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Phenomenology and neglect of irrelevant variables for ferromagnetic systems
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An earlier proposed phenomenology for the description of the singular behavior of a ferromagnet
in an extended region about its critical point is reexamined in light of certain renormalization-group
results. It is established that if irrelevant variables are neglected, then the free energy predicted by
the renormalization group will be identical to that of the phenomenology, provided the analytic
coefficient functions u and U associated with the latter are selected appropriately. Explicit formulas
for u and U in terms of the underlying nonlinear scaling fields g, and gq are obtained and used to
derive exact relations among the analytic corrections to scaling for the leading singular parts of cer-
tain thermodynamic quantities. The results are compared with experimental values for the zero-
field susceptibility of nickel.

I. INTRODUCTION

Consider s ferromagnetic, or similar thermodynamic
system that for sufficiently low temperatures is character-
ized by a first-order phase boundary ending in an ordinary
critical point. In an earlier publication' we proposed a
phenomenological description for such a system in an ex-
tended region around the critical point including the
phase boundary. The phenomenology involves two func-
tions u and u, each analytic in t and h, where
t =T/T, —1 is the relative temperature and h =H/ksT
with H the external field and determined so that the free
energy F for the system is an appropriate solution of the
first-order partial differential equation

u +u =F+A,BF BF
c}t

where A—:A(t, h) is an analytic background term. The
singular behavior of F in the asymptotic region about the
critical point is assured by the requirement' that u and v

vanish there simultaneously as

u =t/(2 —ct), v=hb /(2 —a), h, t ~0, (2)

where a is the specific-heat exponent and 5=2—a —P
with P the exponent for the spontaneous magnetization.
Since F is an even function of h, it follows that u and A
must also be even in h and that u must be odd in h.

Consider now this same system but from the viewpoint
of the renormalization group (RG). According to RG
studies, if we neglect the effects of irrelevant variables,
then near the critical point the singular part of the free
energy, F, may by expressed in the form

(3)

ables are analytic functions of t and h. By symmetry, g,
and g~ are even and odd in h, respectively, and in the
asymptotic region about the critical point they vary as

g, =t, gg —h, t h~0 (4)

II. PROOF OF EQUIVALENCE

Suppose first that the nonlinear scaling fields g, and g~
are known. It is straightforward to establish for this case
that a sufficient condition that F„as given in Eq. (3),
satisfy the singular part of Eq. (1) (with A =—0) is that u
and u be determined by the relations

relations which also serve to fix overall factors in g, and

The purpose of this paper is to establish that if g, and
gh are related to u and v in a certain way [Eq. (5), below],
then the phenomenology given by Eq. (1) is essentially
equivalent to the RG formula in Eq. (3). Specifically, we
first show that given g, and gz, the singular part of the
free energy, F„as given by the RCx in the absence of ir-
relevant variables, will satisfy the phenomenological Eq.
(1) (with A—:0), provided the analytic functions u and v

there are expressed appropriately in terms of the nonlinear
scaling fields g, and gI, . Secondly, we establish the con-
verse; that is, that if the coefficient functions u and u are
known- =xperimentally or otherwise —then g, and g~ can
be determined (up to constant factors) in such a way that
F, in Eq. (3) reproduces whatever experimental or theoret-
ical data were used to obtain u and v in Eq. (1) in the first
instance. In this sense, then, Eqs. (1) and (3) are
equivalent. Thirdly, we make use of Eqs. (1) and (3) to
develop formulas valid for small h and compare the re-
sults with experimental values for the zero-field suscepti-
bility of nickel.

where a and 6 are the critical exponents and t and h are,
respectively, the relative temperature and field strength as
defined above. The Y+ are two universal functions of the
indicated variable and g, and g~ are the nonlinear scaling
fields of the RCz which in the absence of irrelevant vari-
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For if we substitute the form for F, as given in Eq. (3)
into the phenomenological Eq. (1) (with A =—0), we find
that F, is indeed a solution for any (differentiable) choice
of the universal functions F+, provided only that g, and

gh satisfy Eqs. (5). Note that Eqs. (5) are consistent with
(i) the fact that u(v) and g, (gh) are even (odd) in h, and
(ii) the limiting forms for u, v, g„and gh, as given in Eqs.
(2) and (4). For substituting, say, Eqs. (4) into Eqs. (5), we
regain Eqs. (2). Similarly, if we substitute Eqs. (2) into
Eqs. (5), we regain Eqs. (4) but only up to constant factors
in this case.

More generally, if we solve Eqs. (5) for u and v, there
results

1
(gtghh ~ghgth )

(2 —cr)J
1

(~ghgr~ ghr ) ~

(2 —a)J

(6)

whe~e g„=Bg,/Bt, g h
——Bg, /Bh, etc. , and J=J(t,h) is the

Jacobian

gtt ghh gth ght

Since g, and gh are each analytic in t and h, it follows
that, as required, so will be u and v, provided only that
J&0. The fact that this latter condition is satisfied, at
least in the region around the critical point, can be seen by
substituting the asymptotic forms in Eqs. (4) into Eq. (7).
We find J=l +0(t, h ), so that at least in some finite re-
gion around the critical point, u and v in Eqs. (6) will be
analytic. We conclude therefore that if u and v are deter-
mined in terms of g, and gh, in accordance with Eqs.
(5)—(7), then u and v are indeed analytic in t and h, as re-
quired, and the formula for F, in Eq. (3) will satisfy the
phenomenology in Eq. (1) for the given u and v.

Consider now the converse. To this end suppose that
the analytic functions u and v are now known—
experimentally or otherwise —and ask if we can determine
two analytic functions g, and gh in terms of u and v so
that F, in Eq. (3) reproduces the free energy obtained by
use of Eq. (1). The answer is again affirmative provided
u, v, g„and gh are related by Eqs. (5) which now must be
viewed as two partial differential equations for the un-
knowns g, and gh given u and v. Unfortunately, the situ-
ation for this case is not nearly as straightforward as
above where we could solve for u and v directly to obtain
Eqs. (6) and thus requires a somewhat more elaborate dis-
cussion.

To solve Eqs. (5) for g, and gh, note firstly that these
two equations are linear and homogeneous and thus at
best are determined only up to constant factors. Secondly,
even disregarding this undetermined multiplicative factor,
the solutions of Eqs. (5) are not unique; for given any
solution of, say, the first of Eqs. (5), we can obtain anoth-
er by adding to it an arbitrary function of a solution of
the associated homogeneous equation obtained by setting
the g, term on the right-hand side of the first of Eqs. (5)
to zero. Thirdly, the similarity between Eqs. (5) and the
singular part of Eq. (1)—i.e., with A—:0—suggests the
possibility that analytic solutions for g, and gh of Eqs. (5)
may not exist at all! Thus to complete the analysis it is

necessary to show unambiguously that there exist analytic
solutions to Eqs. (5) and that these are unique up to an
overall factor.

To demonstrate this fact that there exist such analytic
solutions to Eqs. (5) let us make use of the analyticity and
symmetry properties of u and v to expand them in powers
of h:

u =up+& u1+ ' ', v=hUp+h v)+ (8)

where u p, vp, u &, v &,
. - - are analytic in t. Since the

sought-for solutions for g, and gh must also be analytic,
let us assume the corresponding expansions

g~ =gr +h g, + . , gh
——hgh+h gh+. . .2 1 . . . 0 3 1 (9)

p
uo gh =

dt 2 —cx

2 —cx

0—vo gh ~

uI—2vp
2 —cx up

(10)

d 1 1
up ghdt 2 —o.

u1—3vo gh —v i�g-
hu 2 —cx

0—Vp gh

where in the last two equations we have simplified the
right-hand sides slightly by use of the first two. These
four relations and the corresponding higher-order ones are
ordinary, linear, first-order differential equations and are
easily solved given up, vp u1 and v& as we Presume here.

To display explicit solutions, it is convenient to intro-
duce a function P(a, b, t) of t, which depends on two real
parameters a and b, and is defined by

uo = —bvo
dP 1

a

This has the solution

f dt' 1
P(a, b, t) = exp —bVp

up a

where under the integral up and vp are taken to be func-
tions of the dummy variable of integration t' and the in-
tegral is indefinite with the additive constant correspond-
ing to an undetermined overall factor in P. Making use of
Eqs. (2), according to which uo —t /(2 —a),
vo —b, /(2 —a) near the critical point, we find that P has
the form

P(a, b, t) =
~

t
~

"—"—' a, (t) (13)

with ao(t) an analytic function of t with ao(0)&0. For
the special case when the exponent [(2—a)/a —bb, ] is an

Our task thus becomes that of showing that
g, ,gh, g, ,gh, . . . can be determined to be analytic in t and
in a way so that Eqs. (5) are satisfied.

To proceed, we substitute Eqs. (8) and (9) into Eqs. (5).
Equating equal powers of h on both sides of the resulting
relations we find the set of ordinary differential equations

d p 1 p
up gr= g~ ~dt ' 2 —o,
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integer, P is analytic in t and the absolute value signs in
Eq. (13) are to be dropped.

In terms of the function P(a, b, t), the solutions of Eqs.
(10) are as follows:

g, =P(2 —a, O, t),
gt, =P((2 —a)/b. , l, t),

of small h. We derive four equations from this relation as
follows: the first we obtain by setting h =0, and the
remaining ones by differentiating Eq. (1) with respect to h
i times (i =1,2, 3) and setting h =0 after each differentia-
tion. We find in this way the four relations

dFp
up —Fp ——Ap,

dt

dt'
gtI= —P(2 —a, 3, t) J P(2 —a, 3,t')

g,'= —P(2 —a, 2, t) f
up 2 —a 2 a, 2—, t'

(14)
dMp —Mo(1 —vo) =0,"'

dt

dip dFp
uo —Xp(1 —2vp)=2 A& —u)

dt dt

(16)

u)
X U)+ —Up

up 2 —A up

where the functions up, Up, g, , g~, u&, and U& in the in-
tegrands are functions of the dummy variable t' and the
integrals themselves are indefinite. Reference to Eq. (13)
shows that g, = ta ~(t) and gt, =a2(t) with a

&
and a2 ana-

lytic functions of t with a&(0)&0 and a2(0)&0. Thus, as
required, g, and g~ are analytic in t. The overall factor in

P remains undetermined and corresponds to an undeter-
mined multiplicative factor in a&(t) and az(t). With re-
gard to g,

' and gt,
' in the third and fourth of Eqs. (14),

brief reflection shows that these can also be made to be
analytic by simply selecting the additive constants associ-
ated with the indefinite integrals to be zero. For since for
small t, g, and up both vanish linearly in t, whereas u&,

v&, and gt, are constant (&0) for stnall t, and since
P(2 —a, 2,t)-

I
t

I

' and P(2 —a, 3,t)-
I
t

I

', it fol-
lows that only if the additive constants associated with the
integrals fail to vanish will g, and gt,

' in Eqs. (14) be
singular. Thus, in all cases, we have determined analytic
solutions for g, , gq, g,', and gq and thereby have obtained
analytic solutions for g, and gt, in Eqs. (5) through order
h . Corresponding results can be obtained similarly in
higher order.

III. ANALYTIC CORRECTIONS TO SCALING

In this section we apply the above results to derive cer-
tain formulas which relate, to all orders, the analytic
corrections to scaling for certain thermodynamic quanti-
ties. Of particular interest is a formula for the tempera-
ture variation of the zero-field susceptibility which will be
compared with experimental data in the following section.
To simplify matters let us focus on the region T (T, for
which t(0. The corresponding formulas for T) T, can
generally be obtained from these since most of the func-
tions we deal with, g, , up, - . , are analytic in t.

Consider again the phenomenological Eq. (1) for small
h and suppose that u and U have been expanded as in Eq.
(8). Since the analytic background term A is also analytic
it may be expanded similarly as

2 =Ap+i, h'+ . (15)

where Ap and 2& are analytic in t and where, without loss
of generality, we may assume Ap(0) =0 since Ap(0) corre-
sponds to an irrelevant additive constant to the free ener-

gy, according to Eq. (1). Consider now Eq. (1) in the limit

d0o
up —fp(1 —3vp) = —6Mo v, +

dt

u)
(1 —vp)

up

where Fp is the zero-field free energy,
Mo =——(BF/Bh )t, p is the spontaneous magnetization,
TXp= (B F—/B—h )t, o is the zero-field susceptibility, and
T Pp =——(r) F/r)h )g p is the field derivative of the sus-
ceptibility in zero field. Note that the Mp and Pp equa-
tions are independent of the analytic background term
A =Ap+A)h +,while the Fp and 7p equations are
dependent on it.

A number of interesting consequences regarding the
four zero-field thermodynamic functions, Fp, Mp, Xo, fol-
low from the differential Eqs. (16). First, as will be estab-
lished in Appendix A, they have the respective analytic
structures

Fo(t)=AF
I

t I' f,(t)+a, (t),
Mo(t) =Bo

I

t
I

mp(t),

TXo(t)=Co
I

t
I

~po(t)+
I
t

I

' Dz(t)+bo(t—),
T'Wo«) =&o

I

t
I

' 'qo(t)+ Jo
I
t

I

(17)

In these formulas y=b, +P; AF, Bp, Cp, Ep, and Jp are
constants; fo(t), mp(t), pp(t), qo(t), and q~(t) are analytic
in t normalized so that fp(0) =mp(0) =pp(0) =qp(0)
=q~(0)=1; and ap(t), bp(t), and D&(t) are analytic with
ap(0)&0 and Dr(0)&0. The analysis in Appendix A also
shows that for the case of a logarithmic specific-heat
singularity, corresponding to a=O, the factor

I

t
I

in
the first and third of these relations are to be replaced by
ln

I

t
I

. Secondly, we establish in Appendix B that the
four functions fo(t), mo(t), pp(t), and qo(t) which give
the analytic corrections to scaling for the leading singular
parts for Fp Mp Xp and gp, respectively, are not in-
dependent but are related by

mo(t)
pp(t) = (18)

and

po(t) mo(t)
qo(t) =

mp(t) fp2(t)

where the second equality here follows from Eq. (18).
These relations imply that if, as for certain two-
dimensional Ising models, the leading analytic corrections
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(&'+ )'

Y+ Y+ o

where the primes denote the derivative and the subscript 0
that the functions are to be taken with the argument zero.
Similarly, the derivation of Eq. (19) in Appendix B leads
to the universality relation

Cp
2

BoEo

(I'+ )'

Y'+Y'+ o

(21)

As a final point it is interesting to note that it is also
possible to relate F~„ the singular part of Fo, and Mo,
directly to g, and g~. For, on comparing the first of Eqs.
(10) and (Bl) in Appendix B we conclude directly

o, = ola'I' (22)

with ao an undetermined constant which can be related to
Ao by comparison with the first of Eqs. (17). Similarly,
by taking an appropriate linear combination of the first
two of Eqs. (10) and the second of Eqs. (16), we obtain

Mo =&oga
I g I

0 0 p (23)

where the constant has been fixed by comparison with the
second of Eqs. (17). Bg use of Eqs. (22) and (23), then we
can express g, and g& directly in terms of Mo and the
singular part of the zero-field free energy.

IV. COMPARISON WITH EXPERIMENT

In this section we consider the possibility of comparing
the results in Eqs. (17) and (18) with experiment. Because
of the existence of the various unspecified analytic func-
tions there, fo(t), ao(t), mo(t) po(t), Dr(t), bo(t), and so
on, this comparison might be viewed as not being mean-
ingful since there are so many free parameters available.
Nevertheless, at least for Ni, we find that surprisingly few
parameters are required so that Eqs. (17) and (18) repro-
duce experimental curves for Mo and go for this material.

A comparison between the first two of Eqs. (17) and ex-
periment was previously carried out' for nickel. Specifi-
cally, the limiting forms for uo(t) and vo(t) in Eqs. (2)
were extended outside of the critical region by the formu-
las

to scaling, fo(t) and mo(t), are known, then po(t), qo(t),
and corresponding higher-order functions associated with
the field derivatives of the free energy may also be com-
puted directly. If we expand both sides of Eq. (18) and
equate the coefficients of the linear and quadratic terms in
t, we obtain among these coefficients two relations that
are identical to those derived previously by Aharony and
Fisher directly from Eq. (3).

Of some interest is the fact, established in connection
with the arguments presented in Appendix 8, that certain
combinations of the constants appearing in Eq. (17) are
universal. Thus, in connection with the derivation of Eq.
(18) we find the well-known result that the quantity
Bo /AF Co is universal. Specifically, making use of the
fact that the function P+ in Eq. (3) is universal, we find

Bo2
(20)

AFCo

1
u, (t) = t(1+at),

2 —o.'

vo
—— (1+bt),

2 —a

(24)

where a and b are parameters to be determined by experi-
ment. The substitution of these into the second of Eqs.
(17) then gave for Mo (normalized to unity at T =0)

Mo(t) =
(1 —T/gT, )~~

(25)

where (=1+bA!Pa. For the choice b= P/b, and-
(= 10, corresponding to a = ——,, excellent agreement was
found for' Mo(t) for Ni for which" T, =627.2 K and'

P=0.3854. The above form for Mo agrees with experi-
ment not only near T, but throughout the temperature
range 0 & T & T, . Unfortunately, it is not as easy to ob-
tain experimental values for fo(t) as defined in the first of
Eqs. (17). In principle, one could consider data for the
specific heat of Ni and integrate twice to obtain Fo. But
because of the fact that a is so small' (-—0. 1 for Ni},
one cannot untangle so readily fo(t) from ao in the first
of Eqs. (17). However, we can obtain fo(t) phenomeno-
logically by integrating the first of Eqs. (16) by use of the
form for uo(t) in Eq. (24). For later reference let us note
here the result:

fo(t) =(1+at) '=(1—a ) '(1 —T/JT, )
' . (26)

Consider now the third of Eqs. (17) for the zero-field
susceptibility. Here there are three undetermined analytic
functions, namely, po(t), D~(t), and bo(t}. With an infin-
ity of adjustable parameters thereby available, it would
appear to be pointless to attempt a comparison with ex-
periment for Xo. However, because of Eq. (18), the quan-
tity po(t) is known to the same extent that mo(t) and fo(t)
in the first two of Eqs. (17) are, and this suggests that at
least close to T„where the

~

t
~

r term in the third of
Eqs. (17) dominates, some meaningful comparison might
be possible. This indeed turns out to be the case, at least
for Ni and over a surprisingly large range of tempera-
tures.

Let us consider the possibility of attempting a compar-
ison with experiment by approximating 7o by the first of
the three terms in the third of Eqs. (17). That is, by the
relation

TXo-Co
i
t

i
~po(t) . (27)

To proceed, we need to know both the constant Co and
the analytic function po(t) According t.o Eq. (18) the
latter is the ratio mo(t)/fo(t) and thus, in principle, can
be determined from experimental measurements for the
magnetization and specific heat. Unfortunately, as noted
above, this does not work since fo(t) is difficult to obtain
from specific-heat data because of its entanglement with
the background term ao(t). To get around this difficulty
let us make use of the procedure of Ref. 1 to assume Eqs.
(24) and determine the parameters a and b from experi-
mental values for mo(t) and thereby obtain the form for
fo(t) in Eq. (26). In this way we obtain
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(28)

with g= 1 —I /a = 10. In the temperature region just
above T„ therefore, we would expect Eqs. (27) and (28),
with an appropriate choice for the constant Co to repro-
duce experimental values for Xo. Such a choice for Co is
easily determined from the data of Weiss and Forrer' as
analyzed by Kouvel and Fisher" near T, . Extrapolating
on a semilog plot of T

~

t
~

~XO against T as T~T„we
obtain the value

Co ——0.0033+0.0001 emu/g . (29)

Tgp CO
I

t
I

"pp——(t)+do, (30)

with do a constant and representing the first correction
coming from the two terms that we have neglected in the

I.00

Figure 1 shows experimental values of Pp for Ni as a
function of T for T, &T&1.12T, with T, =627.2 K.
Also shown are three theoretical curves. The top, or
dashed curve, is the asymptotic scaling form, that is, the
formula in Eq. (27) with po(t) replaced by unity. The
middle curve, which is manifestly closer to the data, is
precisely Eq. (27) with po(t) given by Eq. (28). We em-
phasize that the inclusion of po(t) which involves no addi-
tional parameters improves the agreement with the experi-
mental points. The third, or solid curve, is given by the
expression

third of Eqs. (17), namely,
~

t
~

' Dz and bo(t). This
solid curve in Fig. 1 represents Eq. (30) with the choice
do ——0.0056 and improves the agreement at higher tem-
peratures. Furthermore, by taking a larger value for do,
say, do=0. 01, we can obtain virtually perfect agreement
throughout the temperature interval T, & T & 1.12T, .
This is shown in Fig. 2 by the solid curve; the dashed
curve represents, for comparison, Eq. (30) with the same
values for Co and do but with po(t)=1. Although the
larger value for do gives better agreement with experiment
in the region T & 1.12T„ the smaller value used in Fig. 1

seems to represent the experimental data better outside of
this range.

This excellent agreement just above T, in Figs. 1 and 2
between Eq. (30) and the experimental data, suggests that
it might be worthwhile to attempt to extend this formula
to higher temperatures. Figure 3 shows also the experi-
mental points of Fallot' for Xo

' and the solid curve
represents Eq. (30) with the parameters Co and do having
the same values as in Fig. 1. For comparison, we also in-
clude by the dashed curve the corresponding asymptotic
scaling version of Eq. (30) obtained by replacing po(t) by
unity. Note that the agreement is good to excellent
throughout the entire temperature interval, T, & T &3T„
although for the intermediate T values,
1.1T, & T & 1.9T„ the solid curve is slightly higher than
the experimental points. If we utilize the value do ——0.01
from Fig. 2 (keeping the same value for Co ——0.0033 as re-
quired by experiment for T near T, ), then although for
the lower intermediate values the agreement is improved,

0.9

0.8 I.O

0.7 0.9

E
0.5

CP

0.4
I

x 0.3

0.2

O. I

0.8

0.7
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0.4

O
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0.0
I .00 I .02 I .04 I .06 I .08

T/Tc

I . IP I. I2
0. 2

0. I

FIG. 1. Inverse susceptibility of Ni as a function of T/T, .
The theoretical curves are for Eq. (27) with pp(t)=1 (dashed
curve), Eq. (27) with pp( t ) given by Eq. (28) (dashed-dotted
curve), and for Eq. (30) with pp(t) given by Eq. (28) (solid
curve). In this set of curves Cp ——0.0033, dp ——0.0056, a = 9,
and g= 10. The values P= 0.3854 and y = 1.33 are used here
and in the three succeeding figures. The experimental points
come from Ref. 14.

0.0
I.OO I .02 I .04 I . 06 I.08 I. I 0 I. I 2

T/Tc

FIG. 2. Inverse susceptibility of Ni as function of T/T, .
The solid curve is the same as the solid curve in Fig. 1, but with

dp =0.01. The dashed curve is Eq. (30) with dp ——0.01 and

pp( t ) = 1. For both curves Cp ——0.0033. The experimental
points are the same as those in Fig. 1.
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Co
&0=

~

r'
I

'+do,T (31)

where' t'=I —T, /T=tl(I+t) and with Co ——0.00359
and do ——2.43&10 . The point of interest here is that
this formula also follows the experimental data fairly
closely over the interval T, & T & 3T, and if plotted
would yield a curve very similar to that in Fig. 3. Howev-
er, since near T„ t'-t and CD&Cp, we would expect our

some disagreement is apparent for T & 2T, . Thus, disre-
garding this small descrepancy in the intermediate region,
the agreement between the solid curve in Fig. 3 as given
by Eq. (30) and the experimental points is surprisingly
good. At least for Ni, then, it appears that the third of
Eqs. (17), with the neglect of the singular

~

r
~

' term
and with the replacement of the analytic background term
bo(t) by the constant do, agrees with experiment for the
above values of Cp and do over an extensive temperature
range —from 627.2 to 1882 K—above T, . We emphasize
that in Eq. (30) Co and do are the only free parameters;
the analytic function po(t) has been completely deter-
mined by experimental values for the spontaneous mag-
netization in Eq. (28). Interestingly enough, Mo is
nonzero only for T & T„while we use Eq. (28) for T & T,
for which experimental values for Xo are available.

In connection with the results in Figs. 1—3, it is of in-
terest to consider the corresponding analysis for Ni car-
ried out by Souletie and Tholence. ' These authors fit the
same data as in Figs. 1—3 by the scaling formula

Eq. (30) to agree with the data for T& T, a little better.
This is shown in Fig. 4 in which the solid curve is our Eq.
(30) [or equivalently in this region Eq. (27)] and the
dashed curve, Eq. (31). If we attempt to rectify this diffi-
culty by using for Co in Eq. (31) the value Co ——0.0033,
and modifying the value for do appropriately, it is possi-
ble for Eq. (31) to fit the data also in this region just
above T, . But then at higher temperatures the agreement
is not good and Eq. (31) looks more like the dashed curve
in Fig. 3. It is to be noted that Eqs. (17) and (18) would of
course still be correct if we replaced the variable t by t'.
We prefer to carry out the present analysis in terms of the
variable t since then the obtaining of Mo(r), fp(t), and
thus po(t) is much simpler than in terms of t, which is
unbounded as T~O.

U. SUMMARY AND CONCLUSIONS

In the first part of this paper we established the
equivalence between the predictions of an earlier proposed
phenomenology for a ferromagnetic system and that of
the RG method with irrelevant variables neglected.
Specifically, it was shown that if the analytic functions u
and U of the phenomenology are related to the nonlinear
scaling fields g, and gq in accordance with Eqs. (5) then
these two approaches are essentially equivalent. Making
use of the present formulation, then, we derived Eqs. (17),
the first three of which were earlier obtained by Aharony
and Fisher by use of Eq. (3). Finally, we established that
the analytic corrections to scaling for the leading singular
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FIG. 3. Inverse susceptibility of Ni in the temperature range
T, & T & 3T, . The experimental points for T & 1.2T, are those
of Ref. 15, while for T, & T&1.12T„ those of Ref. 14. The
solid curve is Eq. (30) with Co ——0.0033 and do ——0.0056 and is
the extension of the solid curve in Fig. 1 to higher temperatures.
The dashed curve is Eq. (30) with po(t) =1.
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FIG. 4. Inverse susceptibility of Ni in the low-temperature
range T, & T&1.03T, . The solid curve is the same as that in
Fig. 1 and the dashed curve is Eq. (31) with Co ——0.00359 and
do ——2.43&(10 as given in Ref. 16.



35 PHENOMENOLOGY AND NEGLECT OF IRRELEVANT. . . 3305

parts of the various thermodynamic functions in Eqs. (17)
are related to each other by Eqs. (18) and (19). Of partic-
ular theoretical interest here is the fourth of Eqs. (17) for
which Jp ——0 for T & T, so that Pp is fully determined by
magnetization and specific-heat data.

In the second part of this work we attempted to assess
the usefulness of Eqs. (17) and (18) for analyzing experi-
mental data. Of particular interest is the zero-field sus-
ceptibility of Ni for which ample experimental data exist.
The dominant part of Xp near T, is given by the first term
Cp )

t
)

happ(t)/T

which when combined with data on the
magnetization of Ni and, in principle, its specific heat, is
completely determined by Eq. (18) up to the scale factor
Cp. The difficulty associated with using specific-heat
data to obtain pp(t) was overcome by use of the
phenomenology of Ref. 1 and the agreement with experi-
mental results for Xp are displayed in Figs. 1 and 2 for
T, & T & 1.12T, . Evidentally, our prediction for the form
and the presence of pp(t) is fully in accord with the data
in this range. Furthermore, by approximating the remain-
ing two terms

)
t

)

' Dz(t)+bo(t) by the constant dp, we
obtained Eq. (30) and were able to extend this agreement
out to 3 T, . This is shown in Fig. 3 and was unexpected
and raises the question whether Eq. (30) can also be ex-
tended to other ferromagnetic materials of the three-
dimensional Heisenberg universality class.

A final point of interest deals with the last of Eqs. (17)
for gp(t), the field derivative of X. In the region T & T„
the constant Jp ——0 so that gp(t) is completely determined
up to the constant Ep. It would indeed be interesting to
check this prediction of our phenomenology and of the
RCT without irrelevant variables.

APPENDIX A

To prove Eqs. (17) we proceed as follows. Making use
of Eqs. (11)—(13) we may integrate the first of Eqs. (16)
to

Fp(t) =P(1,0, t) j Ao(t')
~ P(1,0, t') up(t')

(A 1)

Mo(t) =P( 1, l, t) . (A2)

By use of Eq. (13) and the fact that P=2 —a —b, , this
reduces directly to the second of Eqs. (17), a result previ-

with the lower limit c an undetermined constant of in-
tegration. ' Since P(1,0, t) =

)
t

)
b(t) with b (t) analyt-

ic, and since A (0)=up(0) =0, it follows that for a&0, the
singular part of Fo(t) comes exclusively from the lower
limit and varies as

)
t

)
. We note that unlike the

analysis which starts directly from Eq. (3), a separate
treatment for the case a=O is not required here. For if
a=O, even though the factor P(1,0, t) =t b(t) is analytic
in t, the integral in (Al) is now found to have the
t ln

)
t

)
singularity, known to characterize, for example,

the two-dimensional Ising system. In either case, Fp(t) in
Eq. (17) will have precisely the structure given in Eq. (17)
with fp(t) and ap(t) analytic and with the factor

)
t

)

to be replaced by ln
)
t

)
for the case a =0.

To obtain the second of Eqs. (17), we compare the
second of Eqs. (16) with Eq. (11) and find

ously obtained in a slightly different way. '

In a similar way, we obtain from the third of Eqs. (16)
the solution

X,(t) =P(1,2, t) f, dt Iz(t')
1,2, t upt) (A3)

with Iz ——2[A i(t) —uidFpldt] Th. e structure for Xp in
the third of Eqs. (17) then follows from the facts that
P(1,2, t)= t, that A, (t) is analytic, and that
dFpldt= t ' . For a=O, the factor

)
t

)
in the

third of Eqs. (17) should be replaced by ln
)

t
)

just as for
Fp.

Finally, the last of Eqs. (17) has the solution

0p(t) =0( I 3 t) f dt'

1,3,t up t' (A4)

with Iy(t) = —6Mp[ui+u i(1 —up)/up]. This time, since
according to Eq. (13) P(1,3,t)= )

t
)

do(t), we ob-
tain the analyticity structure shown in the last of Eqs.
(17). It is interesting to note that the analytic background
term plays no role in determining the structure of Mp or
0o.

APPENDIX 8

The purpose of this appendix is to derive Eqs. (18) and
(19) which relate to each other the analytic corrections to
scaling for the leading singular terms in Fp, Mp, Xp, and

If we compare each of Eqs. (17) with the correspond-
ing differential Eqs. (16), we see that the most singular
parts of each of Fp, Xp, and gp are the solutions of the
respective homogeneous equations associated with Eqs.
(16). If Fp Xp and gp, represent these most singular
parts, we find from Eq. (16) that they satisfy the differen-
tial equations

up lnFp, ——1,
dt

d
up lnMp = 1 —Up,

dt

up lil(Mp /Fp Xp ) =0
dt

or equivalently that the quantity M p /Ep, +p, is a t-
independent constaij. t. Making use of the first three of
Eqs. (17), the exponent relation 2/3=2 —a —y, and the
fact that fp(0)=mp(0)=pp(0)=1 to fix the constant, we
obtain Eq. (18). Interestingly enough, the relation in Eq.

uo 1~os=1—2Uo ~

dt

d
uo Info, ——1 —3up,

dt

where for convenience we have also included the corre-
sponding Mp equation.

To derive now Eq. (18) we multiply the second equation
of (Bl) by 2 and subtract from the result the sum of the
first and the third of these relations. The result may be
expressed by
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(18) can also be obtained directly from Eq. (3) by expand-
ing g, and gt, as in Eq. (9), and making appropriate com-
parisons of the results obtained by taking derivatives with
respect to h. This incidentally also leads to the universali-
ty relation in Eq. (20).

The derivation of Eq. (19) follows along similar lines.
This time we multiply the third of (Bl) by 2 and subtract
from it the result of adding the second to the fourth. The
result may then be expressed as

uo ln(Xo, /Motto, ) =0,
dt

so that the quantity Xo, /Motto, is a t-independent con-
stant. The result in Eq. (19) then follows from this by use
of Eqs. (17) and the fact that by our normalization
mo(0) =pc(0) =qo(0) = l. As above, this relation can also
be derived directly from Eqs. (3) and (9) and leads to the
universal relations for the constants Bo, Co, and Fo in
Eq. (21).
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