
PHYSICAL REVIEW 8 VOLUME 35, NUMBER 7 1 MARCH 1987
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A Monte Carlo simulation is used to investigate the two-dimensional spin-1 Ising antiferromagnet
in the presence of an external magnetic field and a single-ion potential. Comparison is made be-

tween the results of this simulation and previous mean-field calculations. The phase diagram and
the critical behavior of the model are discussed. In contrast to the mean-field picture, no decompo-
sition of the tricritical point is observed.

I. INTRODUCTION

The spin-1 Ising antiferromagnet with zero-field split-
ting, ' i.e., the antiferromagnetic Blume-Capel model, '

has an unusually rich phase diagram, especially in the
presence of an external magnetic field. ' The model in-
cludes, in addition to a spin-1 Ising-like exchange interac-
tion among nearest-neighbor pairs, an interaction with an
external magnetic field H as well as a single-ion potential
proportional to 6, which yields a singlet ground state.
Considerable progress has been made in understanding
this model. Along the H =6=0 line a second-order
phase transition takes place between the antiferromagnetic
staggered phase and the disordered phase, and a low-
temperature (T) series expansion has been developed and
used to estimate the critical temperature T, . The phase
diagram in the 6-T plane consists of a line of second-
order critical points which ends and goes over to a first-
order transition line at the tricritical point. Tricritical in-
dices for the model in two lattice dimensions have been
determined by Landau and Swendsen on the basis of
Monte Carlo renormalization-group studies.

Using the mean-field approximation, Wang and Rau-
chwarger' have shown that for H&0 the tricritical point
decomposes into a critical end point and a double critical
point for a range of values of b, . A thorough investiga-
tion of this feature in a two-dimensional lattice by Monte
Carlo simulation, an approach which includes the corre-
lated fluctuations ignored by the mean-field approxima-
tion, is a central outcome of the present work.

In this paper we present the results of a Monte Carlo
simulation of the antiferromagnetic Blume-Capel model
on a two-dimensional lattice. The code for this simula-
tion is highly vectorized to run on the Florida State
University CDC CYBER 205 and achieved a rate of
1.5X 10 spin updates per second. The objectives of this
simulation are (i) to determine the phase diagram in the
T H 6parameter spac-e, (-ii) to obtain the tricritical line as
it evolves away from the H =0 plane, and (iii) to investi-
gate the existence of the decomposition of the tricritical
point predicted by the mean-field approximation. Furth-
ermore as a by-product we use finite-size scaling to deter-
mine T, for A=H=0 with a very high accuracy. Our
paper is organized as follows. In Sec. II we describe the
antiferromagnetic Blume-Capel model and briefly outline

the formalism of the Monte Carlo approach we used in
the simulation. In Sec. III we present the results of our
simulation and in Sec. IV we compare our results with
previous calculations and draw our conclusions.

II. THE MODEL AND MONTE CARLO
SIMULATION

The Hamiltonian for the antiferromagnetic Blume-
Capel model is given by'

m=J+s;s, +b, gs Hgs, ,—
nn

(2.1)

where the antiferrornagnetic coupling J acts only between
nearest-neighbor pairs and s; is the z component of the
spin of the ith site and takes values s;= —1,0,1. The
second term in the Hamiltonian corresponds to the
single-ion anisotropy and the last term represents the ef-
fects of an external longitudinal field. We restrict our
study to positive 6 for which the critical behavior of the
system includes first- as well as second-order phase transi-
tions.

Our two-dimensional I.&I. square lattice contains
%=I. spins, and we use the well-known Metropolis al-
gorithm with periodic boundary conditions to update the
lattice configurations. The physical quantity 0 is then es-
timated by (0), where

(o)=g o(c)ys, (2.2)

M(c) =g 5;s; (c)/N, (2.3)

where i runs over the lattice sites and 5; =+ 1 ( —1) for

and c runs over the configurations obtained by using the
Metropolis algorithm to update the lattice over one sweep
of the entire N spins of the lattice (one Monte Carlo step).
Counted after the system reaches thermal equilibrium, S
is the number of Monte Carlo steps (MCS). Since we are
considering the antiferromagnetic coupling in Eq. (2.1),
i.e., J~ 0, the relevant low-temperature order parameter is
the staggered magnetization (M) and is estimated from
Eq. (2.2) in which is used
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even (odd) sites. Let us define (s„s, ) to be the ordered
configuration at zero temperature in which the sublattice
made up of even sites has s; =s, and the sublattice of odd
sites has s; =s, . Then the order parameter for the (1,—1)
configuration is

~

M
~

= (
~

M
~

). Also of use will be the
quadrupole moment Q(c) = 1 —s (c), where

s'(c) =g s (c)/N . (2.4)

In order to measure phase boundaries we shall find use-
ful the measurement of fluctuations in 0 defined by
(40) = (0 ) —(0 ) . Thus the specific heat is

C„=N(b, U) /(k~ T ), (2.5)

where U is the energy per lattice site; the staggered mag-
netic susceptibility is

X =N((M ) —(M) )/(kgT) . (2.6)

Because of the large fluctuations in X due to the term
(M) ((M) =0 for a finite lattice after a sufficient num-
ber of sweeps), we are also led to consider

and

X 0 N(M )/(k——~T), (2.7)

(O)b= g O(c)/S„.
c Ebin

The mean value of 0 for the whole of the data is

(2.9)

(2.g)

Peaks in the latter quantity we found useful in determin-
ing phase boundaries, particularly where the specific heat
does not show a pronounced peaking behavior.

In treating errors we use the binning method for reliable
error estimates. If the S sweeps are binned into n equal
binds of S„sweeps each, then the average of a quantity 0
within a bin is

phase diagram of the system in the space of T, H, and A.
Also of interest is the phase diagram in the 6=0 plane
which we show in Fig. 1. Along the first-order line in this
figure strong hysteresis was observed when crossing the
first-order line in the 5 direction. The first-order line was
determined using a mixed start technique in which we in-
itialize the upper half of the lattice to the T=O configu-
ration expected on one side of the first-order boundary,
i.e., (1,—1), and initialize the lower half to the configura-
tion on the other side of the first-order boundary, (0,0).
With these initial conditions every update sweep of the
lattice was monitored. If the system was on the antifer-
romagnetically ordered side of the first-order boundary,
we observed after a relatively few sweeps (up to 50000)
that the order parameter ~M

~

became large (&0.75),
whereas if the system was on the other side of the first-
order boundary, the order parameter for the (0,0) configu-
ration, the quadrupole moment Q, was observed rapidly to
become large ( & 0.75). Using this technique, we measured
the first-order line of Fig. 1 to a statistical accuracy of
1%. The second-order phase boundary was obtained from
peaks in the specific heat and susceptibility. For 6=0
and H =0, T, was obtained by the use of finite-size scal-
ing and the assumption of universality of the critical ex-
ponents P and y and will be discussed in detail later. The
tricritical point was determined by finding the point
where hysteresis starts in the measurement of the order
parameter when crossing the phase boundary in the 6
direction. Further discussion of this point will be found
later when we describe our measurement of the tricritical
line with H+0.

Figure 2 shows the phase diagram in the space of T, H,
and h. The solid lines in the T=0 plane exhibit the
boundaries which separate the various configurations
shown and were obtained from Eq. (2.1) using equality of
the energies along the configuration boundaries. The data
for the boundaries of the planes of constant 5, i.e.,
6/J=O, 1, and 2.25, were obtained for a lattice of size

(0)=g (O)b/n,
bins

(2.10)

and the uncertainty estimate for (0 ), i.e., p(O )„,is
1/2

5(O )„= g ((0 ) b
—(0 ) )'/n(n —1)

bins

(2.11)

The naive estimate assuming each sweep corresponds to
an uncorrelated configuration corresponds to n =S and
S„=l. However, as n is decreased, the estimate 5(O)„
increases initially but then flattens out and becomes essen-
tially independent of n. This yields a reliable estimate of
the uncertainty in our measurements.

2.2

t~oo ay

1.6— 1st
Order + 3 2 Mixed Start

x TRICRITICAL POINT-
L MCS

100 2,000,000
'"' ~ 64 10,000

40 10,000

III. RESULTS

A. Phase diagram in T-II-6 parameter space

The lattice-size dependence of our measurements of the
magnetization, the specific heat, and the magnetic suscep-
tibility is qualitatively similar to that observed elsewhere
for similar systems and will not be presented here in de-
tail. Rather we present first the qualitative picture of the

0
0.0 0.8 1.6 2.4 3.2

kT/J

FIG. 1. Phase diagram for the antiferromagnetic Blume-
Capel model in the H =0 plane.
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TRICRITI
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~ 64 10
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FIG. 2. Phase diagram for the antiferromagnetic Blume-
Capel model in the parameter space of T, H, and A. The spin
configurations of the lattice at T =0 are designated by (s„s,).

L=40 and 1500 Monte Carlo steps after 500 sweeps had
been discarded to allow the system to come to thermal
equilibrium. After each boundary point was determined,
the required series of measurements were repeated, incre-
menting the measurements in the opposite direction to
look for hysteresis effects which might suggest a first-
order transition. None was found. In this region of pa-
rameter space, the phase transitions showed up clearly in
our data as peaks in the specific heat and susceptibility,
and this allowed us to map out these boundaries with rela-
tively few Monte Carlo steps. Similar measurements
yielded the boundaries shown for the planes of constant H
for H/J=3 and 4. The peaks in the magnetic susceptibil-
ity and specific heat at these boundaries were observed to
grow with increasing lattice size as would be expected
from finite-size scaling '' for a second-order phase transi-
tion. The tricritical line nearly falls in the plane 6/J=2,
and the first-order phase boundary is depicted by the
cross-hatched area in Fig. 2.

B. Finite-size scaling, critical indices,
determination of T,

Finite-size scaling has been reviewed elsewhere' and
will be discussed here only briefly. Qualitative confirma-
tion of finite-size scaling of Monte Carlo data has been
obtained for a variety of Ising-like models, both for two-
and three-dimensional lattices. '" ' We too have veri-
fied the qualitative features predicted by finite-size scaling
and find the second-order transition at H=A=O with
T, =1.694 consistent with the exactly known critical in-
dices expected for the two-dimensional Ising-like univer-
sality' class, P=0.125, ' y= 1.75, ' and v= l. ' With
these values of the critical indices, we found that the
gL and ML~ at different T and L then collapse
onto universal curves in terms of the scaled variable

( T T—, )L '~". Qualitatively similar results have been
found earlier. '" ' We also have taken a series of three
measurements radially across the second-order transition
boundary shown in Fig. 1. The data were taken in the
(k~T/J, A/J) range along the boundary from (0.68, 1.944)
up to the tricritical point at (0.619,1.97). Fitting

(1—R, /R) l,
t' and X =B(1—R, /R) r with

R = [(kz T/J) +(5/J) ]', we find for L = 100 and
MCS equal to 15000 that the effective critical indices
trend smoothly to P, =0.042+0.004 and y, =1.09+0.1

consistent with the tricritical indices of Landau and
Swendsen, Pz. ——0.039 and y, = 1.03, who obtained their re-
sults using a different approach, the Monte Carlo renor-
malization group.

But here we stress our effort to go beyond' ' a qualita-
tive confirmation of finite-size scaling and to use finite-
size scaling together with the assumption of universality'
of the critical exponents P, y, and v to determine to high
statistical accuracy T„ the critical temperature for
A=H =0. This approach is similar to, but the reverse of,
the method of Refs. 18 and 19, where finite-size scaling
was used to determine y for the three-dimensional Ising
model with input of an independently determined value
for T, . On the basis of finite-size scaling we expect the
lattice size dependence of the susceptibility and order pa-
rameter

~

M
~

precisely at T= T, to be '
0——AL~ (3.1)

(3.2)

However, away from T, these dependences will be altered.
In addition there are nonleading corrections to Eqs. (3.1)
and (3.2) which can be seen as deviations from these rela-
tions for smaller L. Thus if we assume (i) that X o and
~M

~

scale according to the finite-size scaling relations
given by Eqs. (3.1) and (3.2) at T= T, and (ii) that univer-
sality holds for the critical exponents P and y, we can
then determine to a high statistical accuracy T, by
demanding that X 0 and

~

M
~

satisfy finite-size scaling
at, T=T .

The critical exponents are known exactly to be P= —,',
y= 4, and v=1 for the two-dimensional spin- —, Ising
model. ' We assume by universality that the same ex-
ponents are correct for the present spin-1 Ising model. A
low-temperature series expansion calculation gives
T, =1.690(6), where in parentheses is shown the expected
uncertainty in the last digit. Figure 3 shows our measure-
ment of X OL

' and
~

M
~

L + ' ' . It should be point-
ed out that in order to test and use this aspect of finite-
size scaling, runs with very high statistics are required.
For L & 70 we discarded 100000 sweeps of the lattice for
thermalization and then measurements of physical quanti-
ties were made for each lattice sweep. For each L &70,
500000 sweeps of the lattice were made for each mea-
sured point in Fig. 3, whereas for L )70, 100000 sweeps
were discarded for lattice thermalization and data were
taken for 2000000 lattice sweeps at each L to give the
measured results for Fig. 3.

It should be clear that our measurements are not con-
sistent with finite-size scaling for the central value (uncer-
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FIG. 3. Comparison of finite-size scaling with Monte Carlo
measurements. The data would be horizontal to satisfy finite-
size scaling exactly.

tainties in the series result will be discussed later) of the
series-expansion calculation, T, =1.690. Also our neglect
of nonleading terms in Eqs. (3.1) and (3.2) cannot explain
the discrepancy between our measurements and the hor-
izontal line predicted by finite-size scaling since these
corrections would show up at small L, not at large L
where the discrepancies actually occur. From preliminary
results we obtained, it is clear that X 0 and

~

M
~

fall fas-
ter for larger assumed values of T„so we also took mea-
surements at T=1.694 and these results are also shown in
Fig. 3. These measurements are consistent within our er-
rors with the finite-size scaling relations (3.1) and (3.2)
which hold at T=T„so we conclude that T, =1.694(2),
where the uncertainty is estimated from Fig. 3. We also
see that the change in T, from the central value of the
series expansion calculation required to be consistent with
finite-size scaling, from 1.690 to 1.694 is within the quot-
ed uncertainty of the series calculation. Thus the present
technique yields a value for T, consistent with the series
expansion calculation but with reduced uncertainty in the
result.

C. Determination of the tricritical line

The location of the tricritical line was determined using
a combination of mixed start results and observing the
beginning of the onset of hysteresis in the measurement of
the order parameter ~M

~

as the boundary of the first-
order region is encountered from the second-order side.
In the first set of measurements, we fixed H and made
measurements of the order parameter first incrementing
steps in 6 then decrementing steps in 6 to measure the
hysteresis in

~

M
~

for T=T;. In the first-order region,
strong evidence for hysteresis was apparent as shown in
Fig. 4 for H/J=O. S and 0.5&k&T/J&0. 62. For a given
H and T the hysteresis was calculated as follows:

(3.3)

where i labels values of b, and
~

M ~;(I) is the order pa-

0.6
IMI

0.4—

0.2
I I I I V P V I I I

1.90 1.94 1.98 1.90 1.94 1.98

FIG. 4. Typical hysteresis observed in crossing the first-order
transition boundary.

g( T) = A ( T, —T)' for T & T,

=0 for T) T] (3.4)

It should be pointed out that we made the determina-
tion of T, with measurements at much finer steps in T
than is displayed in Fig. 4 where the choices of T; were
chosen to show the evolution of the hysteresis clearly.
After T, was determined, b, , was obtained using the
mixed start approach by determining (for H fixed) the
first-order phase boundary as a function of T and A. For
T=T„ the value of 6 which is on the first-order boun-
dary is 6, . Similarly other points on the tricritical line at
fixed T rather than fixed H were determined by reversing
the rolls of T and H in the above procedure. The parame-
ters for the tricritical line are summarized in Table I.

D. Nondecomposition of the
tricritical point

One of the most interesting and elusive features of the
antiferromagnetic Blume-Capel model in the presence of
an external magnetic field which is predicted by mean-
field theory is the decomposition of the tricritical point
into a critical end point and a double critical point. Our
investigation of this question constitutes the main results
of this paper, which are summarized in Fig. 5.

rameter at 6;, T, H obtained by incrementing 6 and

~

M ~;(D) is obtained similarly by decrementing b, . Thus
Eq. (3.3) gives the area exhibited by the hysteresis plots of
Fig. 4. The value of T on the critical line at this value of
H was determined by fitting g(T) as determined from Eq.
(3.3) for various T; as shown in Fig. 4 to
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TABLE I. The parameters of the tricritical line.

kg T/J

0 6 19+0.os

0.65 +0'02

0.623 TQ Q3

0 57y0.06
+0.12

0.46yo 04

0.35

0.2
0.05

0.0
0.4
0.8
1.2
1.6

1 84+0. 14
+0.16

1.84+o.os
+0.08

+0.082.00+0.os

1.97+0.02
1.95+0.03
1.95+0.04
1.96+0.05
1.95+0.02

1.971+0.012
1.983+0.008
2.000+0.004

(3.6)

with P=0.125, y=1.75, and v= 1, characteristic of
second-order critical indices of the two-dimensional Ising
universality class. For H/J & 1.75, the phase boundary is
distinctly first order, and the first-order boundary points
shown in Fig. 5 were determined from the mixed-start

I I I I I I

h/J=1. 98

For H/J &2, there is a broad region of second-order
phase transition between the antiferromagnetically or-
dered (staggered) phase and the paramagnetic (disordered)
phase. The points of this boundary were determined by
observation of peaks in the magnetic susceptibility. Along
the boundary the susceptibility and order parameter

I
M

I

scaled with lattice size as expected, '
(3.5)

technique, described earlier, with I.=32. In this region of
H the first-order phase boundary exhibited a decided
discontinuity in

I
M

I
as well as the hysteresis one would

expect of a first-order phase transition. Perhaps the best
way to exhibit the distinct first-order character of the
phase transition in this region is to display the metastabil-
ity of the system along the boundary where the system
remains in one of the metastable configurations and then
quickly shifts to the other metastable configuration. This
dramatic flipping between metastable states characteristic
of a first-order phase transition boundary is shown in Fig.
6.

The region in parameter space where the phase boun-
dary changes rapidly and where the nature of the phase
transition changes is shown in the boxed region of Fig. 5.
It is within this region where we have concentrated our ef-
forts to clarify the question of the nature of the region's
criticality. First consider the region at k& T/J=0. 19,
where the second-order boundary shows a large curvature
and swings down toward the tricritical point. Figure 7
shows our measurements of the lattice-size dependence of
the order parameter as a function of external magnetic
field. In Fig. 7(a) at k&T/J=0. 19 the size dependence
has virtually ceased, whereas in Fig. 7(b) at
k&T/J=0. 195 the lattice-size dependence of IM I

is as
expected for a second-order phase transition and suggests
strongly second-order transitions both at H/J=1. 85 and
H/J=1. 97. Similar measurements at kz T/J=0. 18 and
k&T/J=0. 17 show no discernible size dependences of

I

M
I

and the susceptibility. Thus kit T/J=0. 19
represents the tip of the transition boundary.

At kz T/J=0. 21 we have made high-statistics measure-
ments of the lattice-size dependence of

I
M

I

in the region
of the phase transition at H/J=1. 81, the results of which
are shown in Fig. 8(a). This figure shows distinctly that
(i) IM

I

falls smoothly across the transition region and
(ii) the size dependence expected of a second-order phase
transition is exhibited. These two pieces of evidence sug-

L=40H/J, ~ Mcs=i5oo
MCS=8000
MCS=50,000 to

150,000
MCS=50,000 to

150,000
Mixed Start, L=32

jcT/J=0. 265
H/J=1. 68
L=30

0 00

TRICRITICAL POINT

0
0

0
0

0
0

00
0

0
0 0.2 0.4

kT/J

0.6 0.8
48 S4 60 66 72

10 MCS

FIG. 5. Phase diagram in the b/J=1. 98 plane where the
decomposition of the tricritical point might be expected. The
boxed region is where measurements were concentrated.

FIG. 6. Plot of the order parameter IM
I

as a function of
Monte Carlo steps. One hundred sweeps were made between
plotting measurements. The presence of metastability charac-
teristic of a first-order transition is clearly shown.
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(a)
o o 0 0 0 0 0 oo 0

I

kT/J=O. 19
L=40,MCS =50,000
L=80,MCS=50, 000

o o o 0 0 oo
0 g o

o Qoso&

kg T/J

0.23
0.20
0.21
0.22
0.23
0.25

H, /J

2.00+0.015
1.85+0.01

l.810+0.003
1.772+0.004
1.740+0.004

1.69+0.01

0.13+0.02
0.14+0.03
0.08+0.02
0.03+0.01

0.026+0.005
0.029+0.01

TABLE II. Determination of P near the tricritical point.
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FIG. 7. Comparison of
~

M
~

for kz T/J= 0 19 and.
k~T/J=0. 195. In (a) no evidence is seen for the 1attice-size
dependence expected of a second-order phase transition whereas
in (b) this behavior begins to show up.

gest strongly that the phase transition at H /J = 1.81 is
still second order (further evidence based on the critical
index P will be presented later). However, at
kz T/J=0. 23, the picture dramatically changes as is
displayed in Fig. 8(b). Now the phase transition at
H/J=1. 74 displays a definite discontinuity in

~

M ~,
showing that the system has passed into the region of
first-order phase transition. High-statistics measurements
at kz T/J=0. 22 indicate a behavior intermediate between
that shown for the two temperatures in Fig. 8, and we
conclude that the data show the point where the transition
changes from second order to first order, the tricritical
point, lies on the curve of Fig. 5 at H, /J=0. 22+0.01.

Further evidence for this conclusion and for our inter-
pretation of the nature of the phase transitions in the
boxed region of Fig. 5 has been obtained through an in-
vestigation of the effective critical index /3 in this region,
determined by fitting our data to

~

M
~

=A
~

(1 H, /H)
~

~.—The main source of uncertainty in
the determination of P is the uncertainty in H, . Table II
summarizes our results. At kz T/J =0.23 and
H, /J=2. 0, the critical index P is equal within errors to
what is expected (P=0.125) for a two-dimensional Ising
second-order transition. A similar result is obtained as
the measurement swings around the bend of Fig. 5 to
k&T/J=0. 2 and H, /J=1.85. However, at k&T/J=0. 21
the effective P begins to decline dramatically and at
kz T/J=0. 22 is equal within errors to the tricritical index
P, =0.039 as determined by Landau and Swendsen. ' As
T is increased further, the effective P becomes even small-
er as would be expected if the system has moved into a
first-order transition region. These measurements, then,
lead further credence to the picture exhibited in Fig. 5.

IV. SUMMARY AND CONCLUSIONS

0 0
o o o

~ 0

0
o o

oooo
o oo

0

1.6 1.8
H/J

2.0 2.2

FICx. 8. Comparison of the phase transition at k~T/J=0. 21
and H, /J =1.81 which shows behavior characteristic of a
second-order transition (a) with that at k~ T /J= 0.23 and
H, /J=1.74 which shows the discontinuity indicative of a first-
order phase transition (b).

We have made a detailed Monte Carlo study of the
phase diagram and criticality of the antiferromagnetic
Blume-Capel model on a two-dimensional lattice. One re-
sult is the determination of the phase diagram for this
model in the three-dimensional parameter space of T, H,
and A. Finite-size scaling and the assumption of univer-
sality was used to determine T, =1.694(2) at H =b, =0 in
agreement with the low-temperature series expansion cal-
culation but with improved accuracy. The tricritical
point in the H =0 plane has been found at a position in
agreement with that determined by Landau and
Swendsen and the critical indices P and y have also been
found to be in agreement with those obtained in Ref. 5.
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Using hysteresis measurements, we have determined the
tricritical line as it evolves out of the H =0 plane.

Finally we have studied the question of the decomposi-
tion of the tricritical point for H&0. No evidence is
found for such a decomposition but rather we found the
results shown in Fig. 5. In order to compare these results
with previous work, we show in Fig. 9 the predictions of a
mean-field calculation. ' In particular Fig. 9(a) shows the
tricritical point which decomposes as in Fig. 9(b) into a
critical end point and a double critical point. Qualitative-
ly there is considerable agreement between the mean-field
calculation and the present Monte Carlo simulation.
However, we disagree on two significant features: (i} our
Monte Carlo simulation shows no evidence for the decom-
position of the tricritical point and, (ii) our simulation
shows that the second-order line persists around the re-
gion of high curvature in the boxed region of Fig. 5
whereas the mean-field calculation has the first-order line
extending around the promontory.

We have investigated othe' nearby planes of fixed 5
and again find no evidence for a decomposition of the tri-
critical point. In regard to feature (ii), however, the
difference between the mean-field calculation and the
present, in principal exact simulation is readily explained.
In the mean-field calculation correlated fluctuations are
neglected, while for the two-dimensional lattice, fluctua-
tions are strong in the Monte Carlo simulation. Since
these fluctuations tend to break down a first-order phase
transition into a second-order one, the second-order line
would be expected to extend further relative to the first-
order line in a calculation, such as the Monte Carlo simu-
lation, where fluctuations are taken into account. Com-
paring Fig. 5 and Fig. 9 shows that it is this qualitative
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difference which distinguishes our result from the earlier,
mean-field calculation.
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FIG. 9. Mean-field calculations from Ref. 1. Because the
mean-field calculation includes in the scale the number of
nearest neighbors z, one should multiply the scales of this figure
by 2 to compare with Fig. 5. Solid lines represent second-order
transitions and dashed lines first-order transitions. The tricriti-
cal point in (a) decomposes in (b).
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