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Density-functional approach to phase transitions of submonolayer films.
I. The role of the intrinsic and extrinsic ordering forces
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A density-functional theory for the submonolayer adsorbed film is developed. The adsorbate in-
teractions are restricted to hard repulsions and described with a nonlocal density functional for the
free energy, which allows for the presence of intrinsic crystalline order. The competition with the
substrate ordering is studied as a function of the temperature and the coverage for different values
of the substrate lattice parameter. The phase diagrams obtained include fluid, commensurate„and
incommensurate phases.

I. INTRODUCTION

The submonolayer regime of physisorbed films exhibits
quite interesting phase diagrams which include fluid con-
densations, order-disorder transitions, and commen-
surate-incommensurate (CI) transitions. This richness of
transitions is due to the presence of different competing
forces: the ideal entropy tending towards disorder, the
hard-core interactions between adsorbate molecules trying
to pack themselves in an intrinsic ordered structure, the
substrate external potential inducing external ordering
over the adsorbate, i.e., making the adsorbate structure
commensurate with the symmetry of the substrate poten-
tial, and finally, the attractive forces between adsorbate
molecules responsible for the gas-liquid condensation.

In the limit of dilute adsorbate on strongly structured
substrates, the particle distribution of the adsorbate mole-
cules p(r) will have the periodicity of the substrate poten-
tial, corresponding to a fluid modulated by an external
field. On the other hand a densely packed adsorbate on a
weakly structured substrate may crystallize, taking on its
own intrinsic periodicity independent of the substrate and,
in general, incommensurate with it. In between these two
limits and depending on the relative size and shape of
both competing lattices, the system may find a comprom-
ise, where p(r) has not the full symmetry of the substrate
but only that of a sublattice, which happens to be close to
the intrinsic ordering, so that by a small deformation of
the intrinsic lattice the system locates each particle
around a potential well of the substrate.

A11 these phases and the transitions between them have
been studied theoretically, ' experimentally, and with
computer simulations. From the theoretical point of
view, lattice models have been extensively used, e.g., the
hard-hexagons model provides a beautiful and exactly
soluble model for the transition between the "fluid, "when
all the lattice sites have the same occupancy, and the
"commensurate" phase when one sublattice is preferred to
the other. However, despite the interest of the various lat-
tice models, there are important points which require a
continuous description of the particle distribution so that
they are beyond the capability of the discrete variables

used in lattice models. One of these points is the study of
the modulation caused in the density distribution of the
adsorbate molecules due to the interaction with the sub-
strate. In this case one is interested in how strong the
structure is, rather than what the periodicity is, so that a
continuous description of p(r) is required. An even more
important case is the competition between the substrate
order and the different and fully incommensurate intrinsic
ordering. A lattice model may analyze how the tendency
of the substrate to impose its periodicity is frustrated by
the adsorbate-adsorbate interactions which induce a com-
pletely packed set of dislocations, but will never give rise
to a completely different ordering intrinsic to the adsor-
bate.

Density-functional theory provides a useful framework
for a continuous description of p(r), for one can develop
successively more refined density-functional models,
which will include more aspects of the problem, giving in
this way a good idea of their relative importance. This
technique has been applied before to describe the "fluid"
behavior and the transition to a commensurate phase.
Here we present the first density-functional calculation
which includes a description of the intrinsic ordering. For
it we use a two-dimensional hard-disk system, which
models the hard-core interaction of the adsorbate mole-
cules, under the effect of an external field which models
the noble-gas —graphite interactions. This model cannot
describe the real-noble gas —graphite system because at-
tractive interactions would need to be supplied. However
it has all the ingredients necessary to determine the possi-
ble order-disorder and CI transitions, and the presence of
the attractive forces would increase the stability of the
different phases beside introducing the fluid condensation.
This results in a quantitative change of the transition
strength which can even be suppressed when they are
weak enough, but adsorbate forces cannot induce any
transitions other than the fluid condensation; therefore
our hard-core model provides the basic structure of the
phase diagram and we shall discuss it in detail before in-
troducing attractive adsorbate interactions. This discus-
sion does not include the effects of vacancies, interstitials
and domains which, like the attractive forces, are not re-
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sponsible for either the order-disorder or the CI transi-
tions, though they will modify their strength. These ef-
fects are analyzed in the second part of this work.

The article is organized as follows. In Sec. II we pro-
pose a nonlocal density functional for the Helmholtz free
energy of a hard-disk system in an external field. In Sec.
III we choose the external potential which models the
noble-gas —graphite interactions. We also show the pos-
sible C phases which can exist of the physical density
range. In Sec. IV we introduce the parametrized density
as a superposition of Gaussians. This is a much better
way for describing strong structured densities than a few
terms of a Fourier expansion; it also describes homogene-
ous densities in the limit where the Gaussians have infin-
ite width. The Gaussian width is the parameter with
respect to which we minimize the Helmholtz free energy.
This is done in Sec. V, where the free energy versus mean
density (hereafter called a free-energy branch) for fluid, C
and I phases are shown. En Sec. VI we obtain and discuss
the final phase diagram from the free-energy branches
and with the help of the common-tangent method. The
discussion includes the evolution of the phase diagram
with the substrate lattice constant in hard-disk-diameter
units. This shows all possible configurations for the phase
diagram. Finally, in Sec. VII we review the results and
propose the necessary relaxation mechanisms which deter-
mine the final quantitative form of the phase diagram.
This is done in a second part of this work.

II. A FREE-ENERGY DENSITY FUNCTIONAL
FOR HARD DISKS

F;d[p]=kg& f «p(r)f;d[p(r)]

=k&T f drp(r)[in[& p(r)] —1] (2)

is the ideal contribution to the free energy which is exact-
ly local, A =h /2mppzk& T and

&g(p) =@(p) g;d(p)— —
is the excess with respect to the ideal case of the
Helmholtz free-energy density at mean density p. From
the Gibbs adsorption equation and the scale-particle pres-
sure, '

p =kg Tp/(1 —g)

we get for the homogeneous hard-disk fluid

(4)

Nonlocal corrections' to local density functionals for
the free energy give a poor description of strongly struc-
tured systems. For these systems a new approach has
been devised where a simple nonlocal density functional is
proposed and solved self-consistently. " ' The nonlocal-
ity of the free-energy functional is introduced through a
smoothed density P(r) which is a nonlocal functional of
the local density p(r). P(r) is related in some way to the
average of p(r) over the interaction range. Following this
approach, the Helmholtz free-energy functional we take is

F[p]=Fd[p]+ f «p(r)~P[p(r)] (1)

where

1/~d,
I

r —r'
I

&d
(7)

which averages the local density over a circle of radius d
around r. It has been shown' that the present choice cor-
responds to the zero-order term in the density expansion
of co(r;p).

The direct correlation function of the hard-disk fluid
can be obtained using the functional (1)

1 6 (F[p] F;d[p])—
e(r, r') =-

k~ T 5p(r) 5p(r')

which, with approximation (7), gives for the homogeneous
case at mean density p:
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I
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(9)

Approximation (7) overestimates the direct correlation
function, but this still changes properly with the density
and that is the important property for the aims pursued
here. This approach with approximation (7) gives quite
reasonable results for highly inhomogeneous systems such
as hard spheres near a hard wall' and the melting' of
hard spheres and hard disks; therefore we expect to have a
good description of the features of the phase diagram we
are interested in.

For completeness and later reference we write down the
Helmholtz free-energy density and the chemical potential
of an homogeneous hard-disk fluid which can be straight-
forwardly obtained from (5):

f(p)=k~Tp 1n(A p) —1+ —In(1 —g)
1 —rj

and

p(p)= =k~T ln(A p) —ln(1 —g)+8 (p) 2 q(3 —2g)
~p (1 —q)'

Alt =k~ T —ln(1 —g)
1 —g

where g—=pd m. /4 is the packing fraction and d is the
hard-disk diameter. Any other more sophisticated state
equation could be chosen, but the scale-particle one is ac-
curate enough for our purposes and it has the advantage
of its simplicity. To complete the prescription of our
functional we need a criterion to determine p(r). We use
the expression

p(r) = f dr'p(r')co(
I
r —r'

I
), (6)

which defines p as a nonlocal functional of the local den-
sity p weighted by the function co(r) In. order to simplify
the calculations we take the simplest choice for ~:
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Observe that (10) can be obtained directly from the
functional (1) showing the thermodynamic consistence of
the functional approach.

In the Appendix we show the expression of the density
expansion of our free-energy functional using the weight
function (7). We also show the Fourier transform of this
expansion. These expressions will be used later.

III. THE SUBSTRATE POTENTIAL

To complete the madel we specify the interaction,
V,„,(r), between the adsorbate (hard disks) and the sub-
strate and we add the corresponding extrinsic contribution
to our free energy functional. We restrict ourselves to the
usual periodic substrates, then

V,„,(r) = g Vo (Z)e (12)
G

in this article will focus on a substrate with a triangular
lattice. It is straightforward to show that for triangular
lattices the 5 condition in (16) is equivalent to imposing
the relation

C = =(rl, +r/2+'f1, 92)
2 2 1/2 (17)

IV. THE PARAMETRIZED DENSITY

with g&
——0, 1,2, . . . and g2 ——1,2, 3. . . . As the adsorbate

mean density must be proportional to A, , only the com-
mensurations with C = 1, V 3 and 2 are inside of the
physical range of interest. Moreover, the corresponding
densities are enough separated each from other that usual-
ly there exists only one C phase if any; this is what in fact
happens for noble gases on graphite.

where Z is the direction normal to the surface, Ci, are the
substrate reciprocal-lattice vectors.

Usually the substrate potential is well described by the
star configuration set up by the smallest reciprocal vec-
tors. In addition, the adsorbate is practically localized at
Zo, corresponding to the minimum of VG (Z), G, being

any one of the mentioned star vectors; then

V,„,(r) = V(Zp) g* e (13)

~(r)= X)oo e
0

(14)

where g" means the sum is restricted to the first star of
the lattice reciprocal vectors. Expression (13) will com-
plete our interaction model which, for a triangular lattice,
describes noble gases on graphite. The model would
describe real noble-gas —graphite systems if adsorbate at-
tractive forces were included; these forces would induce
the fluid condensation and most probably would modify
the strength of the order-disorder and CI transitions.
However these can only exist as a result of the competi-
tion of all the forces of our interaction model. The dis-
cussion of this competition will be the core of this article.

If the adsorbate has a perfect periodic structure, we can
write its density distribution as

To describe the particle distribution we use a superposi-
tion of Gaussians centered at the adsorbate lattice sites R:

p(r)+gaea(r —R)

R
(18)

or

where K is a normalization constant which depends on
the mean density and 1/a is the width of the Gaussian
peaks. With (18) we can describe strong structured densi-
ties while the Fourier expansion of p(r), (14), is limited to
relative smooth densities because of the small number of
Fourier components which can be used in practice.

The cumbersome algebra induced by the Gaussians is
the price paid for having a good representation of the den-
sity p(r). The Gaussians will describe not only the crystal
but also the fluid. Depending on the phase type the nor-
malization constant K is determined in a different way.
The density of a fluid phase is constant (a=0) but it can
be moderately modulated (a&0 but relatively small) by
the effect of an external field. In any case, the normaliza-
tion constant K in a fluid phase is exclusively determined
by the total number of particles; then if po is the mean
density

N 1 KFn
po

—————— drp(r) =
aC,

where the Cx, are the adsorbate reciprocal-lattice vectors.
Therefore, the extrinsic contribution to the free-energy
density, namely

apoC,
KF —— (20)

f,„,= —f drp(r) V,„,(r),1
ext (15)

where 2 is the area, can be expressed as

f,„,= V(Z, ) g*gZ n(G, +G. ) .
~s &a

(16)

Expression (15) reveals all possible adsorbate structures
giving f,„,&0; i.e., all the possible adsorbate commensura-
tions with the substrate.

The C phases are usually denoted by C X C with
C =A, /A„where A, and 2, are the constants of the ad-
sorbate and substrate lattices respectively. All discussion

1
po= )

Ca
(21)

C, being the unit-cell area of the ordered adsorbate lat-
tice, and

C, being the unit-cell area of the substrate lattice. The
fluid phase follows the topology of the substrate and
therefore it has the same lattice parameter 3, =A, which
does not depend on the mean density, though the adsor-
bate density modulation intensity does it. At high densi-
ties the adsorbate particles are confined by their neighbors
and the system becomes ordered by itself; in this case each
site of the adsorbate lattice has a particle, therefore
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i.e.,

1 = dr p(r) =Km. /a,1

c.

K =m/o. .

(22)

(23)

f (o(.')

2 -68-

1x1

The adsorbate lattice constant 2, will now depend on the
mean density through the expression (21) which for a tri-
angular lattice becomes

2-6 6—

W.'=2/p, v 3 . (24)
2 64

0

The presence of an external field would modulate the in-
trinsic ordered phases and eventually change its intrinsic
order towards any of the possible extrinsic (commensu-
rate) orders, however this requires the presence of defects
(interstitials and vacancies) and domains whose effects
will be discussed later. For the moment we restrict our-
selves to the effects of the pure competition between the
hard-core adsorbate and adsorbate-substrate interactions
and entropy disorder, without allowing any relaxation
mechanism such as those mentioned.

It could be, however, that at a certain density the order
of the I phase would correspond to any of the possible
commensurations; then the normalization constant is
evaluated in the same way as in the intrinsic ordered case.

Finally, the width constant e is determined by the
minimization of the Helmholtz free energy; the details of
this are given in Sec. V.

2.60—

2.5 5—

2.50
0 1 6 24 u

FIG. 1. Upper: free-energy density versus o. for the fluid
phase and for several values of V*. A, =0.6045d and
p=0. 79/d . Lower: free-energy density versus a for 2&(1 C
phase for several values of V . 2, =0.61d; p2~&

——0.7758/d .

V. MINIMIZATION PROCESS

Using the parametrized density (18) we minimize the
Helmholtz free-energy functional (1) including the extrin-
sic contribution (15) and with the help of the weight func-
tion (7). The minimization process is done for both or-
dered and disordered phases at different values of the di-
mensionless variables p" =p/d and V* = V(ZO)/kz T.
Notice that, although the adsorbate is a hard-disk system,
the adsorbate-substrate interaction precludes any attempt
at temperature scaling.

A. Free-energy branch for the fluid phase

Figure 1 shows the characteristic behavior of the free-
energy density of the fluid versus a at p=0.79/d for
A, =0.6045d and for several values of the parameter V'.
For the zero-field case the minimum occurs at a =0 as it
should, i.e., the fluid has a homogeneous density distribu-
tion; as the external field increases from zero, the fluid
density becomes modulated and the minimum free energy
corresponds to a slowly increasing a. The Auid density
follows the structure of the external field, only in this
sense it can be called a 1X1 commensurate phase. f(a)
increases with the mean density, though the characteristic
behavior of f as a function of a and V" is similar at dif-
ferent mean densities.

B. Free-energy branch for the
intrinsic ordered phase (I phase)

Consider, first, the two-dimensional system of hard
disks in the absence of any external potential. The free

energy will scale with the temperature, so that we only
have to consider the density dependence. At low density
the system will be fluid with a homogeneous particle dis-
tribution, p(r) =po, which means that in our Gaussian pa-
rametrization (18) and (23) the free energy as a function of
the Gaussian width, f (u), will have a single minimum at
+=0. However, at larger values of the mean density, the
free-energy f(a) will develop a second minimum for
a&0, which represents the intrinsic ordered phase, that is,
the adsorbate crystal. This phase starts as a metastable
state (Fig. 1), i.e., with larger free energy that the a=0
fluid, but at higher mean density becomes the stable phase
(see Ref. 9 for details). Now, if we turn on the substrate
potential, the fluid will develop a structure, p(r)&po, with
the periodicity of the substrate as described above. The
modulation in p(r) may be weak or strong depending on
the relative size of the adsorbate and the substrate, but
there will always be a qualitative change from the homo-
geneous density distribution to the periodic structure
described by (18) and (20).

The other phase, the crystal, is much more difficult to
distort than the fluid and it has its own periodicity,
which, in general, would not be commensurate with the
substrate. Then, as a first approximation, we may neglect
any reaction of the system to the external potential and
there would be no change in its free energy, because the
5(G~ —G, ) in (16) will vanish. Of course, if the external
field produced by the substrate is large compared with the
compressibility of the crystal, the intrinsic ordered phase
will be distorted. To compromise between the two terms
we will include this contribution later but, for the moment
we neglect it, so that the free energy of the intrinsic or-
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dered phase is taken as the corresponding to the perfect
crystal in absence of any substrate modulation.

C. Free energy of the C phase

The lattice parameter of the adsorbate is a function of
its mean density (24), so that a continuous change of p
will eventually produce an intrinsic lattice commensurate
with the substrate. Because of the narrow range of densi-
ty for the crystal phase, one may expect only a few (and
usually only one) possible commensurations for a given
ratio of the adsorbate and substrate sizes. For these par-
ticular values of the mean density, which we will call
generically p„the external potential contributes to the
free energy even if the density distribution is not distorted
from the intrinsic crystal. This will pull down a point out
of the free energy of the crystal by an amount proportion-
al to V. Depending on the value ofp„this commensurate
phase mill compete with the intrinsic crystal or with the
modulated fluid. In the first case the C phase wi11 always
be stable because its free energy is always lower than the
crystal at the same density. In the second case, a
minimum value of

~

V*
~

will be required to stabilize the
C phase in the fluid range of density, and only for an even
larger

~

V*
~

will it become the stable phase.
At this stage the C phase only exists for a given value

of the density, p„and the system may still remain in this
phase by creation of lattice defects. A C phase with a few
vacancies will have a mean density lower than p„while
interstitials will increase it. The effect of these relaxation
mechanisms will be discussed in the second part of this
work.

VI. PHASE DIAGRAM
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In Fig. 3 we present a sequence of the phase diagrams,
in (pd, V/k& T) space, obtained with different values of
the substrate lattice parameter 3„in the small range from
0.61 to 0.59 in units of the hard-disk diameter d. Notice
that different scales have been used to show the relevant
details in each case. The two extremes [Figs. 3(a) and
3(e)] have been obtained with the full Ciaussian descrip-
tion described in the preceding sections; but, to save com-
puting effort, the intermediate cases [Figs. 3(b)—3(d))
were calculated with the density expansion of the free-
energy functional and by using the Fourier description
(14) p(r) (see Appendix A). In order to describe simul-
taneously two phases it is necessary to expand the free-

Figure 2 shows the qualitative example of the behavior
of the different free-energy branches discussed in Sec. V.
The figure illustrates how the tangent method determines
the different phase transitions which we always find to be
first order. Notice that the C phase is located at a precise
mean density p, .
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FICx. 2. Qualitative behavior of the free-energy branches at
an arbitrary value of V and A, . First-order fluid C, IC, and
CI transitions are shown. p, is the C density; Arrows represent
density coexistence gaps.

FIG. 3. Phase diagram of hard-disk system under the effect
of an external field. From (a) to (e) the triangular lattice param-
eter is A, =0.610, 0.603, 0.599, 0.598, and 0.590d, respectively.
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energy functional at least up to fourth order. On the oth-
er hand for a given substrate (A,*), the Fourier com-
ponents we must include are q'", the first vector of the
2&2 reciprocal lattice to describe the 2&2 C phase and
q' ', the first vector of the 1&1 reciprocal lattice to
describe the fluid phase. The 1X1 reciprocal lattice is a
sublattice of the 2 X 2 one, being

~

q' '
(
=2

~

q" '
~; there-

fore, for consistence the intermediate vector

~

q' ') =@3
~

q'"
~

of the 2X2 reciprocal lattice should
also be included. Using the expressions of the Appendix
and after simple but cumbersome algebraic steps one ar-
rives at three coupled equations for Fourier coefficients
whose solutions give place to the intermediate diagrams
(b), (c), and (d) of Fig. 3.

At V'=0 all the diagrams reduce to the plain hard-
disk system, which in this theory has a very weak first-
order transition' from fluid for p&0. 80147d to a crys-
tal for p) 0.80592d . The use of the Fourier expansion
in the evaluation of the intermediate cases modify the
coexisting densities, reducing even more the density gap,
pF ——0.80615d and p, =0.80700d . As V decreases
from zero, the fluid phase starts developing the structure
with the periodicity of the substrate so that its free energy
is lowered, while the crystal forms the I-phase branch
which remains unmodified, as we have discussed above.
Thus, the fluid phase becomes stable at higher values of
the mean density p and the fluid to the I-phase transition
moves towards larger p. Moreover, it is clear in Fig. 3(a),
that as the transition is driven towards the right, the den-
sity gap between the fluid and the intrinsic crystal gets
larger, that is, it has a stronger first-order character. This
is a sensible result because at high density the crystal in-
creases rapidly its structure and becomes more rigid, so
that the difference with the fluid is stronger.

Now with respect to the C phases, the values used for
A, /d give a 2X2 C phase in the range from 0.775d to
0.829d, while a v 3Xv 3 occurs for p~ 1, well inside
the I phase and not far from the close-packing limit. Any
other possible commensurations lie at too low a density in
the fluid range to be stabilized by any reasonable substrate
potential.

For A, /d =0.61 [Fig. 3(a)] the C-phase density is

p, =0.7758d, in the fluid range, so that it is not stabi-
lized until the substrate potential becomes strong enough,
V' & —0.11, and even then it is only a metastable phase
with respect to the fluid. So in this case, and for physical
values of p and V', the phase diagram is divided between
the fluid and the I phase. For the next value of
3, /d =0.603 [Fig. 3(b)] we have p =0.7939d, still in
the fluid side, but this small change is enough to produce
a stable C phase for V' & —0.025 with a first-order phase
transition from the fluid at low p to the C phase and other
transition back to a reentrant fluid at higher density.

The coexistence density gaps of these transitions in-
crease with

~

V* ~, but if the field becomes too strong the
transition becomes weaker and finally disappears for
V & —0.07, where the fluid phase becomes again the
stable phase. This may be understood in the sense that for
very strong fields the particles are confined very close to
the potentials wells, so that our continuous model be-
cornes equivalent to a lattice model, which in this case

will present a fluid phase up to the W3 X ~3 ordering.
In Fig. 3(c) we present the phase diagram for

A, /d =0.599 28, which takes the C-phase density to
p, =0.8038d, just below the freezing density in absence
of external potential ~ In this case the transition to the C
phase appears at lower V (higher temperature) and the
density gap in the phase transition from the fluid to the C
phase is larger. The next case [Fig. 3(d)] corresponds to
A, /d =0.598, only 0.2% lower than the preceding one,
but this difference brings the C-phase density into the
fluid to crystal density gap at V*=0. This fact changes
completely the phase diagram. At any V'&0 the fluid-
to-I phase transition is split by the C phase, so that there
is a fluid-to-C phase transition and then a C-phase to I-
phase one, with no reentrant fluid.

Only when the substrate potential becomes stronger and
displaces the fluid-to-I phase transition to large p, out of
the density gap associated to the C phase, it appears again
as a reentrant fluid. At this point there is a triple coex-
istence between the C phase, the I phase, and the reentrant
flui.

Finally, for A, /d =0.59 [Fig. 3(e)) the C-phase density,
is p, =0.829d, in the crystal side at V =0. In this
case at low

~

V'
~

the freezing from fluid to I phase is
preserved and only at large p the C phase competes with
the I phase. As we discussed above, in this situation the C
phase is stable for any V &0, but the density gaps on
both sides of p, decreases as

~

V*
~

goes to zero. For
larger

~

V"
~

this density gap takes over the fluid to I-
phase transition. This happens first at the fluid side with
a triple coexistence point between fluid, I phase and C
phase, at even larger

~

V' ~. The diagram is similar to
the preceding case, with the C phase in between the fluid
and the I phase until the other triple point, on the oppo-
site side, gives back the reentrant fluid.

VII. CONCLUSION

We have followed a new approach to the study of ad-
sorbed monolayers based on density-functional formalism.
The main difference between this and any previous at-
tempts at a continuous description of the density distribu-
tion is that our density-functional model for the free ener-

gy of hard disks contains the possibility of a crystal phase
at large packing fraction. Thus, we can follow the com-
petition between the intrinsic ordering of the adsorbate
and the external potential created by the substrate. To
clarify this point in a simple model, before any attempt to
get quantitative agreement with real experiments, we have
not included at this stage the attractive interactions be-
tween adsorbate rnolecules, which will eventually lead to a
gas-liquid condensation in the monolayer.

By using only hard-disk interactions between the adsor-
bate rnolecules we make them independent of the tempera-
ture, while the smooth substrate potential, V, is scaled
with T. Thus the T and V dependence of the phase dia-
grams reduce to V = V/k&T. This is the opposite limit
of what can be described in lattice models which would
represent infinitely attractive interactions with the sub-
strate which would pin the adsorbate to the lattice sites in-
dependently of T. If infinitely repulsive interactions be-
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tween the adsorbate are assumed, as in the hard-hexagons
model, the system is temperature independent. To get T
dependence one has to include finite interactions between
the adsorbate molecules, as in the Potts model, ' so that
they are scaled by the temperature. In fact, realistic
models for the interactions give rather smooth substrate-
adsorbate potentials, while the repulsion between close ad-
sorbate molecules, neglecting attractive interactions, may
be fairly described by hard cores. Thus, the rea1 density
distribution is going to look more like a smooth profile,
and the role of the temperature will be more accurately
described by a continuous model.

The second main advantage of our treatment is to have
a good description of the crystalline phase for the adsor-
bate, with a lattice parameter which changes with the
pressure, in a range of density from the freezing value to
the close-packing limit. The description of this phase
with perfect, but incommensurate with the substrate, or-
dering is not possible in lattice models, which may only
refer to the incommensurate phase as the close-packed
density of lattice-domain walls, ' i.e., a situation in which
the system is doing its best to break with the substrate or-
dering but not been able to generate its own.

The results obtained in our calculations show the ex-
treme variety and richness of the phase diagrams, even be-
fore the adsorbate-adsorbate attractions add the gas-liquid
condensation to the phase diagram. Notice that a varia-
tion of only 3% in the ratio between the substrate lattice
size and the hard-disk diameter takes the phase diagram
from the upper to lower portions of Fig. 3. The evalua-
tion of the free energy of each phase as a function of p
and T, allows us to appreciate the extreme weakness of
the phase transitions. The free-energy differences in Fig.
2 have been grossly exaggerated to make them more visi-
ble, as the actual, small differences make the full diagram
quite "soft" with respect to any perturbation. In this
respect, we have to realize that so far we have considered
only states with perfect ordering without any kind of lat-
tice defects. On one hand, this reduces any C phase to a
single line at fixed density p, in the (p, V ) phase dia-
gram, though because of the coexistence density gap, the

C phase will be present in the system (sharing the mono-
layer with the other coexisting phase) at mean densities in-
side that gap. The presence of vacancies and interstitials
would make the C phase stable in a finite range of density
around p, .

The other problem of the perfect lattice description is
that the intrinsic ordered phase, i.e., the adsorbate crystal,
is unaffected by the substrate potential. As we have com-
mented this should be a fairly good approximation for
high-temperature or smooth substrate potentials, but it
will fail if the potential is strong enough. To consider
these interactions one should allow the adsorbate crystal
to relax its lattice structure to accomodate the particles
closer to the substrate wells. If the intrinsic lattice param-
eter is not too different from one of the commensurated
phases, the relaxation process will likely create domain
walls between different pieces of the C phase, which occu-
pied different sublattices of the substrate.

Due to the small differences in the free energy of the
phases observed here, it is necessary to include these two
relaxation processes, before any attempt to quantitative
comparison with the experiment. This is done in the
second part of this work. However, for the hard-disk sys-
tem, and in a future publication, we will include the at-
tractive interactions in the adsorbate to examine the inter-
play between the gas-liquid condensation and the ordering
transitions studied here.
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APPENDIX

The density expansion of the Helmholtz free energy
around a constant density pp is

F[p(r)]=F[po]+ f dr bp(r)+ —, f drdr' ~, bp(r)Ap(r')+5F[p] 5'F [)ol
5p(r) 5p(r)5p(r') p,

(Al)

where bp(r) is the departure from the constant density po. Using the functional (1) together with the weight function (7),
the succesive correlation functions or functional derivatives appearing in (1) are

5F[ ] =p(po), (A2)

and for n ~1

C(n)( Ir(rl)]. )
1 g(,n)F[lv]

kB T 5p(r" ') 5p(r'"')

=(—1)"„(n—2)5(r —r(") 5(r —r'" )

po

+ ~d +co( ~r"' —r'"~ ) co( ~r"—r'"'~ )+ f dree( ~r —r"'~ ) co( ~r —r"'~ ),
(A3)
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where b,g(") is the nth derivative with respect to po. For periodic densities we can write

hp(r)= g bp(q)e'~'.
q&0

Using (A3) and (A4) into (A l) we get the Helmholtz free-energy density

f ltpl = &—=fd [po].+ 2 g C "'(q;po) ~p(q)'

+gggc(lf)( I
q(B)I p)+p(q()))+p(q(1l))$(q(1)+ +q(ll)}1

n =3 '
q(&) q(n)

where the Fourier transform of the correlation functions are

2~ "' po~0"'C' '(q;po) = + G(q)+ G(q)
p() kg T k~T

and

(rl —1) n — (1) . . . — (n) g l(")
C(„)(((„))

)
n —2 bp m co(q ) . co(q ) po 'r'

( ())) ( („))JPO= . 2+ (i)
po B q=) co(q ) 8

(A4)

(A5)

and co(q) is the Fourier transform of the weight function.
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