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The Thomas-Fermi treatment of screening of a point positive charge Ze in a model insulator is
developed. In contrast to the corresponding familiar problem for a metal, the density of states,
which enters into the Thomas-Fermi analysis, is here appropriate to a model band structure with
two bands and a gap. The induced electron density in the conduction band near the point charge,
expressed in terms of the electrostatic potential, is used in forming the Thomas-Fermi equation.
The partial filling of the conduction band near the point charge gives rise to a Z-dependent screen-
ing in addition to that of the usual form due to the background dipole density of the insulator (the
latter is treated phenomenologically). This additional screening in turn leads to the asymptotic in-
complete screening form for the potential: P(r)=Ze/@or, where eo is Z dependent and thus not
equal to the bulk dielectric constant associated with the background.

I. INTRODUCTION

The present paper develops a new Thomas-Fermi
theoretic approach for screening of a positive point charge
within an insulator. We work at temperature T equal to
zero. The approach is strictly akin to the familiar
Thomas-Fermi' (TF) approach for a metal: the induced
electron density is first expressed in terms of the electro-
static potential P(r) by using the principle of minimiza-
tion of the total energy. This relation is then used in
Poisson s equation in order to obtain a differential equa-
tion for P(r). Now the relation between the induced elec-
tron density and P(r) involves the density of electron
states. For a metal, the usual approach is to use a single
parabolic band. For the insulator, in contrast, we use here
a simple model band structure with a gap and naturally
having a qualitatively different density of states. The TF
procedure is then applied using this different density of
states.

The approach used here is to be contrasted with a re-
cent popular TF approach for an insulator based on
Resta's work. In the Resta model there is only a sin-
gle band. Further, in solving the Poisson's equation, an
ad hoc boundary condition is used to introduce the insu-
lator character: this is associated with continuity require-
ments on P(r) and its derivative at some radius R (to be
determined through the continuity requirements), beyond
which the electron density is taken to be constant. The
Resta model entails a number of qualitatively reasonable
features but does not, unlike the present model, build in
the important features of conduction band, valence band,
and gap.

The effective mass of electrons in the conduction band is
denoted by m, . The conduction band is taken to have a
degeneracy of d, . For the present case of a positive point
charge impurity the valence-band effective mass and de-
generacy do not enter. Finally the energy of the direct
gap of the model is denoted by Eg.

Now in the TF modeling we are concerned with elec-
tron occupation of the valence and conduction bands. We
also have implicitly an ion-core system. At a phenomeno-
logical level we assume that the valence band-
electron —ion-core system may be polarized in the usual
sense of there then being associated with it an induced di-
pole density in the presence of an electric field. Thus for a
weak field, our model insulator only responds through a
change in the dipole density according, say, to the usual
bulk linear dielectric constant. On the other hand, in
strong enough fields (as encountered near the point
charge) electrons can be present in the conduction band;
this, then, gives an additional contribution to the screen-

II. MODEL

In our simple insulator model we use the band structure
of Fig. 1. Both valence band and conduction band are
parabolic though the detailed form of the valence band
turns out to be unimportant here. The valence band has a
finite width 8" the conduction band extends to infinity.

FIG. 1. Qualitative form of band structure in our insulator
model: both valence and conduction bands are parabolic; the
valence band has finite width W and the conduction band has
infinite width.
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ing response of the system. Whereas, the dipolar screen-
ing associated with the valence band electrons and ion
cores is treated phenomenologically, the conduction-
electron screening is analyzed within the TF approach.

Let us finally note that the above band structure is to be
regarded as a local band structure within the framework
of the TF theory: the band structure is shifted locally up
or down in energy depending upon the local value of the
electrostatic potential. Also note that for purposes of the
TF aspect of our modeling we assume a uniform positive
neutralizing background.

E=Eg

E=Oj

r=Q

III. THOMAS-FERMI ANALYSIS

Working at T =0, we first obtain the relation between
the conduction band occupation and the self-consistent lo-
cal electrostatic potential P(r) associated with the presence
of the positive point charge. The dipolar density back-
ground component of our model is not treated within TF
but will be added into the eventual TF equation for the
conduction electrons at a phenomenological level.

We nominally make the standard slow variation as-
sumption within TF. Later for semiquantitative purposes,
we will apply the TF results to the rapid variation region
near the point impurity; this is typically done in the TF
treatment of a point impurity in a metal.

Figure 2 qualitatively indicates the shifting of the local
band structure in the self-consistent positive potential
field resulting from the impurity (taken at r =0). For
large r the band structure tends to the unshifted uniform
limit. As r decreases there is first a range of r where the
local conduction-band edge is between the asymptotic
conduction and valence-band edges. In this range the con-
duction band remains unoccupied. Finally, as r is further
decreased, a critical value ro is reached where the local
conduction band edge is at the level of the asymptotic
valence band edge.

Now the asymptotic local valence band is completely
filled. We assume that the solid is very large but finite
(we can ignore surface effects), and therefore we have an
effectively infinite sink of electrons far from the impurity.
This assumption is normally made in the corresponding
case of a metal. Thus when the local conduction-band
edge dips below the asymptotic valence-band edge (i.e., for
r & ro) the conduction band becomes partly occupied; fur-
ther, the conduction band is filled only up to the level of
the (essentially unchanged) asymptotic valence-band edge.
The valence band remains filled for all r. Note that the
above considerations on band filling are based on the prin-
ciple of minimization of the total energy of the many elec-
tron system.

Let us point out that in this model study we assume
that the local-band-structure picture described above

PIC'r. 2. Qualitative behavior of local band structure as a
function of r for case of a positive point charge at r =0. At in-

finity, upper valence-band edge tends to the value E =0. At
T =0 all available states up to E =0 are filled for all r. As r
decreases (t(r) increases causing a downward shift of the band
structure of magnitude e(()(r). In the strong field region r &ro
the conduction band is partly occupied. (Shading denotes elec-
tron filling of states. )

d.
p, (e) =

2~2

2mc

A2

3/2

(e Eg)'~ (e)—Es) . (2)

(Here the energy e is reckoned from the local value of the
valence-band maximum. ) Evaluating (I) using (2) we get

3/2

[ettp(r) Eg] ~, eg(r))—Eg . (3)
d.

5n, (r)=
3~2

2mc

We may then use Eq. (3) in Poisson's equation to obtain
the TF equation for our overall model:

holds for very large fields. Other breakdown effects are
also ignored. Both of these assumptions are normally
made in the usual TF treatment of a point charge in a
metal.

Now the conduction-band occupation is zero for r & ro
and therefore the total electron density is constant in this
region while P(r)&0. From Fig. 2, the range of values of
P for which the conduction band can be partly filled (i.e.,
for r & ro) is seen to satisfy eP(r) )Eg.

For r (ro, we then have for the conduction-band occu-
pation 6n, :

eiI5(r)

5n, (r) = f p, (e)de, eP(r) )Eg, (I)

where p, (e), the conduction-band density of states per
unit volume, is given by'

3/2

[eP(r) Eg] ~ 4rrZe5 (r), eP—(r) )—Eg
4e 2m,

eV P(r)= 3~ A'

—4irZe5 (r), 0&eg(r) &Eg .

(4a)

(4b)
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IV. SOLUTION OF THE TF EQUATION

Equation (4) can be written in dimensionless form as

1
v (x), v(x) &0

dX
0, v(x)(0.

(6a)

(6b)

Here we have removed from the equation the explicit ap-
pearance of the 5-function associated with the point posi-
tive charge. Rather the effect of the 6-function will now
come in through the boundary condition at the impurity.
In going from Eq. (4) to Eq. (6) we have the transforma-
tion relations

(7a)

with

2/3
377 n ex

4 2Z' e I dC C

(7b)

and

Note that since the valence band is filled throughout, the
valence electron density cancels the contribution from the
uniform positive background on the right-hand side of (4).
The phenomenological dipole background polarization ef-
fect comes into Eq. (4) via the quantity e„, nominally tak-
en to be the bulk dielectric constant. Now Eq. (4a) entails
the boundary condition: as r~O, rg(r)~Ze/e„. Thus,
in our simple model we are building in strict linear dielec-
tric screening by the background for all r, i.e., we ignore
breakdown effects in the background, etc.

Note that the TF Eq. (4) for an insulator is naturally
rather different in form from that appropriate to a point
charge in a metal: For a metal we have

V' P(r)=a{[e~+eP(r)] —e~ I 4m'Ze—5 (r),
where a is a constant and eF is the Fermi energy.
Whereas, Eq. (5) can be linearized in P, Eq. (4) is intrinsi-
cally nonlinearizable in P. Naturally the presence of the
gap and the two-band character implied in Eq. (4) also
contrast with Eq. (5).

&o=
Qxp

(8c)

Equations (8b) follow from Eqs. (4b) and (6b). The condi-
tion for continuity of P'(r) at r =rp reads as

ZeP'(r p ) = —
2

=- v'(xp ) = —y,
&o~o

(8d)

where xp=rp//3; xp is the point such that v(xp)=0. The
constant ep in the outer solution relates to the total (in-
complete) screening charge around the impurity, due to
conduction electrons as well as background; in general,
ep&e„. Note that the P(r)- I/r behavior for r & rp, i.e.,
incomplete nometallic screening, automatically come out
of the TF equation here; for a metal we get complete
screening and, in the linear approximation, P(r)-e "/r,
a a constant.

Equation (6) is the same as the standard TF equation
for an atom or ion but the boundary conditions and pa-
rameters are of course different here. "

The numerical solution procedure for Eqs. (6) with Eqs.
(8) is as follows. We first obtain the series form of the
solution for small x (see Appendix) and use that to start
the numerical integration out from a point x, near the
origin. [The second derivative of v(x) is infinite at the
origin. ] The initial slope b2( &0) of v(x) is at our dispo-
sal at this point. We integrate out from x, to the point
xp, where v(xp)=0. Note that if

~
b2

~

is too small, xp
may not exist: the solution may start to diverge away
from the x axis as the integration proceeds. At the point
xp we ask whether the continuity condition v'(xp)= —y
[Eq. (8d)] is satisfied. We repeat the overall procedure
varying b2 each time until we find a b2 for which the last
equality is satisfied. This then gives the desired solution
v (x). [Note that for the range of parameters relevant here
and with keeping terms up to -x in the expansion for
v(x) (see Appendix), adequate accuracy was achieved with
x, —10 —10 ].

We consider a brief qualitative application of the above
discussion. First note that v (x) is concave upward for
v (x ) & 0; also v (x ) and

~

v '(x )
~

are monotonically de-
creasing for v(x) &0. A typical solution v(x) is shown in
Fig. 3. Let us then increase the gap Eg. This implies

r(x)P[r(x)]
v x —pxZe

with

3~ R Ega 2/3

4 pmeZC C

(7c)

(7d)

v(x)

I

&x

In regard to Eqs. (4) and (6) the r =0 and r & rp behaviors
are:

P(r=0)= ~v(0)=Ze
&x~

Zer & rp. P(r)=
EpP

(8a)

where

=-x & xp. v (x) = —y(x —xp),
(8b) FIG. 3. Qualitative form of solution for v(x). For v(x)&0

the curve satisfies Eq. (6a). For x &xo, v(x) is linear; v'(x) is
continuous at x =xo and v'(xo) = —y.
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from Eq. (7d) that y increases. This then implies that the
slope of the outer (i.e., x &xo) solution gets more nega-
tive, i.e., steeper. Referring to Fig. 3, we see that con-
tinuity of v'(x) at xo would then imply that xo would
have to move inward. From Eq. (7a) this implies that ro,
the radius of the free (i.e., conduction) electron cloud de-
creases. This is of course what we would physically ex-
pect for increasing the gap (thereby making it "harder"
for electrons to move into the conduction band).

We emphasize that the asymptotic behavior of P(r) is

P(r) =Ze lear where eo is an effective Z depe-ndent dielec-
tric constant which does not equal the ordinary bulk value
and which reflects the presence of the conduction electron
screening near the point charge (this is intrinsically non-
linear). The deviation of eo from e„ is a further point of
contrast with respect to the Resta model wherein eo is in
effect forced to equal e .
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V. RESULTS AND DISCUSSION

Some results for our model appear in Figs. 4—10. Re-
sults for ro versus Z for various Eg and for the values
e„=10,I,=1 a.u. , and d, =1 appear in Fig. 4. Natural-
ly, for all Eg values ro ——0 for Z =0. As Z increases the
number of induced conduction electrons attracted to the
region near the point charge increases implying an in-
crease in ro. Further, as evident in the plot the smaller
the gap, the "easier" it is for the conduction electron
cloud to build up as Z is increased.

Results for eo versus Z for various Eg and for the
values e =10, m, =1 a.u. , and d, =1 appear in Fig. 5.
For Z =0, eo ——e„ for all Eg: For Z~O, the conduction
electron density decreases faster than -Z, and thus all
screening is due to the dipolar background. As Z in-

0
0

FIG. 5. Results for eo vs Z for various Eg within present TF
insulator model.

creases the nonlinear conduction-electron screening builds
up: this further screening beyond that of the dipolar back-
ground leads to an increase in eo above t . In addition, it
is clear from the graph that decreasing Eg increases E'o,

this follows since a smaller gap must give rise to a larger
conduction electron occupation and therefore more
screening.

Figure 6 contains results for eo versus Z for various e„
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FIG. 4. Results for ro vs Z for various Eg within present TF
insulator model.

FICx. 6. Results for eo vs Z for various e within present TF
insulator model.
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FIG. 7. Results for e(r) for various Z within present TF in-
sulator model.

and for the values Eg ——1 eV, m, =1 a.u. , and d, =1. For
all e, ep tends to e as Z tends to 0; this again is a conse-
quence of the "rapid" vanishing of the conduction elec-
tron cloud for vanishing Z. As Z increases, the conduc-
tion electron screening increases and is manifested as an
increase in ep. We note that the small Z plateau region
where ep=e„ is larger (i.e., extends up to a larger value of
Z) for larger e„. This follows since a larger e„ implies a
larger dipolar background screening of the point charge
(for a given Z) and thus a point-charge field which is ef-
fectively smaller and less able to draw in conduction elec-
trons as Z then increases.

Results for the real space dielectric function e(r) =Ze/
rP(r) for various Z and for the values Eg=0. 5 eV,
m, =1.0 a.u. , d, =1.0, and e =10, appear in Fig. 7. We
note that e(r) tends to e as r tends to 0 for all Z. This
follows since the induced conduction-electron density en-
closed in the sphere of radius r tends to 0 as r tends to
zero; in our model the dipolar background contribution
dominates e(r) for small r. For large r, e(r) saturates to
ep,

' as noted earlier, larger Z implies a larger ep. The
crossover region in r from e=e to 6 6p gets larger for
increasing Z; this is associated with larger conduction
electron cloud radius for larger Z.

Finally, calculations were made for a simple model of
crystalline Si within the framework of the present ap-
proach. In this model we use for the gap the nominal
value: Eg ——1.17 eV and we use for e the empirical value
of the usual dielectric constant e =12. Now the actual
conduction bands in Si are rather more complicated than
the conduction band of our model. Thus we only very
crudely model the parameters m, and d, ; we take
m, =0.6 a.u. (for the actual conduction band minima we
have for the longitudinal and transverse effective masses
mI ——0.98 a.u. and m, =0.19 a.u. , respectively) and we
take d, =4.

Results for e(r) for this model of Si together with

0
0 4 6 8

r(a.u.)
FIG. 8. Results for e(r) for model Si. Solid lines: results for

present model (relevant parameter values indicated on plot).
Dashed line is Resta's result.

VI. CONCLUSION

We have discussed a TF treatment of the problem of
screening of a positive point charge Ze in an insulator.
The approach has paralleled the ordinary treatment of the
same problem for a metal ~ The key difference is in the
use in the case of the insulator of a suitable insulator band
structure (and corresponding density of states), with, in
the present model, two bands and a gap. For this case a
TF equation with appropriate boundary conditions (tied
into the insulator character) was derived. Account of the
induced dipole background of the insulator was
phenomenologically made. We found that the point
charge induces an additional nonlinear conduction band
screening charge of finite radius. For very small r this
screening cloud has no effect on the dielectric response
e(r) and e(0)~e„, the background dielectric constant.
For very large r we found that e(r) had the correct ep
behavior apropos incomplete screening but with an
(asymptotic) dielectric constant ep which is different from

Resta's results appear in Fig. 8. For our model we have
results for both Z = 1 and Z =5. We first note that for r
tending to zero, Resta's result tends to the free-electron
value unity, whereas, our results tend to e„. Resta does
not include a dipolar background and, in fact, in his
model the electron response near r =0 is metallic-like.
For large r our results tend to ep&e„, whereas Resta's re-
sults tend to e„ for all Z. We, of course, again note the
significant nonlinear response aspect in our model as Z is
increased. For our model, the crossover range in r in go-
ing from e(0) to the far field value of e(r) is slightly
larger (somewhat smaller) for Z =5(1) than in Resta's
model.
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e and which is Z dependent; this is due to the presence
of the induced conduction-electron cloud. general nu-
merical results were presented as were model results for
Si; for Si it was shown that the long-range nonlinear effect
was not important for Z =1 but clearly important for
Z =5.

Further work based on this model is planned. Issues to
be addressed are finite temperature effects, effects of ex-
change, the question of negatively charged impurities,
more realistic modeling of the conduction band(s) and im-
plications for shallow impurity levels in semiconductors.
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APPENDIX

We discuss the series solution of the TF Eq. (6) for
small x for the nontypical case where the boundary condi-

v(x)= vo+b tx'i +b2x+b3x i

+b4x +.. . . +b x"

For us, Up ——1/t.„. The initial slope b2 is adjustable here.
We find the following expressions for the first several
coefficients:

0 b3 —3UQ b4 0,
2

b2
b7 ——

1/2 b8 =,& Upb
70 Vp

1/2 2b5= 5 Vp b2, b6= 3 VQ

3
b2 1

9 —
27 Up

252 Up
3/2

b4
]75 2 11 )485 0 2 ]056 5/2 2

Up

3
4 b2

b12 Up+
405 1575 VQ

tion at the origin is vo =v (0)&1 (usually vo = 1, e.g. , in an
atom, or at a charged impurity in a metal). The power
series for v(x) is of the form"
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