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Bethe ansatz for two-magnon bound states in anisotropic magnetic chains of arbitrary spin
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The two-magnon spectra in anisotropic magnetic chains of arbitrary spin are derived by an ele-

mentary method which is an extension of Bethe's original ansatz for spin- —, systems. Applications

are presented for quantum spin chains with uniaxial or Ising Anisotropy as well as chains with

quartic exchange interactions. The nature of certain collective modes emerging in a 1/n expansion
is also clarified.

I. INTRODUCTION

The study of bound states of magnons has been a sub-
ject of considerable interest since the early work of Bethe. '

The Bethe ansatz for multimagnon states provided essen-
tially complete information concerning the bound-state
spectrum of spin- —,

' magnetic chains. Moreover a variety
of one-dimensional problems have been solved exactly by
suitable generalizations of the original ansatz.

The applicability of the Bethe ansatz is, however, limit-
ed to dynamical systems that are completely integrable.
This limitation becomes evident already in the context of
anisotropic magnetic chains of general spin S& —,, for
which integrability is doubtful except in very special
cases. Therefore more conventional methods had to be
employed. For the two-magnon spectra, a Green's-
function approach initiated by Wortis has practically
dominated all studies. This approach works in any di-
mension, provided the ground state is ferromagnetic, and
also yields expressions for measurable quantities, namely
the dynamic structure factors. Extensive calculations of
the latter in one dimension have been carried out by
Schneider and co-workers.

Nevertheless we note that although lack of complete
integrability would be crucial for three-magnon and
multimagnon states, it puts little restriction on the
dynamics of two-magnon states. Indeed, a Bethe-ansatz
type of technique for evaluating the two-magnon bound-
state frequencies of the completely isotropic ferromagnetic
chain of arbitrary spin has already been used. In our
present work we show that in fact the original Bethe an-
satz may be extended to the calculation of the two-
magnon states also in anisotroptc magnetic chains of arbi-
trary spin. Hence we are able to provide an alternative to
Wortis's method for the special case of one-dimensional
spin systems.

The present calculation furnishes a simple expression
for the two-magnon wave function together with the ener-

gy spectrum. Details are given in Sec. II for a chain with
an easy axis of magnetization due to a uniaxial anisotro-
py. The appearance of a single-ion bound state, in addi-
tion to the usual exchange bound state, is confirmed and

clarified. Section III extends the calculation to a variety
of spin chains. Thus we study the effect of Ising anisotro-
py, planar chains in a spin-flop phase caused by a magnet-
ic field and Heisenberg models incorporating quartic ex-
change interactions.

A by-product of this analysis is the illumination of the
nature of certain collective modes emerging in a 1/n ex-
pansion, which are identified with the single-ion bound
states. This and related issues are discussed in Sec. IV.
Our conclusions are summarized in Sec. V.

II. THE TWO-MAGNON STATE

HC O=EOC 0 Eo:—N(J +D)S (2.2)

Let now N„denote the state obtained from No by de-
creasing the azimuthal spin by one unit at the site n. The
one-margon eigenstate is constructed as

N

4, = g e'""0&„, H+) E)4)——
n=1

Ei ED+co, co=2SJ——(l —cosk)+ (2S —1 )D .
(2.3)

Here cu is the one-magnon excitation energy developing a
mass gap for S & —, due to the anisotropy.

In order to gain some insight about the nature of two-
magnon states we consider first the extreme limit of large
D, or J=O. The moments in (2.1) uncouple in this limit.
Two-magnon states can be constructed either by reducing
the azimuthal spin by two units at a single site or by
reducing its value by one unit at two different sites. In

The method will be illustrated in detail for a magnetic
chain described by the Hamiltonian

N

H = —g [J(S„.S„+))+D (S„') ],
n=1

(2. l)
S„=S(S+1), J,D) 0,

assuming periodic boundary conditions. Since both J and
D are positive, the ground state No is fully ordered in the
z direction and its energy is given by
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the former case the excitation energy is

Qt ——D[S —(S —2) ]=4(S—l)D,
whereas in the latter case,

(2.4)

the special case N„„ is the state with the spin reduced by
two units at the site n. Taking also into consideration the
obvious symmetry N„=4 „, a general two-magnon
state may be written in the form

Qn ——2D[S —(S —1) ]=2(2S—1)D . (2.5)
N N

g C„ (2.6)

Clearly then, two distinct two-magnon bound states will
emerge when the exchange interaction is taken into con-
sideration. States of type I may be called single-ion bound
states while those of type II will denote the usual ex-
change bound states. No such distinction is possible in
the limit of vanishing anisotropy.

The actual construction of these states for arbitrary
values of J and D follows steps familiar from the original
Bethe ansatz. Keeping with the notation introduced in
the preceding paragraphs, N„ is the state with two spins
reduced by one unit at the sites n and m. By convention,

n =1m =n

Our task is to determine the expansion coefficients C„
so that %z becomes an eigenstate of the Hamiltonian,

Hq 2=E2 P2=(EO+Q)% p (2.7)

where Eo is the ground-state energy (2.2) and Q is the
two-magnon excitation energy.

We thus insert (2.6) in (2.7) and derive a set of linear
equations for the C„. The calculation is straightfor-
ward but requires some care concerning the following
point. Three cases have to be distinguished, namely,

HN„„=[Eo+4SJ+4(S —1)D]N„„—J [S(2S—1)]' (C&„„+)+@„)„),
H@„„+)——[Eo+(4S—1)J+2(2S—1)D]@„„+)—J[S(2S—1)]' (@„„+N„+)„+))—SJ(4„„+2+@„)„+)),

(2.8)
H4„=[EO+4SJ+2(2S —1)D]4„—SJ(4„+& +4„~ +@„+~+4„~),m ) n +2 .

The corresponding linear equations for the C„read
[Q—4SJ —4(S —l)D]C„„+J[S(2S—1)]' (C„„+,+C„ i „)=0,
[Q—(4S —1)J—2(2S —1)D]C„„+)+J[S(2S—1)]'~2(C„„+C„+,„+))+SJ(C„)„+)+C„„+2)=0,
[Q —4SJ —2(2S —1)D]C„+SJ(C„) +C„)+C„+) +C„+()=0.

(2.9)

Before presenting the complete solution of Eqs. (2.9) we
wish to consider some special cases which anticipate im-
portant features of the general result. Hence

We now turn to the main point of this paper. The
linear system (2.9) is solved through a Bethe ansatz. More
specifically, the third equation in (2.9) is solved by

and

C„„=(—1)", C„„+i——0=C„
Q =4SJ+4(S —1)D—:Qt,

(2.10)
C„=exp[i(k ~ n +k2m +P/2) ]

+ exp[i (k ~
m +k2n —P/2) ],

Q =2(2S —1}D+4SJ[1——,
' (cosk &+cosk2}],

(2.12)

C„„=O, C„„+i
——( —1)", C„=O,

Q=(4S —1)J+2(2S —1)D =Qn,
(2.1 1)

are obvious solutions of (2.9). The significance of these
solutions becomes evident by comparing them with (2.4)
and (2.5} in the limit J~O. As expected, the distinction
between single-ion and exchange bound states persists in
the full problem. However, the simplicity of the exact re-
sults (2.10) and (2.11) was, perhaps, more difficult to anti-
cipate. As we shall see later these solutions correspond to
momenta at the zone boundary.

where the wave vectors k&, k2 and the phase shift P are at
this point arbitrary constants which may be complex. Re-
strictions on these constants arise from extending (2.12) to
the first two equations in (2.9). This is accomplished in
two steps.

We solve the first equation in (2.9) for C„„,
J[s(2s —1)]'"

II II Q 4SJ 4(s 1 )D II 1k+1 8 1 n

(2.13)

which is then inserted into the second equation to yield

[Q—(4S —1)J—2(2S —1 )D]C„„+)+SJ(C„)„+)+C„„+2)
S(2S —1)J

( 2C„„+) +.C„(„+C„+) „+q ) . (2.14)
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(2.15)

It is worth noting that in the absence of anisotropy (d =0), Eq. (2.15) becomes

This equation may be viewed as an algebraic constraint on the constants k &, kz and P by virtue of (2.12). Lengthy but
straightforward algebra leads to the constraint

[I+(2S —1)R]sin[(k
&

—kz ) /2]
cot

2 2$cos[(k
& + k2 )/2] —[1+(2S —1)R]cos[(k

&

—k2) /2]

1+cos( k
& +k z )R= d =D/SJ .

cosk
& +cosk2 —d

k&
cot + =—cot

2 2 2

k2—cot
2

cos[(k
& +kg ) /2]1+(2S —1)

cos[(k
&

—
k2 ) /2]

(2.16)

exp[i(k, +kz)n] .

and reduces to Bethe's expression at S = —,.
To complete the solution of (2.9) we note that Eq. (2.13) may be written as

1/2
cos(k, —P/2) +cos(k2+ P/2)C„„= S cosk

& +cosk2 —d
(2.17)

k) ——u+iv, k2 ——u —iv, P=iNv, (2.18)

where u and v are real. The expression for P given in
(2.18) follows from the boundary conditions. It can also
be shown that v may be assumed positive, negative v lead-
ing to identical results.

Hence we introduce (2.18) in (2.15) and take the ther-
modynamic limit X~ oo to obtain the algebraic equation

cos Q1+(2S —1) exp( —v) =2S cosu,
cosu coshv —d /2

(2.19)

which may be viewed as an equation for v, for a given
momentum u =(k&+k2)/2=%/2. It proves convenient
to work with the variable x = exp( —v) which satisfies the
cubic equation

T

The wave function constructed through Eqs. (2.12),
(2.15), and (2.17) is the general two-magnon state depend-
ing on the wave vectors k& and k2, the latter being re-
stricted only by the periodic boundary conditions. This
wave function describes scattering as well as bound states
of magnons. We concentrate on bound states which are
characterized by parameters k~, k2, and P of the form

x, =(cosu )/d, x2-2S cosu . (2.22)

The corresponding energies calculated from (2.21) read

magnon bound states. Some attention should be paid to
the fact that the total wave vector K=k&+k2 takes
values over a double Brillouin zone. A consistent calcula-
tion requires folding of the zone, as usual, when the cubic
equation yields a root in the interval [0,1] for values of K
outside the fundamental zone. As it turns out, the preced-
ing remarks are irrelevant for the model considered in this
section because the cubic equation possesses roots in the
interval [0,1] only for

~

K
~

&m'. However, folding of the
zone is essential for some models studied in Sec. III.

We are now in a position to analyze in detail the two-
magnon excitation spectrum. We first note that %'ortis's
original result for d =0 follows easily from Eqs. (2.20)
and (2.21). The presence of the anisotropy leads to some
interesting new aspects pointed out by Silberglitt and Tor-
rance. The bound-state spectrum emerging from Eqs.
(2.20) and (2.21) is shown in Fig. 1 for various values of
the anisotropy and 5 = 1. The conspicuous feature of that
figure is that two separate branches develop for d&0.

In order to better understand this spectrum we consider
(2.20) at the zone boundary (cosu=0). Two real roots are
found in the interval [0,1] for d~O,

x + 2(S —1)cosu — x +(1+2dS)x —2Scosu =0 .
cos E4

(2.20)

Qi ——4SJ+4(S —1 )D,

Qt, ——(4S —1)J+2(2S—1)D .
(2.23)

Since v may be assumed positive, the only relevant roots
of (2.20) are real roots in the interval [0,1).

Once a root of the cubic equation is found in the inter-
val [0,1], for a given total wave vector IC, the energy is
calculated from Eq. (2.12) which may be written as

0=2(2S —1)D +4SJ 1 ——x+ —cosu . (2.21)1 1

2 x

In practice, Eqs. (2.20) and (2.21) summarize all the in-
formation needed for calculating the spectrum of two-

These are precisely the values found earlier in the text for
the special solutions given in (2. 10) and (2.11). It can also
be shown that the wave functions calculated from the gen-
eral results (2.12) and (2.17), restricted to the zone boun-
dary, lead to the simple wave functions given in (2.10) and
(2.11). We should warn the reader that the last calcula-
tion involves a somewhat difficult limiting procedure.

Simple inspection of the wave functions (2.10) and
(2.11) suggests that the terminology introduced in Ref. 6
is quite appropriate; that is, states of type I and II should
be called single-ion and exchange bound states, respective-
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ly. Of course, such a distinction is not entirely meaning-
ful inside the zone because the wave function of either
type acquires both single-ion and exchange components.
However, we find this classification instructive and will
adopt it in the following.

The dominant feature of the spectrum for small values
of D is the exchange bound state (type II). This can be
seen from Eqs. (2.23) by forming the difference

Og —Agg ——J—2D, (2.24)

which is positive for D ~J/2. In this range of couplings
the exchange bound state extends throughout the zone
whereas the single-ion state occupies only a small portion
of the zone near the boundary. For D & J/2, the role of
the two modes is interchanged and the single-ion bound
state occupies the entire zone. It becomes dispersionless

for very large anisotropy, with energy 0=4(S —1)D, in
agreement with Eq. (2.4).

To conclude this section we establish that for D &J/2
the exchange bound state at the zone center is separated
from the two-magnon continuum by a finite gap, in spite
first appearances in Fig. 1. A perturbative solution of
(2.20) in powers of d at cosu = 1 yields

x=1— d+ [I+4S(S—2)jd +. . .2S —1 2S —1

4S
(2.25)

0=2(2S —1)D 1—2S —1 D
16S'

This energy is always lower than the threshold of the
two-magnon continuum at the zone center.

S-1 d-0. 0 (b) S=1 d=0. 25

2.5
(c) S 1 0=0.5

"(d)

0 0

FIG. 1. Two-magnon spectra for an easy-axis magnetic chain with uniaxial anisotropy. I and II stand for the single-ion and ex-
change bound state, respectively.
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III. MISCELLANEOUS GENERALIZATIONS

A natural variation of (2. 1) is the easy-plane ferromag-
netic chain described by the Hamiltonian

H= g[ —J(S„.S„+t)+A(S„') —BS„'], (3.1)

B&B,=(2S —1)A . (3.2)
l

where the anisotropy constant A ( = —D) is assumed pos-
itive. Therefore, for weak magnetic fields B, the system
develops a nontrivial ground state with planar behavior.
Any attempt to derive the excitation spectrum by the
method developed in the preceding section fails in this
case.

However, the ground state of (3.1) is ordered in the z
direction if the magnetic field B exceeds a critical value
B„namely,

co = [B—( 2S —1)A] +2SJ ( 1 —cosk ) . (3.3)

The two-magnon bound-state spectrum is calculated from

A=2[B —(2S —1)A]+4SJ 1 ——x+ —cosu
1 1

2 x

(3.4)

where x is a real root in the interval [0,1] of the algebraic
equation

This value is feasible for some planar spin chains of
current interest; e.g., B,=56 kG for the spin-1 chain ob-
served in CsNiF3. We will assume in the following that
(3.2) is satisfied so that the calculation of the preceding
section may be carried over with minor modifications.
We briefly describe the results.

The one-magnon excitation energy reads

x + 2(S —1)cosu +
cosQ

x +(1—2aS)x —2Scosu =0, a =A/SJ . (3.5)

This equation follows from (2.20) by the simple replace-
ment d~ —a. Note that the magnetic field does not
enter Eq. (3.5), its role being solely to ensure positive exci-
tation energies in (3.4) provided that (3.2) is satisfied.

Examples of two-magnon bound states are shown in
Fig. 2. The single-ion bound state appears above the two-
magnon continuum and extends throughout the zone for
sufficiently strong anisotropy (a ) 1.4). An important
calculational detail is that the single-ion bound state
occurs for wave vectors K =2u outside the fundamental
zone. Figure 2 was thus obtained through an appropriate
folding of the zone.

As a further example we consider a generalization of
the Hamiltonian (2.1) to include Ising anisotropy,

H = —Q I J[S„S„+,+S„"S~+,+(1+cr)S„'S„'+,]

+D(S„')'I . (3.6)

II =2(2S —1)D+4SJ 1+a ——x+ —cosu
1 1

2 x

(1+cr)x + 2(S —1)cosu—(1+cr )d
X

coso

(3.7)

+(I+a.+2dS)x —2S cosu =0 .

The spectrum of the two-magnon bound states is now
determined by

S=l. a=2. 0 (b) S=i 3=1.0

(

t

CA

UJ

FIG. 2. Two-magnon spectra for an easy-plane magnetic chain in a spin-flop phase caused by an external magnetic field. The field
was taken equal to its critical value B =42S —1)A.
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Nonvanishing values of o yield significant quantitative
changes in the spectrum but the qualitative picture
remains more or less the same.

As a last example we consider the effect of quartic ex-
change interactions:

~= —g[J(Sn.Sn+ ~)+2« ~n'&a+ i )]
(3.8)

ceases to be the ground state for couplings such that
6 & J. A demonstration of this fact obtains by deriving
the two-magnon spectrum in the region G (J and show-
ing that the excitation energy becomes negative for
6&J.

We will derive the two-magnon spectrum for S =1 us-
ing the method of Sec. II. For this special spin value,
(3.9) may also be written as

where summation over the repeated indices a, b =x,y, z is
assumed. The exchanged constants J and G are taken to
be positive. Hamiltonian (3.8) reduces to the usual
Heisenberg model only for S = —,. We shall study the
case S =1 for which (3.8) is the most general isotopic
Hamiltonian involving two-site exchange interactions.

An equivalent form of (3.8) reads

H = —g[(J+6)(S„S„+()+26(S„S„+))] . (3.9)

It is more or less evident that the state with all spins or-
dered in, say, the z direction, is an eigenstate of (3.9) with
energy Fo —X(J+——36), for all values of the exchange
constants. It is known, however, that the ordered state

I

H = —g[(J —G)(S„S„+,)+2GP„„+)+26],

P„„+)——(S„.S„+)) +(S„S„+))—1,
(3.10)

coq ——2(J+6)(1—cosk) . (3.11)

The general two-magnon state may again be written in the
form (2.6) with coefficients C„satisfying the system of
algebraic equations:

where P„„+~ is the exchange operator for S=1 given
sometime ago by Schrodinger. ' This form of the Hamil-
tonian simplifies considerably the intermediate steps of
the calculation.

Hence the one-magnon excitation energy is found to be

(0—4J)C„„+26(C„+i„+i+C„ i „ i)+(J —G)(C„„+i+C„ i „)=0,
(0—3J—6)C„„+)+(J—6)(C„„+C„+)„+))+(J+6)(C„(„+)+C„„+p)=0,
[II—4(J+G)]C„+(J+G)(C„) +C„+) +C„~ (+C„~+))=0,

(3.12)

where 0 is the corresponding two-magnon excitation energy. This linear system can be solved by the Bethe ansatz.
Indeed, for n&m, the C„~ are given by Eq. (2.12) with 0 now determined as

0=4(J+6)[1——,(cosk i +coskz ) ] .

At coinciding arguments we have

(J —6)[cos(k
&

—P/2)+cos(kz+P/2)]C„„= exp[i(k&+kz)n] .
(J+G)(cosk

& +cosk & ) —2G [1+cos(k, +k z ) ]
The phase shift P is related to the wave vectors k, and kz by

(J + 3G +R)sin[(k
&

—kq )/2]
cot

2 2(J+6)cos[(k~+kq)/2] —(J+3G+R)cos[(k~ —kq)/2]

(J —6) [1+cos(k, +kz)]R=
(J +6)(cosk ~ +coskz) —26[1+cos(k~ +kz)]

(3.13)

(3.14)

(3.15)

k) kq
cot + =—cot —cot

2 2 2 2
(3.16)

In the special limit G =J the above expressions reduce to entirely in terms of the exchange operator when G =J.
The remaining steps are identical to those described in

Sec. II. The two-magnon bound-state energies are calcu-
lated from

which coincides with Bethe s result for the S = —, ideal
ferromagnet. Such a coincidence could have been antici-
pated observing that the Hamiltonian (3.10) is expressed

1 10=4(J+6) 1 ——x +—cosu
2 x

where x is a real root of the algebraic equation

(3.17)

(J+36)x —126cosux +(J+36+86cos u)x —2(J+6) cosu =0, (3.18)
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in the interval [0,1].
As is shown in Fig. 3, only one branch arises in the

two-magnon spectrum, in contrast with the situation
analyzed in Sec. II. To understand this result in more de-
tail we first examine (3.17) and (3.18) at the zone center
(cosu =1):

1 10=4(J+G) 1 ——x+—
2 x

(3.19)

stable bound state except at the zone center. On the other
hand, the root x3 lies in the interval [0,1] for all momenta
but leads to negative excitation energies near the zone
center (see Fig. 3). One should thus conclude that fer-
romagnetic order is impossible for G ~ J.

Since the derived two-magnon spectrum contains only
one bound state, one may think that the single-ion mode
does not play any role in the present model. However, a
closer look reveals a different picture. At the critical cou-
pling G =J the Hamiltonian (3.10) becomes

(J+3G)x —12Gx +(J + 11G)x —2(J +6)=0 . H = —2G g(1+P„„+,) . (3.21)

The roots of this equation are

xi ——1

I9G —J+ [(G —J)(57G+7J)]'"I (3.20)
2 J+3G

I9G —J —[(G —J)(57G+7J)]'~2I .
2(J+3G)

We should distinguish three cases:
(i) G &J: Clearly the only real root is x =x, =1 which

yields a vanishing mass gap. There is only one bound
state in this coupling region, which is the usual exchange
bound state extending throughout the zone.

(ii) G =J: This is a special coupling, as is already evi-
dent from Eq. (3.10). All three roots in Eq. (3.20) become
equal to unity. One would think that more than one
branch will arise in the two-magnon spectrum for nonvan-
ishing momenta. However, solving the full equation
(3.18) for arbitrary momenta, one finds again only one
stable bound state.

(iii) G &J: The picture changes drastically in this re-
gion. All three roots in Eq. (3.20) are real and distinct.
The root x2 lies outside the interval [0,1] and need not be
considered further. Similarly, the generalization of the
root x& ——1 to nonvanishing momenta does not lead to a

O2 ——ge'""4&„„, (3.22)

where we use the notation developed in Sec. II. The cor-
responding eigenvalue reads

Q=4G(1 —cosk) . (3.23)

At first sight, the preceding result appears puzzling.
Had we plotted the energy (3.23) in Fig. 3, we would have
found that the single-ion bound state lies within the boun-
daries of the two-magnon continuum. On the other hand,
the excitation energy (3.23) is real and degenerate with the
one-magnon energy (3.11) restricted to the critical cou-
pling G =J. One may conclude that (3.22) is the limiting
form of a single-ion bound state which is a resonance for
all couplings in the region G &J. For G & J, ferromagnet-
ic order is not possible and a nematic phase is realized
which is characterized by a twofold magnon spectrum. "

Since this Hamiltonian depends on the spin operators only
through the exchange operator, it admits a two-magnon
exchange bound state in complete analogy with the spin- —,

'

ideal ferromagnet. This fact was noted earlier in the text
following Eq. (3.16). Moreover a single-ion eigenstate of
(3.21) is easily constructed as

5
(a) S=1 6/J=i . 0 (b) S=1 G/J=1. 5

CQ
+

M

LLj

C9+

CA

LU

0.0

—0. 5
0. 0

—0.5
0. 0

FIG. 3. Two-magnon spectra for a spin-1 model involving quartic exchange interactions. Note that there is only one stable bound
state for G (J which acquires a negative mass gap for G &J.
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It is tempting at this point to assume that the single-ion
bound state and the one-magnon state join up at the criti-
cal coupling 6 =J to form a doublet which remains de-
generate for all couplings in the region 6 & J. Such an in-
terpretation can be made more precise in the context of
the 1/n expansion discussed in the following section.

IV. THE 1/n EXPANSION

The original calculation of Wortis as well as the
method presented in Sec. II are limited to magnetic sys-
tems that develop ferromagnetic order in their ground
state. Alternative methods are therefore necessary to
study spin systems with more complicated ground states.
A spin-wave theory based on a I/S expansion is, perhaps,
the most commonly used approach for approximate calcu-
lations.

A more sophisticated spin-wave approach based on a
1/n expansion was developed recently in order to account
for the special characteristics of magnetic systems with
planar behavior' and systems involving quartic exchange
interactions. ' Since the 1/n expansion predicts certain
collective modes in addition to magnons, we thought it
appropriate to examine this issue in the light of exact
bound-state calculations. For the sake of simplicity we
will restrict our attention to S=1. A generalization to
arbitrary spin is also available.

Consider the set of operators

T'=n —a a —2b b,
T+ =T"+iT~=V 2(Ra+a "b),
T =n —a*a,
2+ = T +i T"~=—,(n +a "a )+Rb,
B+= T +i T" = , (n +—a'a) b'—R,
C+ =~2(T"'+iT~') =Ra —a*b,

where a and b are ordinary Bose operators and

R =(n —a "a b "b)—'

(4.4)

(4.S}

The ensuing method of calculation consists of inserting
the Bose representation (4.4) in (4.2) and (4.3) and sys-
tematically expanding in inverse powers of n, setting
n = 1 at the end of the calculation.

Hamiltonian (4.2) is expanded holding J;~. =nJ& fixed.
We thus obtain

1 1H =nEp+Hp+ H] + H2+
n n

with

(4.6)

the current examples, a convenient basis for the spin
operators is the canonical spin-1 basis. The appropriate
HP representation may then be extracted from the work
of Sec. II in Ref. 12. We quote the final result

T+—S~ T+&—) (g~g&+g&g~) (4.1) Ep ——— ND+ —, QJi
E)J

at a given site whose label will often be suppressed for no-
tational convenience. For S = 1, these operators are
viewed as 3 & 3 matrices in some definite spin basis. Con-
venient choices of the basis are dictated by the special
dynamical characteristics of the system of interest. There
are nine independent matrices in (4.1), because of the sym-
metry T' = T ', which close the unitary algera U(3).

Using the notation of (4.1) Hamiltonian (2.1}reads

1~p 2 g lJ[a a)+ jai —a) ai —aia)}
I)J

+2(b;*b;+b)*b~ )]+D ga;*a;.
(4.7)

II
~
———gJ,z (a;*az*b; +a; az. b&*).

l)J

H2 ————, gJ;~[2a;*b;b/*a/+(N, +b,"b, )(N +b *b)..

H= — —, QJ,i(T T)')+D gT;

and Hamiltonian (3.8) is written as

(4.2) —a;a&*Ni N; a;a&*]—
N;:—a; a;+b;*b; .

H= ——, g[J;i(T Tg )+2G,q(T Tg )], (4.3)

where we assume summation over the repeated indices
a, b =x,y,z. The notation for the exchange constants used
in Eqs. (4.2) and (4.3) indicates that the current calcula-
tion may be carried out in an arbitrary space dimension.
Hamiltonian (4.2) was studied in Refs. 12 for negative
values of D for which the ground state exhibits nontrivial
planar behavior. Similar Hamiltonian (4.3) was examined
in Ref. 13 for couplings such that G)J where a nematic
phase develops. Here we would like to address the
simpler cases with D )0 and 6 (J for which the ground
state is ferromagnetic and both one- and two-magnon
spectra are known exactly.

The 1/n expansion is derived through a generalized
Holstein-Primakoff (HP) representation of the operators
T' and T' . Since the ground state is ferromagnetic in

Eo is the usual ferromagnetic ground-state energy and Ho
contains information about the normal modes of the sys-
tem. Higher-order terms in (4.7) account for a variety of
physical processes which can be calculated perturbatively.

The excitation energies obtained from the diagonaliza-
tion of Hp read (at n =1)

p)l, D+ [J(0)—J (k)——], Ilg =2J(0), (4.8)

where J(k) is the Fourier transform of J~ defined from

Ji=—ge ' ' J(k) .
—ik(R; —R )

k
(4.9)

In (4.8), p)q denotes the excitation energy of the one-
magnon state created by the operator a and Ak the excita-
tion energy of a two-magnon state created by b.

In the one-dimensional case, we may set J(k) =2J cosk,
so that p)I, D+2J(1———cosk) is identified with the one-
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1 ~ [cosp+ cos(p —k)]
78n. —~ cosp +cos(p —k) —d

d =D/J . (4.10)

The integral in (4.10) is well defined as it stands only
for d) 2, i.e., D) 2J. In this region we perform the in-
tegral explicitly to find

flak ——4J 1+—1—d G

[d —4cos (k/2)]'~
(4.11)

This approximate result is compared with the exact
single-ion dispersion in Fig. 4. It is evident that (4.11) is
accurate near the zone boundary, and adequate at the zone
center, for strong anisotropy d )2.

In the weak-anisotropy region d &2 the integral (4.10)
develops an imaginary part for momenta at the zone

magnon dispersion (2.3). Furthermore, Qk =2J(0)=4J is
found to be equal to the single-ion bound state energy A&

given by (2.23) with S= 1. Recall that 0, is the exact
value of the single-ion dispersion at the zone boundary,
and its limiting value throughout the zone for large aniso-
tropy. Clearly then the dispersionless frequency Ak found
in (4.8) must be identified with the large-n approximation
of the single-ion bound state energy.

Systematic I/n corrections are calculated with ordinary
perturbation theory applied to the effective Hamiltonian
(4.6). Since H, is an odd function of the Bose operators,
the first 1/n correction is obtained by performing
second-order perturbation theory in H] and first-order
perturbation theory in H2. As expected, the corrections
to the ground state and the one-magnon state vanish. It
can also be shown that 02 does not contribute to Qk to
leading order. Hence we write Bk—4J+5Qk where 50k
is calculated through second-order perturbation theory in
H&. In the one-dimensional case and n = 1 we find that

center signaling instability of the single-ion mode. The
real part of the integral must be evaluated with a
principal-value prescription. Hence the I /n expansion
overestimates the anisotropy below which the single-ion
mode ceases to extend throughout the zone. Recall that
the exact calculation of Sec. II yields a critical value
d = —, above which the single-ion bound state is stable for
all momenta.

Nevertheless the overall qualitative picture emerging
from the -1/n expansion is in agreement with the exact re-
sults of Sec. II. Perhaps we should mention that the ex-
change bound state does not arise as a fundamental mode
in the 1/n expansion, just as it does not arise in the 1/S
expansion.

To conclude the discussion of this model we comment
on the fate of the single-ion mode for negative values of D
(D = —A, with A positive), in the absence of external
magnetic fields. As was shown in Refs. 12 the single-ion
mode appears as a resonance together with a gapless mag-
non for anisotropies 2 below a critical value 3, . At the
critical coupling 2, this mode becomes degenerate with
the magnon and a twofold spectrum arises in the region
3 )3, with nonvanishing mass gap.

Our final task is to discuss briefly the 1/n expansion
for the Hamiltonian (4.3) with couplings such that G & J.
The spectrum in the harmonic approximation was found
to be

cui, =2(J +G)(1 —cosk), Qk ——4(J —G cosk ) . (4.12)

The magnon frequency cok coincides with (3.11) and Qk
should again be identified with the single-ion mode.
At the critical coupling G =J, we find that Ak
=4G(1 —cosk) =~k, in agreement with Eq. (3.23).

However, the exact calculation of Sec. III revealed that
the single-ion bound state cannot be stable for any
momentum. To see how the 1/n expansion copes with
this situation we have calculated the next correction to Qk

3.5
S=f d=2. 0 (b) S=1 (3=2. 5

Comparison of an approximate I/n calculation of the single-ion mode (dotted line) with the exact result for an easy-axis
magnetic chain.
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by analogy with Eq. (4.10),

Ak =4(J —G cosk)

2 I" dp [cosp +cos(p —k) ]
—~ 27T Sl —rdk —CoP

(4.13)

V. CONCLUDING REMARKS

One-dimensional spin systems were originally thought
of as convenient mathematical models serving as a testing
ground for various theoretical ideas. While an abundance
of exact results became available, the well-known pecu-
liarities of one-dimensional models appeared to hinder

It is easily seen that the denominator in the integral of
(4.13) develops a zero in p for all values of k and cou-
plings in the region G &J. Therefore the single-ion mode
is indeed unstable over the entire zone. It becomes degen-
erate with the magnon at the critical coupling G =J and a
twofold spectrum emerges for G ~J (see Ref. 13).

their relevance to realistic three-dimensional systems.
However, the situation has changed recently because a
number of quasi-one-dimensional magnetic chains have
been identified experimentally. '

Most of the current work in this area is concerned with
the possible appearance of solitons and other exotic
modes. Therefore it is important to obtain unambiguous
evidence for more conventional magnon bound states.
Experimental progress in that direction seems to be slow
mainly because it proved difficult to directly observe
two-magnon states through standard linear-response
methods. ' ' We hope that the theoretical calculations
presented in this paper will aid future work on this sub-
ject.
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