq. (9), becomes

Q—Fpy~—T fjmg%e*ﬁf"”, (16)
where
Fau=T [~ Zoin(ptio) (17)

is the free-energy density of the (classical) harmonic pho-
non. A set of equations (14) and (16) describes approxi-
mately the thermodynamics of the classical SG system at
low temperatures.

We note that Egs. (14) and (16) are equivalent to Egs.
(5) and (4), the BA equations for the Toda lattice. The
correspondence between parameters in the Toda and the
SG systems are listed in Table I. Obviously the Toda par-
ticle corresponds to the SG soliton. From this correspon-
dence and the exact result for the Toda lattice, Eq. (3)

TABLE 1. Correspondence between parameters in the Toda
and the sine-Gordon systems.

Toda Sine-Gordon
a 4Mc?
b wo/c
P Fopn—Q
I I3
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the rapidity a of the soliton is small compared to unity
(note that the rapidity of the phonon can take on large
values even at low temperatures). We thus approximate
Eq. (8) as

[gs(a’)+g:(a')], (12)

a—a'

f

with Eq. (2), we can readily write down the result for the

SG system:
2 172 z
2 cosh(Bu) ~] e~V |Lipg)=1, (18)
Tt 4
where
z=PBcwy (Fp—Q) . (19)

Equation (18), which is the central result of this paper,
determines the thermodynamic potential Q) as a function
of the temperature T and the chemical potential u.

In some limiting cases asymptotic solutions of Eq. (18)
can be obtained. If B(Mc?— |u|)>>1, for example, z is
exponentially small and we can use the formula

In['(z)=—Inz—z Iny + i (— 1"~ en)z", (20)

n=2

where y=1.781... is the Euler constant and &(n) the
Riemann ¢ function. Substitution of Eq. (20) into Eq.
(18) yields

Bewy (Fon—Q)=po—Baps+Bsps—Baps+ -+, 21
where
5 172
po=2cosh(Bu) Tn'—t] e ! (22)

is the total density of solitons and antisolitons multiplied
by ¢/w, in the ideal-gas approximation,’® and the “virial
coefficients” B, are given by

B, =In(4y /1), (23a)
By=2B}+3&(2), (23b)
B,=%B3+2B,5(2)++6(3), (23c)
Bs=%7 B3+ 7 B3E(2)

+3B,E3)+ 52+ 56(4) . (23d)

Comparing Eq. (21) with the double-series result (A5) ob-
tained by solving the complete Bethe-ansatz equations
(7)—(9) iteratively, we find that our formula (18) correctly
gives leading order terms in t. Asymptotic expansions of
Eq. (18) in other limiting cases are given in Appendix B
and compared with earlier works!*!> based on the
transfer-integral method.
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FIG. 1. Soliton density contours of the sine-Gordon system
in the u-T plane. The solid (dashed) lines indicate
n=n;+n. (w=n,—n.), where n, and n. are the densities of
solitons and antisolitons. The numbers attached to the lines are
the values of n and w multiplied by ¢ /wy.

C. Soliton density and specific heat

Once Eq. (18) is solved for z, the total number density n
of solitons and antisolitons is calculated by

20
o

—1
4 —(z)

n=ng+n.=—

T

(24)

where 1(z) is the digamma function. The difference of ng
and ng, or the “winding number density” w, is given by

30

=n tanh(fBu) . (25)
ou

T

W=n; —n;=—

To derive the second equalities in Egs. (24) and (25), we
have evaluated n; and n; separately by introducing two
chemical potentials p; and u; of solitons and antisolitons
and set ;= —pu.=pu afterward.'®

In Fig. 1 we depict contours of equal soliton density in
the u-T plane calculated from Egs. (18), (24), and (25).
The solid (dashed) lines indicate contours of n (w). On
the line u=0 we have w=0; w is antisymmetric with
respect to i, while n is symmetric. At lower left part of
Fig. 1 the soliton density is exponentially small and the
system can be regarded as being in a ‘“soliton-gas phase.”
The expansion (21) is valid in this region and hence Eq.
(24) yields

n=(wo/c)po—2B2pt+3B3p3—4Bspo+ — -+ ) . (26)

On the line T =0 we have a ‘“soliton lattice,” or a
“discommensuration lattice,” (ns£0) for u>u.=Mc?,
while n =0 for pu<pu.. The soliton lattice melts at
nonzero temperatures due to thermal fluctuations. The
system may be considered as being in a ‘“soliton-liquid
phase” in the lower right region in Fig. 1, where the
asymptotic behavior of the system as T—0 is qualitative-
ly different from that in the soliton-gas phase.'*!> There
is, however, no clear boundary between the soliton-gas
and the soliton-liquid phases.

To illustrate the behavior of the system near the singu-

T T T

SG model

KR ¢

FIG. 2. The soliton density n =n, +n; of the SG system as a
function of . at low temperatures.

lar point at T=0 and u=pu,, we calculate n at low tem-
peratures and plot it in Fig. 2 as a function of the chemi-
cal potential y. In the ranges of T and u shown in Fig. 2,
n is indistinguishable from w, that is n.~0. At T =0,
Egs. (18), (24) and (25) yield n =w and

wq/cn

w/pe—1l=de " (14wy/cn) 27
for p>p, (see Appendix B). This result agrees with the
leading term of the asymptotic expansion of the exact re-
sult'’ in the critical region (u/u,—1) <<1. Outside this
region the “relativistic effect” becomes important and our
approximation becomes inadequate.

The temperature dependence of the total density n of
solitons and antisolitons obtained from Eq. (24) for u=0
is shown in Fig. 3, where our result is compared with the
soliton density observed in molecular-dynamics simula-
tions.!*~2° The data points indicate observed average
number N of solitons and antisolitons, and the error bars
the statistical error V'N. In the same figure the results
of the virial expansion, Eq. (26), are also plotted with
thin lines; the numbers attached them represent the orders
of approximation. For example, line 1 represents the
ideal-gas approximation and line 5 the fifth virial approx-
imation.

Finally, we calculate the specific heat

32Q

P, (28)

C=—

m

For simplicity we consider the case that p=0. In this
case substitution of Eq. (19) into Eq. (28) yields

2 3

3’z 1 1 ne
—1 _ gm0z |1 1y e
cwg (C—Cpy)=p B t+z—2 Y'(z) o
5 2
+ | 54221 | | BE
t wo
N PO L A (29)
2 (o)
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FIG. 3. Temperature dependence of the soliton density

n=n;+n of the SG system for u=0. The thick line is calcu-
lated from Eq. (24). Thin lines are the virial expansion results
[Eq. (26)]: For example, line 1 indicates the ideal-gas approxi-
mation and line 5 the fifth-order virial approximation. The data
points are taken from the molecular-dynamics simulations
(Refs. 18—20).

where Cp, is the specific heat of the harmonic phonon gas
and v¥'(z) is the trigamma function. We have used Eqgs.
(18) and (24) to derive the second equality in Eq. (29).
This result is shown in Fig. 4 and compared with the ex-
act numerical calculation'® based on the transfer-integral
method. The agreement seems quite good. The
discrepancy at low temperatures (say t<0.1) mainly
comes from the anharmonicity of the phonon, and that at
somewhat higher temperatures is due to both the anhar-
monicity and the relativistic effect. The result of the
ideal-gas approximation!'!
172
2 ‘ 111

Tt

et (30)

cwy (C—Cphp)=2 PRt

is also shown in Fig. 4, which fails to describe the peak
around ¢~0.22 both in its height and position. Therefore
the present solution makes a great improvement over the
ideal-gas approximation.

IV. NONLINEAR KLEIN-GORDON SYSTEMS

The approximate Bethe-ansatz equation (14) for the
sine-Gordon system is simple enough to easily write down
similar equations for other systems. As an illustration we
consider a class of nonlinear Klein-Gordon (KG) sys-
tems,'! which includes, for example, the SG and the ¢*
systems. The BA method works only for the SG model
among these systems. Fortunately, however, we have a re-
cipe (the ideal-gas phenomenology'!"?!) how to describe
the thermodynamics of these systems in terms of solitons

T T T

SPECIFIC HEAT

SG MODEL
(np=0)

) (c/wg)
oh “’022.o
o

(c-c
I
>

0.2

FIG. 4. Temperature dependence of the specific heat C of
the SG system for u=0. The harmonic phonon contribution
Cpn is subtracted. The thick and the thin lines are calculated
from Eq. (29) and (30), respectively, which are compared with
the exact calculation of Schneider and Stoll (Ref. 10).

and phonons within the ideal-soliton-gas approximation
(and the harmonic phonon approximation??). According
to this theory Eq. (14) can be viewed as a simple extention
of the ideal-gas phenomenology to a nonideal soliton gas,
or a “soliton fluid.”

The nonlinear KG system we consider is defined by the
Lagrangian (6) with 1—cos(g) replaced by a dimension-
less potential V(giy) which has at least two degenerate
minima to support topological solitons.!! We consider
here two types of potentials, (singly) periodic potentials
and double-well potentials. Let ¢, and ¢, (¢, < ¢,) be lo-
cations of adjacent minima of the potential V(¢). We as-
sume that V(¢) is symmetric about the midpoint ¢,, of
the potential barrier lying between ¢, and
¢y [b,,=+(d1+¢,)]. It is convenient to set V(p;)=0
and scale V¥ so that d2V/d¢*=1 at ¢ =¢,; the dispersion
relation of harmonic phonon is then given by Eq. (11).
The SG (¥V'=1-—cos¢) and the ¢* [V=+(¢*—1)?] po-
tentials are typical examples of periodic and double-well
potentials, respectively. The classical limit is achieved in
the same way we described in the SG case but the classical
soliton mass M is now given by

¢
M=mg~? f¢lzd¢[2V(¢)]‘/2 . (31)

According to the ideal-gas phenomenology for the non-
linear KG system,!! the thermodynamic potential Q of
the system per unit length is obtained as a sum of contri-
butions from harmonic phonons and an ideal gas of soli-
tons. The phonon part F is given by Eq. (17) and the
soliton part Q¢ by

i © 4
o= ar [

The thermally renormalized soliton energy E* is given by

e —BE*(p) (32)

2
E*(p):Mc2+—2pH—T1n(2\/3/3ﬁcoo), (33)
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where v is a model-dependent numerical constant defined
by21

m
V=Wgz(¢z—¢1)2

¢
xexp (2 [, dg{[2V($)] 7 P —(g—¢)""} | . (G4
We have v=1 and v=3 for the SG and the ¢* systems.
The last term of Eq. (33) (the thermal renormalization of
the soliton mass) represents the change in phonon free en-
ergy due to the interaction with a soliton. The prefactor A
in Eq. (32) is given by

(35)

A 2 cosh(Bu) for periodic potentials ,
1 for double-well potentials .

This factor is related with a degree of freedom which Mi-
yashita and Maki®? called “color,” or topological con-
straint on configuration of solitons and antisolitons in the
real space:!! In the system with double-well potential, a
soliton is always followed by an antisoliton (and vice ver-
sa), whereas there is no restriction on the sequence of soli-
tons and antisolitons in the system with periodic potential.
Because of this constraint n; =n; (therefore ;1 =0) in the
former system, while the latter system can have nonvan-
ishing winding number as we have seen in the SG case.

If we neglect the last term (the soliton-soliton interac-
tion) in Eq. (14), Eq. (16) reduces to the ideal-gas theory,
Eq. (32), as expected. We further notice that the integral
kernel in Eq. (14)

(2¢ /we)In(2Mc/ |p —p']|) (36)

is the spatial shift A(p,p’) of the trajectory of a soliton of
momentum p caused by a collision with a soliton of
momentum p’. The corresponding quantity for the class
of nonlinear KG systems is obtained as

Alp,p")=(2¢c /wx)In(2V'vMc/ |p —p' | ) (37)

if we assume scatterings of solitons are elastic.?> The con-
stant v in Eq. (37) is given by Eq. (34). We are thus led to

2 ’
:_B___"" dL ny, —Belp’) 38
ep)=L @+ T [ S Ap.pe : (38)
with
=T In(2VvABhw,) —Mc? . (39)

We expect that a set of equations (16) and (38) approxi-
mately describes the thermodynamics of the nonlinear
KG systems and can be considered as a natural extension
of the ideal-gas phenomenology. The solution for the
thermodynamic potential ( is now given by

172
2v
Tt

e—l/t

A r'z)=1, (40)

where z is defined by Eq. (19). This equation determines
Q as a function of ¢ (and p in the case of periodic poten-
tial).

Although Eq. (38) is conjectural, we believe it correctly
describes the effect of the interaction between solitons as

o8 T T T
SPECIFIC HEAT
a
0.6 r_ ¢’ MODEL -
s IDEAL GAS
3
S
=
a
Soq .
o
PRESENT
0.2 L —
EXACT
o ! L
o 0.1 0.2 t 03 0.4

FIG. 5. Temperature dependence of the specific heat C of
the ¢* system (A=1, v=3). The harmonic phonon contribution
C,n is subtracted. The thick and the thin lines are calculated
from Eq. (29) with (42) and from Eq. (43), respectively. The ex-
act result is taken from Ref. 10.

long as the leading order terms in ¢ are concerned. For
example, the virial expansion of Eq. (40) which is given by
Eq. (21) with py and B, replaced by
172

v e~ " and B,=In

4vy
Tt t

gives the correct expression for B, recently obtained?® by
the transfer-integral method. Figure 5 shows the specific
heat of the ¢* system (A=1, v=3) calculated from Eq.
(40) which is compared with the exact!” and the ideal-
gas'! results. Equation (29) still holds, but now n is given
by

—1
(0]
n=n,+ny=">in 4—;“ e 42)
On the other hand, the ideal-gas phenomenology gives'
172

—1 2v [ 1 1 1 —1/

C—Cy)=A|— —_—— !
cowg ( ph) ot l 2T T, e (43)

for u=0. As seen in Fig. 5, the present theory gives
much better description of the specific heat than the
ideal-gas theory does.

V. CONCLUDING REMARKS

We have given an approximate description of the ther-
modynamics of the classical sine-Gordon system and its
(conjectural) extension to a class of nonlinear Klein-
Gordon systems. The effect of the interaction between
solitons have been taken into account as an integral kernel
of a conjectured Bethe-ansatz—type equation [Eq. (38)],
while the interaction among phonons and relativistic ef-
fect for solitons have been neglected.. Similar BA-type
equations for other soliton-bearing systems can be con-
structed if the linear modes in the presence of a soliton
and the asymptotic behavior of soliton-soliton interaction
are obtained; we need these to obtain f and A(p,p’). Since
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these equations are equivalent to the Toda lattice equa-
tion, the solutions like Eq. (40) can be readily obtained.

In recent neutron scattering experiments on one-
dimensional magnetic systems CsNiF; (Ref. 24) and
(CH;),NMnCl; (TMMC) (Ref. 25) it has been reported
that the observed intensity of the soliton peak is consider-
ably smaller than what the ideal-gas theory of the SG
model predicts. Since the intensity is proportional to the
soliton density n, their observations are consistent with
our calculation (Fig. 3); the temperature range used in
these experiments is roughly 0.2 < ¢ <0.4.

Although we have limited ourselves to the classical
case, it is straightforward to extend Eq. (14) or (38) to the
quantum case in the weak coupling limit (g2/87 << 1),
where the Bose statistics is applied for phonons and the
second term in Eq. (15), the thermal renormalization of
the soliton mass, will be modified. This version of our
theory may be viewed as an extension of the Maki-
Takayama theory?® of quantum statistical mechanics for
soliton-bearing systems within the ideal-soliton-gas ap-
proximation. In this context it is interesting to apply our
scheme to a model (beyond the SG approximation) for
one-dimensional easy-plane ferromagnets CsNiF; and
(C¢H|{NH;3;)CuBr; (CHAB). Recently Mikeska and
Frahm?’ and Fogedby et al.?® have studied the quantum
effect on the specific heat of this model within the ideal-
soliton-gas approximation. However, the agreement be-
tween their theories and experiments®*° is still unsatis-
factory; the theories give too large value of specific heat.
The inclusion of the soliton-soliton interaction will con-
siderably reduce the peak of the specific heat, as we have
seen in Figs. 4 and 5, and the agreement between theory
and experiment will be much improved.
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APPENDIX A: ITERATIVE SOLUTION
OF EQS. (7)—(9)

We know the iterative solitution of Egs. (7)—(9) in the
case that u =0, where the free energy F=Q(u=0) is ob-

tained as a double series in 7 and e ~ /%3512
F=Fq+F,+F,+F;+0 (e %", (A1)
with
o t t? 3 3
Fo=Fy——T|t 4+ 42,
o=Fmn——"T |4+ +7
+T5£38—t4+%t5+0(t6) , (A2a)

172
wo 2 759 897
Foe_ 207, | 2 —i | Ly 27 2 897 3
! cr21 e |1 8 128 " 1024"
75005 , s
— t t ,
32768 TOW)
(A2b)
o 172 2
=212 |2 e'l/’]
Cc Tt
4y 5 4
1 —L——t 1 4y 1
Ol PR ]
_lp 13ln—4—7/—+2 +0(t3) |, (A2¢)
32 t
. 2 172 3
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Cc Tt
3 4y P 22
2 h 4y T
X > n p +12 +0() |, (A2d)

where Fp; is the free energy of the harmonic phonon
given by Eq. (17). To obtain the similar result for u+0,
let us look at the first few steps of the iteration. The first
step is to solve Eq. (7) without the last term. We shall
denote the solution by ug(a), which yield F,. The next
step is to calculate the right-hand side of Eq. (8) with u
replaced by u, and without the last term, which gives the
lowest-order approximation for g; and g;. It is con-
venient to introduce a new function g(a;u) defined by

g(a;p)z%[gs(a)+g§(a)] . (A3)
Note that g =g, =g if u=0. It is easy to find
gola;u)=cosh(Bu)gy(a;0) , (A4)

where g, is the lowest-order approximation for g. Now
we substitute g, into the right-hand side of Eq. (7) to ob-
tain u, the first-order correction to u. Both g, and u,
(which is linear order in gq) contribute to Q,, the first or-
der correction to €. Further iteration yields higher-order
corrections. All the higher-order terms are expressed in
terms of uy and go. The nth-order terms in g, yield F,
in the case that y=0. Thanks to the relation (A4) we get

9290+QI+02+Q3+ ey, (AS)
where
Q, =cosh™(Bu)F, , (A6)

with F, given by Egs. (A2). The expansion (A5) is valid

when e ~'’cosh(Bu) << 1 or B(Mc?— | |)>>1.

APPENDIX B: ASYMPTOTIC EXPANSIONS

We shall give asymptotic solutions of Eq. (40) [which
includes the sine-Gordon case, Eq. (18), as a special case
(v=1)] in some limiting cases.
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A. Soliton gas: Blu.— |p|)>>1

This limit is described in the text [see Egs. (21)—(23),
(26), and (41)].

B. Soliton lattice (liquid): g >pu. and t <<1

When p>p.=Mc?, the quantity z diverges as r—0
like z~t~!. The density of antisoliton ng is much small-
er than the soliton density rg in this region; we neglect the
antisolitons (2 coshBu~eP*). We seek the solution of the
form

4y  —wy/nye
=0 070

Zz= (1+a1t+a2t2+"' ) (B1)

where ng will turn out to be the soliton density at =0
[see Eq. (B4)]. Substituting Eq. (B1) and

lnF(z):zlnz—z—k%lngi+—1#+0(z‘3) (B2)
z 12z

into Eq. (40), we find
1

/e —1=4ve (145", (B3a)
alszel/ﬁo , (B3b)
v
ay=— 38i iige” ™, (B3c)
1%

where 7y=ngc/wy,. Equation (B3a) gives 7, as a func-
tion of u. Substitution of Eq. (B1) into Eq. (42) yields the
soliton density n (=n, in this limit)

2

2/7,
Ay (1—fige’ ™
38442 ° 0

n=ng |1 +0ud)|. (B4

The thermodynamic potential Q obtained from Egs. (19)
and (B1) agrees with that obtained by the transfer-integral
method'* ! up to the linear order in 1.

Up to the linear order in ¢ the soliton density is in-
dependent of the temperature and ) can be calculated
based on a simple physical picture rather than abstract
“Bethe-ansatz” or transfer-integral methods. Using the
intersoliton potential®®

—(wgy/c)

Ulr)=4vMc?e ™ ", (BS)
where r is the intersoliton distance, we obtain the disper-
sion relation of the soliton-lattice vibration (acoustic pho-
non):

.k
sin 3 s (B6)

no

Waclk)=2nnyv

—wy/2cng

v=2Vvoong e (B7)

Here ng ! is the lattice constant determined by Eq. (B3a).
There is also the “optical phonon” whose dispersion is
given by Eq. (11). Therefore the thermodynamic potential
Q will be

Q=no[Ung ") +M*c?—pl+Fpy+F, . (B8)

Here we have introduced the thermally renormalized soli-
ton mass M* defined from Eq. (33) as

M*c?=Mc*—T In(2V'vfBiw,) . (B9)
The phonon free energies F, and F,. are respectively
given by Eq. (17) and

ﬂ

Fo=T [_

O K B (k)]
21

rrno

=T[noln(2V'vfBwy) —wy/2c] . (B10)
We find Eq. (B8) agrees with Eq. (B1) up to the linear or-
derin T.

C. p=p.

In this case z approaches 3 from below as t—0. At

low temperatures (¢ << 1) we therefore have small quanti-

ty & defined by
(B11)

1
Z:T—(S .

The logarithm of the T function in Eq. (40) is expanded
as

2
In[(z)=1 1n7r+51n(47/)+£4-62+ e (B12)
Solving Eq. (40) for 8, we get
2 2
8:-% In2 _717'_6 (In2) o (B13)
In 16vy In 16:/7/

The first term of this result agrees with the transfer-
integral calculation®! but the second term does not. Sub-
stitution of Eq. (B11) into Eq. (42) yields the soliton den-
sity n:

1 2
win: — n2___ ... B9
° In ———16;/}/ In _‘Llétv
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