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Effect of electron-phonon interaction on spin susceptibility in 215 compounds
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We calculate the effect of electron-phonon interaction on the long-wavelength static spin suscepti-
bility P,p in a normal metal for the case when the electronic density of states N(c) cannot be taken
as constant within the range of several times the maximum phonon frequency Q,„(A'=1) around
the Fermi level. Such a situation may exist in some of the A15 compounds and in other narrow-
band systems. It is found that the electron-phonon interaction can affect the temperature (T) depen-
dence in P,p(T). The effect is dominated by the electron damping at high temperatures which effec-
tively smears the peak in X(c), thereby reducing the value of P p(T) at high T below its zero-
temperature value. We conclude that the analysis of the magnetic susceptibility data on A15 ma-
terials based on a simple picture of noninteracting band electrons may overestimate the sharpness of
the peak in X(c).

I. INTRODUCTION

Many vanadium-based 315 compounds have magnetic
susceptibility 7 which decreases with increasing tempera-
ture T (Ref. 1). The strongest temperature dependence is
found in V3Si and in V3Ga which have a large supercon-
ducting transition temperature T, . When either a high-
T, V3Si (Ref. 2) or a low-T, V3Ge (Ref. 3) is disordered
by radiation damage, the transition temperature, the mag-
nitude of 7, and its temperature dependence are reduced
[Figs. 1(a) and 1(b)]. A similar effect is observed in
(VI „Cr„)3Si (Ref. 4) where T„X, and

~

dXldT
~

de-
crease with increasing x [Fig. 1(c)]. The conventional in-
terpretation of T dependence in g for 215 compounds is
in terms of a sharp peak in the electronic band density of
states N(s) near the Fermi level. In the simplest picture
of noninteracting band electrons the spin susceptibility is
given by

X,p(T)=2IJ, tt f dsN(c)
+ oo af (s)
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the well and large electron concentration) the electron
spins are more correlated than at low T (small depth of
the well and small electron concentration). Therefore it is
easier for an external magnetic field to polarize the spins
at low T, i.e., dXldT&0.

In this paper we consider the effect of the usual

and is temperature dependent on the scale given by the
width of the peak in N(E) (ptt is the Bohr magneton and

f(s) is the Fermi function). In this model, which we will
call the conventional model, disorder smears N(s), there-
by reducing X,~ and

I
dX,„!dT~. More recently Yu and

Anderson have proposed a different mechanism for the
unusual physical properties of 215 compounds, including
the temperature dependence in X. In their model it is the
large electron-phonon coupling at high temperatures
which causes the electrons to provide an effective double-
well potential for the individual transition-metal atoms.
The strength of the electron-phonon coupling and the
depth of the double well decrease with decreasing tem-
perature. The depth of the well is proportional to the con-
centration of the electrons near the minima in the poten-
tial. This in turn implies that at high T (large depth of
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FIG. 1. Experimental magnetic susceptibilities for three
vanadium-based A15 compounds. (a) V3Si after Guha et al.
(Ref. 2). (b) V3Ge after Solleder et al. (Ref. 3). The lower of
the two curves labeled "irradiated" corresponds to one order of
magnitude larger irradiation doses. (c) (Vl „Cr„)3 Si after
Handstein et al. (Ref. 4).
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electron-phonon interaction on the spin susceptibility of
A 15 compounds within the conventional model. The
basic physical idea is quite simple. At temperatures
k~T—=0, ,„, where 0,„ is the maximum phonon fre-
quency (30—50 meV for A15 compounds) and kz is the
Boltzmann's constant, the electron lifetime re ph d-ue to
electron-phonon scattering is of the order of Q,'„(Ref. 6)
even for the electrons at the Fermi surface. Thus if the
zero-temperature band density of states N(s) has a struc-
ture on the scale Q „near the Fermi level, at tempera-
tures k&T=-0 „this structure is washed out. This in
turn has an effect on susceptibility which is analogous to
the effect of electron-impurity scattering on X,p (Fig. 1).
However, we will also show that there are subtle effects of
electron-phonon interaction on X,~ at low T.

The paper is organized as follows. In Sec. II we present
the theory of X,p for the case when N(s) varies on the
scale of 0, ,„. We will follow the work of Pickett except
for presenting the theory on the real frequency axis which
enables us to follow the temperature dependence in the
quasiparticle density of states

Nqp(co)=g ——I mG( slee +iO )
1

k

where 6 is the electron Green's function. In Sec. III we
present the numerical results for X,p(T) with a discussion.
Although our numerical calculations are not intended to
reproduce experimental results for X(T) of any particular
A15 compound, but rather to illustrate the effects of
electron-phonon interaction on X,p(T), we perform the
calculations taking for N(s) and for the Eliashberg func-
tion a (Q)F(Q) the values appropriate for V3Si. Section
IV contains the conclusions.

I——Im{ co+i 0+ [E—q+p&H p(H—, T)]
k

—X—(k, co+i0+) I (5)

In Eq. (5) H is the magnetic field, p(H, T) is the chemical
potential, Ek is the electronic band energy measured rela-
tive to the bottom of the band, and X+—is the self-energy
for spin-down (-up) electrons.

The spin susceptibility at temperature T is given by

aM
Xp( T)—: ~ 0

V+ +.iV

= —2p, z f defoe f(co)

Xg ——Im[ G (k, co+i 0+ )
k

X I (k, co+i 0+)]

where by definition

aG~ '(k, co+i 0+)
I (k, co+i 0+) —=

a(+p,,H)

(6)

Here f (co) = [exp(Pco)+ 1] ' is the Fermi function,
P=(k&T) ', and N+(co) are the fully dressed densities of
states for spin-down (-up) electrons

1
N+(co) =g ——ImG+(k, co+i0+)

k

II. THEORY

The Pauli contribution to the magnetization M at tem-
perature T and at magnetic field H is

aX +(k,m+i —0+ )

a(+p~H)
Here we have assumed that

(7)

M =pg[~+(H, T) .~ (H, T)], (3)

where ~+~ ~
is the number of spin-down (-up) electrons

(we take the Lande factor to be —2):

aX+(k, co+i 0+ )

a(+i,H)
ar-(k, ~+i 0+)

a( —p~H)

+ Oo 1

defoe

co ——ImG+ k, ~+i 0+
k

= f den e f (co)N+(co) .

which in turn implies (ap/aH)
~ ~ 0

——0. The latter
equality was used in obtaining the second line of Eq. (7).

We adopt the isotropic approximation, i.e., we as-
sume that the k dependence of various quantities enters
only via Eq. In that case Eq. (6) reduces to

X,p(T) = —2@~ f

defoe"

f (co) f dE N(E) Im — G(E,co+i 0+)I—(E,co+i 0+)

In the next step we want to separate the contributions of
various interactions (electron-phonon, Coulomb, and
electron-impurity) to X,p. Let a~a be the electronic energy
of noninteracting electrons measured relative to the chem-
ical potential pb at T=0 for the case when only the
Coulomb interaction among the electrons is considered.
The corresponding density of states is

N0(s) =g 5(s —spa)
k

(10)

6pb =p —pb

If p is the true chemical potential at T =0 for the case
when all interactions are included, we define
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—1
+i ~max &&~ &&I b (12)

(we take A'= 1). There are two types of (Ekp, cp) regions:
(i) the "near" region, where Ekp and co & E, and
(ii) the "far" region, where Ekp or co & E.

In the near region, the k dependence of the electron-
phonon self-energy X, ~q p and of the electron-impurity
self-energy X;o can be ignored. Also, in the near region
the Coulomb self-energy Xc can be treated in the quasi-
particle approximation, i.e., we can take Xc as real and
expand it around c.k, ——O, co=0

We will assume that Q,„«pb and that ~, '&0,„,
where ~; is the electron-impurity scattering time. Thus
there is an energy E such that

ar, (0) ar, (0)
Xc'(Ekp cp +i 0+ ) =Xc(0)+ Ekp+ co, (13)

~&ko Bco

where the argument zero in various quantities on the left-
hand side means that they are evaluated at E,ko=O and
co=0. Thus in the near region the full Green's function

G(k, co+f 0+)= [ co+~0+ —ekp+5pb 2—, ph p(k, ci)+i 0 )

—X; p(k, co+i 0+ ) Xc(—k, co+i 0+ )]

(14)

can be written as

G(k, co+i 0+)=Zc '
~ co+i 0+—

where

ax, (0)Zc=—1—
BQ)

ar, (o) r, (0)
1+ +

Zc ~~ko ZC
+5p X,—ph(co+i 0+) X;(—co+i 0+) . (15)

(16a)

5p=5pb/Zc ~

2, ph(co+i 0+)=2, ph p(co+i 0 )+IZ c,

X;(c0+i 0+)=X; ( pic+i 0+)/Zc .

(16b)

(16c)

(16cl)

In the far region X, „h p and X; p can be ignored compared to other quantities in the expression for G, Eq (14). .For the
purpose of calculating X,~ we will use the quasiparticle approximation for Xc even in the far region and thus we will use
the expression (15) for G for all k and cp. With this approximation the expression (6) for X,~ becomes

g,~(T)= —2pz f dc' e +f(co) f deep(Ep)

——Im Zc ' &@+&0
1

vr

ep ar, (0) r, (0)
1+ +

Zc ~~ko Zc
—2

+5@—X, ph(co+so+) —X;(cp+io+) .

h o BX'o

a(+p H) a(+p H) a(+p H) H=O

= —2pz dcue co dcN c.

1——Im [cp+E 0+ —E+5p'X, ~h(co+io—+)—X;(cp+io+)]

ar,-+,„, ax;+,„, ax,'-
a(+i,H) „, a(+&,H) „, a(+i,H) H=0

ax, (0)
X Zc 1+

~~ko
(17)

where

el, p aXc(0)
1+

ZC ~~ko

&c«)+ Z
(18)
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and

Xc(O) aXc(O)
Np c.— Zc/

Zc ~~ko
=N(E)

(19)

is the band Coulomb quasiparticle density of states. If we introduce the quantity Ac by

~ + 1
Ac(c.,co+iO+) =-

Zc

p can be written as

aX (E,~+io+)1—
a(+PBH)

(20)

X,p( T) = —2p B f dao e 0 f (rp)

+ OO 1
& f «N(e) ——Im G (E,cir+io+)

aX, ~ (hcp+i0+) 1 aX, (co +io+)
X 1—

Ac a(+PBH) H =0 Ac a(+PBH) H 0

Ac(E,~+iO+)-
ax, (o)

1+
~&ko

(21)

where 6 is the electron Careen's function which includes
only the Coulomb renormalized electron-phonon and the
electron-impurity self-energies

G(E,co+i 0+)= [ co+i 0+ —E+5p

X, pp(—co+i 0+) X;(co+—i 0+)]

(22)

The quantity Ac/I+aXc(0)/aekp leads to the Coulomb
enhancement of X,p. If Ac is large compared to
aX „/a(+i BH) ~H 0 and aX;, h/a(+p HB) ~H p only
Coulomb interaction contributes to the susceptibility
enhancement. In our numerical calculations we will
evaluate expression (21) for X,~ with A, and
I+aX, (0)/ask 0 set equal to one. This will enable us to
estimate the size of electron-phonon and electron-impurity
contributions to the enhancement of P p as well as the im-
portance of the self-energy effects entering via G. This
means that our numerical values of X,~(T) would have to
be multiplied by the (possibly temperature-dependent)
Coulomb enhancement factor if they are to be compared
with the experimental results. Before proceeding with nu-
merical calculations we want to point out the difference

between the electron-phonon self-energies X, ph o and
X, ~z, Eq. (16c). X, ~h p is obtained with screened and
Coulomb vertex corrected electron-phonon matrix ele-
ments, while the matrix elements in X, „h are also
Coulomb renormalized. ' The Eliashberg function
a (Q)F(Q) obtained from inversion of the superconduc-
tive tunneling data contains the latter type of matrix ele-
ments. '

III. NUMERICAL RESULTS AND DISCUSSION

aX (~+iO+)
a(+PBH)

(23)

The self-energies which enter G were obtained by solving
the integral equations"

As explained in Sec. II we calculate the spin susceptibil-
ity by suppressing the Coulomb enhancement factor, i.e.,
by evaluating Eq. (9) with G, Eq. (22), instead of G and
with I given by

aX,„(~+iO+)
r(~+i 0+)= I—

a(+PBH) H =0

(rp'
X, „h(ro+io+)= f de' f dna (II)F(Q)

N(0)
1 f ( —co')+, f (ro')

1

Q) —6) —0 + l 0 CO —CO +A + 1 0

+" N(e) - a (Q)F(Q)+ de f dQ
B [G(ere —0+i0+)+G(Erp+0+i0+)],

N(0) eI'"—1

X;(ro+io+)= —f de G(e,co+io+),+ 1 1 +~ N(E)—
2r; m. —~ N(0)

(24)

(25)
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together with the equation which expresses the particle
number conservation

f de, N(e)= f droe f(ro)Nqz(ro) . (26)

Equation (26) determines the shift 5p in the chemical po-
tential. Here Nq~(ro) is the quasiparticle density of states
defined by Eq. (2), with G instead of G. We point out
that in principle the Eliashberg function a (II)F(Q) may
vary with temperature because of the temperature depen-
dence of the phonon frequencies. Also disorder may af-
fect the electron-phonon matrix elements, the electronic
density of states which enters the a F and the phonon fre-
quencies. ' The neutron-scattering experiments' on V3Si
and Nb3Sn at T =300, 77, and 4 K suggest that the tem-
perature dependence of the phonon density of states F(A)
may be ignored for the purpose of evaluating X, ~h in the
susceptibility calculation. Also it has been recently shown
by Mitrovic, ' that much of the disorder dependence of
a F in Nb3Sn deduced' from the tunneling experiments
can be accounted for within the conventional model for
315 compounds. This in turn implies that to a good ap-
proximation one can use the Eliashberg function for a
"clean" compound in solving Eqs. (24)—(26) for different
amounts of disorder, i.e., for different values of ~;. In our
numerical calculations we have taken a (Q)F(Q)
= CG(Q, ), where G(Q) is the generalized phonon density
of states for V3Si measured' at T =77 K. The value of

t

N(e)=NO 1+, , e(e+pb),
era a2+(E+b)2

(28)

where 6 is the step function and the bottom of the band,
—pb, was taken to be —0.6 eV. The area under
N(e)/N(0) between —0.6 and 0 eV which appears in the
condition (26) was conserved to 0.1%. Thus the estimated
accuracy of the shift 5tt in the chemical potential [see Eq.
(22)] was 0.5 meV which is equal to the smallest ro'-mesh
size in Eq. (25) for X, ~h.

The vertex function I', Eq. (23), was obtained by solv-
ing the integral equation

constant C was chosen so that

max
A,:—2 f dQa (Q)F(Q)/Q=1 . (27)

This choice for a F in V3Si gives the superconducting
thermodynamic properties which are in excellent agree-
ment with experiments. '

As far as the effect of electron-phonon interaction on
g,„ is concerned, the detailed shape of N(c) is important
only in the region of several times Q,„around the Fermi
level (this will not be the case for the Coulomb interaction
which "digs" more deeply into the Fermi sea). Thus we
will approximate N(e} by a Lorentzian superimposed on a
constant background

I(ro+iO'+)= 1+f de' f dE ——Im[G (E,ro'+i 0+)I (ro'+i 0+)]

X dQa2QF Q
1 1

+ f ( —ro')+, f (ro')
co —co —0+10 6) —CO +0+l 0

dc dQ G c,~—0+iO+ I co —A+i 0+

+ G (E,ro+II+i 0+)I (ro+II+i 0+)]

1 1 +" N(e) —
2+ — dc. G c.,co+i 0+ I cu+iO+

2r; n —~ N(0)
(29)

This integral equation was derived from Eq. (23) by dif-
ferentiating Eqs. (24) and (25) in the presence of the mag-
netic field, and assuming that a F is field independent.
We point out that if N(e) is taken as constant the integral
Eq. (29) has solution I = 1. Thus the electron-phonon and
the electron-impurity interaction may contribute to the
enhancement of the normal-state static spin susceptibility
only if N(s} is varying on the scale of Q,„around e=0.

The first set of calculations was done for

I.O

0,8

0.6

a=l5meV, b=0meV, g/'7, a=I

a =15 meV, b =0 meV, and g/(na)=1
[see Eq. (2&)] which were deduced by Handstein et al. 4

for V3Si from the analysis of X(T) based on Eq. (1). Also
we have set 1/v;. =0. In Fig. 2 we show the temperature
dependence of the quasiparticle density of states Nq~(to),
Eq. (2), together with the bare density of states N(ro).
Note that at low T Nq&(co) is narrowed compared to N(ro)
due to renormalization by the electron-phonon interaction.

I I I

-40 -20 0
Qj (meV)

I I

20 40

FICx. 2. Quasiparticle densities of states Nq~(co), Eq. (2), at
three different temperatUres. The bare N(co), Eq. (28), is given
by the solid line. The Lorentzian parameters are a =15 meV,
b =0 meV, and g/(m. a) =1.
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a =15 meV, b= 0meV, g/7Ta =
I

I 0

09

08
cq K

07
CU

CORRECTED

05—
I I I I I I I I I

30 60 90 120 150 180 210 240 270

T (K)

FICx. 3. Spin susceptibility P,~(T) calculated for a =—15 meV,
b =0 meV, and g/(~a) =1. The meaning of different curves is
described in the text.
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FICx. 4. Real and imaginary parts of the vertex function I
due to electron-phonon interaction at two different tempera-
tures, calculated for a = 15 meV, b =0 meV, and g /(~a) = 1.

This effect is explained in great detail in Ref. 11. As the
temperature is increased, Nqz(co) becomes more and more
smeared due to decrease of the electron lifetime (see Sec.
I). In Fig. 3 we show the calculated X,~(T) (the bottom
solid curve). We call this susceptibility "dressed and ver-
tex corrected" because it contains the self-energy effects
which enter the expression (9) for X,z via G, plus the ver-
tex function I . In the same figure we show the "bare"
X,z(T) which is obtained by using Eq. (1). The difference
in magnitudes of these two susceptibilities should be not-
ed. Also note a relatively small difference in dX,&(T)/dT
between the two curves. Later on we will demonstrate
that this latter feature is due to a particular choice of the
band density of states N(E). To find the relative impor-
tance of the self-energy effects we have also evaluated Eq.
(9) with I set equal to 1. The corresponding X,~ is called
"dressed" in Fig. 3. It is seen that the vertex function I
due to electron-phonon interaction has a small effect on

p Finally we include in Fig. 3 the susceptibility which
one would obtain from Eq. (1) by naively replacing N(E)
with Nqz(ET). , That susceptibility will be called "quasi-
particle" X,p.

In Fig. 4 we show the real and imaginary part of the
vertex function I (co+i0+) at two different temperatures.

col (q, co;p, v) —q. I (q, co;p, v)

=G '(p+q, v+co) —G '(p, v) (30)

by taking the limit q~O first, then dividing both sides of
Eq. (30) by co and finally taking the co~0 limit (here cu

and q are the frequency and the wave vector of the exter-
nal field, while v and p are the corresponding quantities
for one of the electron lines which leaves the vertex). In
other words, the Ward identity I =1—BX/Bco does not
give the vertex function which is needed in calculation of
X,~(T). This of course is not to say that the vertex func-
tion may violate the Ward identity. Our vertex function,
Eq. (29), includes the ladder-type diagrams as explained in
Ref. 7. Engelsberg and Schrieffer' have shown that this
ladder approximation for the generalized vertex I—:(I,I )

in the electron-phonon problem satisfies the Ward identity
(30). Thus our susceptibility calculation does not violate
the basic conservation laws. Later on we will show that
the zero effect of electron-phonon interaction on X,z( T)
for the case when N(e) can be taken as constant follows
from our theory.

The puzzling feature of the dressed X,p in Fig. 3 is the
reduction in its magnitude at low T compared to the bare

p One may be tempted to argue that near T =0 only
the values of N(co) [or Nqz(ru)], X~(co+i 0+)
=ReX, ~ (coh+iO+), and Xq(co+i0+):—ImX, ~ (coh+iO+)
at co=0 should enter X,~(T). Then since X&(0)=X2(0)=0
at T =0, there should be no difference between the
dressed 7,p and the bare X,p near T =0. In fact, one may
guess at first that there should be no difference between
the dressed X,p and the quasiparticle X,p at all tempera-
tures. To find the relative importance of X& and X2 in
determining the X,p, we have calculated the dressed 7,p by
suppressing X] and/or X2. The results are shown in Fig.
5. We point out that X,z(T) calculated with both X~ and

Note that with N(e) symmetric about e=O,
Rel ( co+ i 0+ ) [Im1 (co+ i 0+ ) ] is an even (odd) function
of cu. The small effect of I due to electron-phonon in-
teraction on X,z(T) is due to a small deviation of ReI and
ImI from 1 and 0, respectively, for our choice of N(c, )

and a (A)F(Q). We believe that this will be the case for
any of the 315 compounds. Note that the magnitude of
I —1 decreases with increasing temperature. In the recent
literature on the heavy-fermion compounds' there is a
claim that there is no effect of electron-phonon interac-
tion on the long-wavelength static spin susceptibility due
to quite general reasons. It is claimed that the Ward iden-
tity (a consequence of the conservation laws of the system)
requires the electron-phonon vertex corrections in X,~(T)
to be equal to [1—c)X, „h(co)/c)co] which is precisely can-
celed by X, ph in the denominator of the Green's function,
when X, ~h(k, co) is expanded about k =kF, co=0 and
when its weak momentum dependence is utilized. This
argument is wrong for the following reason. To get the
long-wavelength static susceptibility from the general
momentum and frequency-dependent retarded susceptibil-
ity X(q, co +i 0+), one has to take the limit co~O first, and
only then take the limit q~O (Ref. 17). However, the
above-mentioned Ward identity is obtained from the "gen-
eralized" Ward identity'
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a=l5meV, b=0 meV, g/7Ta=l Nqz =Nqz(0) =N(0) and Eq. (32) would give the usual re-
sult

I.O

0 g

0.6

05—

I I I I I I I I I I

30 60 90 I 20 150 I80 2IO 240 2 70 300

X,„(0)=2p~N(0) .

Thus in the limit of constant N(E) the electron-phonon
interaction does not affect X,~(0). However, if we have a
symmetric peak in N (E), then

Nqp( 0—,„)+Nqp(0)
qp

and, since at T =0 Nq~(0) =N(0), we get

X (0)=2 ' N(0)—
N (0) N(——0,„)

2

FICx. 5. The dressed susceptibility +,p(T) calculated with or
without X& =ReXe-ph and/or X2=—ImXe ph.

X&(co)= —Atter(co)+Xi(0), (31)

X2 set equal to zero is identical to the bare susceptibility
calculated with Eq. (1). Note that the curve calculated
with X& ——0 and 22&0 meets the dressed susceptibility at
about 200 K, as one would expect, since the effects of
electron-phonon renormalization are gone at kz T which is
a sizable fraction of Q,„(our ct F had 0,„=50 meV).
For the same reason the curve calculated with X»0 and
X2 ——0 meets the bare susceptibility at high T. Thus the
most dominant effect of the electron-phonon interaction
on 7,P at high T is via X2 which smears the peak in
Nqz(to) [Fig. 2]. This conclusion is supported by Fig. 3,
where one can see that the quasiparticle X,P is a good ap-
proximation to the dressed g,P at T) 150 K. Figure 5

suggests that X& has the biggest effect on the value of the
dressed X,P at low T. The question is why the renormali-
zation due to electron-phonon interaction decreases the
value of X,~(T) below 2p&N(0) at low T. To answer that
question we perform in the Appendix an approximate
analytical calculation of X,~(0) for the case of N(e) sym-
metric about T =0 using the model

&2p+N(0) .

In the numerical calculation A,
—= —8ReX, ~h(0)/Bto=0. 7

and [Nqz(0) —Nqz( —0 „)]/2 =N (0) /4 (see Fig. 2),
which gives

X,p(0)/[2pgN(0)] =-0.9

in agreement with our detailed numerical calculation of
the dressed X,~ (see Figs. 3 and 5).

We should point out that in our calculation of X,~(T)
with a symmetric Lorentzian model for N(e) there was
no shift in the chemical potential within the numerical ac-
curacy (0.5 meV). Thus none of the results for X,~(T)
with a symmetric N(e) is affected by 6p.

Finally we address the temperature dependence in our
calculated X,~. As noted before, there is little difference in
the shapes of the two solid curves in Fig. 3 (or in Fig. 5).
In particular we find a conjecture, ' that the strong cou-
pling effects (viz. the self-energy effects) increase the tem-
perature dependence in X,~ by (1+A.) for N(E)&const, to
be incorrect. Also the quasiparticle X,~ [the one obtained
by replacing N(e) in Eq. (1) by Nqz(e)] greatly overesti-
mates the temperature dependence of the spin susceptibili-
ty. In the remainder of this section we show that a simi-

where r(co) is some function of co which is 1 for co close to
0 and is zero for

l
co

l
)0,„; the parameter A, represents

—t) ReX, ~h(0)/Bco [it is not equal to A, given by Eq. (27)
in the case of a nonconstant N(E) near E=O (Ref. 11)].
The factor r(co) in Eq. (31) simulates the fact that X&(co)
becomes ineffective at large

l

co l. This feature of X& is
crucial for obtaining correct Ualue of X,z(0). The result of
the calculation in the Appendix is

O

3
Q.

z I

a = 40 meV, b = -50 meV, g/77 a = 20

2 Nqp(0)+A. Nqp
X,p(0) -=2pg

1+X
(32)

where Nqz is the average of Nqz(co) over the interval
[ —Q,„,O]

I I

—80 -60 -40 -20 0 20 40 60
4J ( meV)

80

1XqP: ~

dt's

EqP CO

max maX
(33)

Note that if N(e) was constant in the range of several
times Q,„around the chemical potential, we would have

FIG. 6. Quasiparticle densities of states Nq~(co), Eq. (2), at
three different temperatures with a Lorentzian model for N(c, )

(solid curve). The arrows indicate the position of the chemical
potential at each temperature.
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FIG. 7. Spin susceptibility P,~(T) calculated with an asym-
metric model for N(co) (Fig. 6). The meaning of various curves
is explained in the text. The lowest pair of curves was calculat-
ed including the electron-impurity scattering with 1/(2~;)=20
meV.
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FICx. 9. Vertex function I due to electron-phonon interaction
at T = 1 K calculated with an asymmetric N (~) (Fig. 6).

larity in shapes of the bare X,„and the dressed (or dressed
and vertex corrected) X,z is not a general result. It is
specific to our particular choice of the symmetric
Lorentzian shape of N(E).

We have also calculated X,~(T) for a broader peak in

N(e) with

a =40 meV, b = —50 meV, and gl(era)=20 .

The resulting N(e) is given by the solid curve in Fig. 6
and it approximates the detailed shape of N(s) for V3Si
as calculated by Mattheis and Weber. In Fig. 6 we also
show the corresponding Nqz(co) at three different tem-
peratures, indicating the position of the chemical poten-
tial. We point out that up to T =60 K 6p is canceled by
ReX, ~h(0) in the denominator of Eq. (22) (with I i~; =0).
This in turn implies very little difference between the
value of Nqz at the chemical potential and N(0) at these
low temperatures (see Fig. 6). In Fig. 7 we give the results
of our numerical calculations of X,~. Now the dressed (or

a =40 meV, b=-50meV, g/7Ta = 20, I/2Z = 20meV

O

3
o

Z

I I I I I I I I I

-80 -60 -40 -20 0 20 40 60 80

(meV)

FICs. 8. Quasiparticle densities of states Nqz(cu 1, Eq. (2), cal-
culated including electron-impurity scattering with 1/(2~;) =20
meV. The solid curve gives the bare N (co).

the dressed and vertex corrected) X,~ is much more tem-
perature dependent for T & 60 K than the bare 7,p. As we
have discussed earlier, this is mainly due to ImX, „h which
effectively smears the density of states. In the same figure
we show P p calculated including both the electron-
phonon and the electron-impurity interaction with
1/w;=40 meV. The electron-impurity scattering effec-
tively smears the density of states even at low T (see Fig.
(I), thereby reducing X,~(0) and the slope in X,~( T). Final-
ly in Fig. 9 we show the electron-phonon vertex function
which comes into the susceptibility calculation for the
asymmetric Lorentzian N(e). Note that Rel (Iml ) is
not an even (odd) function of co due to the asymmetry in
N(E).

IV. CONCLUSIONS

We have shown that the electron-phonon interaction af-
fects the long-wavelength static spin susceptibility X,~(T)
once the electronic band density of states N(c. ) varies on a
scale of several times the maximum phonon frequency
0 „near the Fermi level. At temperatures k&T-O,
the damping of the electronic states near the chemical po-
tential is so large that any structure in the density of
states is washed out. This in turn leads to a decrease in

p
at high T. At low T the renormalization of electronic

energies near the Fermi level affects the value of X,~(0).
This effect is important only if N(e) has a structure in
the interval E

I

&0, ,„. Our calculation did not include
all effects of the Coulomb interaction. The electronic
band density of states N(c, ) was assumed to be dressed by
the Coulomb interaction, but we left out the Coulomb
enhancement of X,~( T). As discussed by Pickett the
electron-phonon self-energy effects may lead to a
temperature-dependent Coulomb enhancement of P p.

However an accurate calculation of X,p including both the
Coulomb and the electron-phonon interaction, as well as
the details of the band structure, would be a formidable
task. The main conclusion of our analysis is that the
shape of N(e) deduced from X,~(T) by applying a simple
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Eq. (1) cannot be trusted. In particular broader peaks in
the band density of states N(E) may give the observed
temperature dependence in the magnetic susceptibility of
A15 compounds if the interactions are properly taken into
account. Effects similar to those described in this work
should be expected in other narrow-band systems if the
electronic self-energy is strongly frequency dependent near
the chemical potential. '
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Now,

lim N(e)5(E —co[1+Ar(co)])=0

because the relevant values of co in Eq. (9) are restricted
from above by f (co). Also

lim N(E)5(E —co[1+Ar(co)])=0,

because N(e)=0 for E below the bottom of the band.
Thus Eq. (A6) reduces to

f de N(E) ——IrnG (E,co)
+ oo 1 q c}N(E)

—oo 77 BE, c=a)( 1+A, v)

(A7)

Now, if N(E) is constant within a few times Q,„around
c.=0, we have

APPENDIX

X)(a))= —Amor(co)+X)(0),

X2(co)=0,
(A 1)

(A2)

In this appendix we derive an approximate formula for
the "dressed" X,~(0) taking for the electron self-energy at
T =0 a model

c}N(s)
BE c =co( 1+Xv)

aN(E)
F

(A8)

+ oo m+g,&~0~
———2@~ dc@ e f (co)

because of the properties of r(co) given by Eq. (A3). In
that case

where r(co) is a function with properties
r —= 1 for

~

~
~

close to 0,
=-0 for ~co~ &0,„.

Also, we assume that r(co) is flat for co~0 such that

(A3}

+ oo 1
&& f dEN(s) ——ImG ( Eco +i 0+)

+~
d o+f ( )

BN(co)
oo Bco

az, (~)
BM

+ oo af(~)=kg den N(co)
oo Bco

(A9)

1
G(c,,co+i0+)=

co[1+k,r(cu) ] s+ i 0+— (A4)

X&(0) will be canceled by 5p (Ref. 11) and Eq. (22) for the
Green's function G becomes

which is just Eq. (1). Thus we get the known result [for
N(E) =const. near a =0] that the electron-phonon interac-
tion does not affect X,~.

On the other hand, if N(E) does vary over the range of
few times Q,„around c, =0, we get

and we can write
g,p(T)=2p~ f dcoe f(co) (AIO)

——ImG = 5(s —co[1+A,r(co)])
BE.

5{E —co[1+A.r(co )] )
Bco

(A5a) c=ci)(1+A, r)

Consider for the moment Nqz(co), Eq. (2). With our
model for the electron self-energy we get"

Nqp(co) =N{co[1+ir(co)]) . (Al 1)

X
[co[1+kr(co)] I

With (A5a) we get after integrating by parts

+ oof dcN(E) ——Im, G (E,co)

= N(e)5(E —co[1+kr(co)]}
~

+

+ c}N(s)—f de 5(e—co[1+Ar(co)]) .
BE,

(A5b) Then

aN„(~) aN(E) B [co[1+A r(ro) ] ]
BCO BE (I+g ) B&

and

BN (e)
BE

c, =co( 1+Xv) [co[1+A.r(co)] I

c}Nqp(ci) )

Bco

(A 12)

(A6)
Using (A12) in (A10) we get, after integrating by parts,
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In the second term in Eq. (A13) we have to take into ac-
count the actual shape of I/c) jco[1+Xr(co)]]/c)co, which
is illustrated in Fig. 10. We get

(/(l+X)
j co[1+ir(co)] I

a a

+max (1+X.) ' —1

+max

0 for icoi)Q,„,
for

i
co

FIG. 10. Schematic diagram illustrating the shape of
1/c) {co[1+X'(co)]I /c)co for co &0.

and the second term in Eq. (A13) can be approximated at
T=Oby

Xsp( T) = 2pB f dco
+" df (co)

"'1+A. n
0

dco Nqp(co) =2@~ Nqp,
2

maX max 1+A.

(A14)
1

XNqp(co)

j co[1+ir(co)] ]
Bco

—2P~ due co Nqp co

jco[1+A~(co)]j
Bcc)

(A13)

jco[l+l~(co)]I = [co(1+X)]=1+k.
Bco Oco

The last equation can be simplified by noting that at low
T —df (co)/c)co is sharply peaked at co=0 and therefore in
the first term in Eq. (A13) we can set

where

0
Xqp ~ d co Eqp co

IDRX

Thus, at low T Eq. (A13) can be approximated by

2 Nqp(0)+A, Nqp
X,p(0) =2p~

1+X
We point out that this approximate derivation should be
valid only for the case when N(c. ) peaks very close to
E=O. The point is that our assumption (A2) is adequate
only for co close to 0 even at T =0. If N(E) had a peak
near E=+II,„, Eq. (All) would not be a reasonable ap-
proximation for Nqp(co).
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