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We present detailed calculations of the electronic structure and the hyperfine fields of 3d and 4d
impurities in nickel. The calculations are based on the local-density approximation of density-
functional theory and the Korringa-Kohn-Rostoker Green's-function method for impurity calcula-
tions. We self-consistently calculate the local moments and hyperfine fields of the impurities and
their nearest neighbors. We derive new formulas for the proper relativistic generalizations of the
contact, orbital, and dipolar contributions to the hyperfine field and explicitly calculate relativistic
corrections to the contact interaction which are important for 4d impurities. The hyperfine fields
can be split up into local and transferred contributions which are directly related to the local mo-

ments and to the moments of the neighboring atoms. The calculated hyperfine fields are in reason-
able agreement with the experimental data.

I. INTRODUCTION

Hyperfine fields provide unique microscopic informa-
tion about dilute ferromagnetic alloys. The dominant
contribution to the hyperfine field results from the Fermi
contact interaction and is given by the magnetization den-
sity at the nucleus. There exists a huge amount of experi-
mental information about hyperfine fields of impurities in
Fe, Co, Ni, and Gd which can be found in two recent data
collections by Rao' and Krane. The theoretical under-
standing of hyperfine fields in alloys was rather limited
up to recently. While the earlier model calculations of
Daniel and Friedel could explain the negative hyperfine
field of the early sp impurities, the work of Katayama-
Yoshida, Terakura, and Kanamori has lead to an
understanding of the systematic trends of the hyperfine
fields of sp impurities. These authors pointed out that the
hybridization of the impurity s with the host d orbitals
leads to bonding and antibonding peaks for both spin
directions and that the intensities as well as the positions
of these peaks directly determine the hyperfine fields.

While sp impurities are nonmagnetic, 3d and 4d impur-
ities have a local moment in ferromagnets which compli-
cates the situation considerably. The contribution to the
hyperfine field which is transferred by hybridization from
the polarized neighboring d electrons ("transferred" hy-
perfine field) is supplemented by a "local" contribution
due to the polarization of the local core and valence s
electrons by the local d shell. This requires a self-
consistent treatment of the electronic structure problem.
Moreover an "all electron" calculation has to be per-
formed, since core relaxations have to be taken into ac-
count due to the importance of the core polarization.
Band-structure calculations by Janak for the pure metals
Fe, Co, and Ni were based on the local-density approxi-
mation and led to considerable success, i.e., quite accurate
hyperfine field values for Ni and Co, while the value for
Fe was off by 25%. This is surprising in view of the
work of Wilk and Vosko who concluded on the basis of
atomic calculations that it would not be possible to calcu-

late the hyperfine fields of local moment systems by the
local-density approximation and that a more serious treat-
ment of the intra-atomic exchange is required.

Recently Akai, Akai, and Kanamori ' have performed
self-consistent calculations for 3d and 4d impurities in
Fe. As in the work of Katayama-Yoshida et al. in
these calculations the Korringa-Kohn-Rostoker (KKR)
Green's function method for point-defect calculations is
applied, " however contrary to the previous work the Fe
potential is calculated self-consistently. Similar, but
slightly less sophisticated, calculations have also been per-
formed by Leonard and Stefanou. '

Partly in parallel to this effort first self-consistent cal-
culations for 3d and 4d impurities in Ni were performed
by Zeller. ' These calculations have been extended so that
also potential perturbations on the neighboring sites are
included. A detailed account of the calculations, especial-
ly for the impurity moments and the perturbed moments
on the neighboring sites will be given in a separate publi-
cation. ' In parallel with the work of Akai et al. for Fe,
calculations of the hyperfine fields for 3d and 4d impuri-
ties in Ni were performed by Blugel. ' The present paper
is the result of a combined effort of both groups and
represents a considerable extension of the work of Akai
et al. Since both the impurity potential as well as the po-
tential of the neighboring atoms are determined self-
consistently we can calculate the hyperfine fields of both
the impurity and the nearest neighbors. Moreover we esti-
mate also relativistic corrections to the hyperfine fields in
the scalar relativistic approximation, in which the orbital
contribution is neglected.

The organization of the paper is as follows. Section II
deals with the description of the theoretical method, in
particular the scalar relativistic extension of the KKR
Green's function method. In Sec. III we derive, starting
from the work of Breit, ' the proper relativistic expres-
sions for the contact, orbital, and dipolar contributions to
the hyperfine field. In Sec. IV we present detailed calcu-
lations for the local moments of the impurities and their
nearest neighbors. Especially we discuss the numerical re-
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liability of the calculations and the sensitivity of the re-
sults with respect to approximations of the exchange
correlation energy. Finally, Sec. V gives the results for
the calculated hyperfine fields of the impurities and a
comparison with the experimental data. Two questions
are considered in detail. Can the local density approxima-
tion provide us with reliable values for the hyperfine
fields? In view of the strongly inhomogeneous core polar-
ization this is. not clear at all. Second, what information
can measured hyperfine fields give us about the electronic
structure and especially the local moments? Section V
deals also with the change of the hyperfine fields of the
nearest-neighbor atoms.

A preliminary account of this work has been given in a
conference paper. ' Preliminary results for impurities in
Fe are given in Ref. 18.

II. THEORETICAL METHOD

Our calculations are based on density-functional theory
in the local-spin-density approximation. Several different
forms for the local exchange correlation energy are used:
the form of von Barth and Hedin, ' the version used by
Moruzzi, Janak, and Williams, and the recent expression
of Vosko, Wilk, and Nusair, ' which has been fitted to the
results of many-body calculations for the homogeneous
electron gas by Monte Carlo methods.

For the impurity calculations we employ the KKR
Green's function method, which is based on the KKR
band structure method for ideal crystals. We generate the
band structure of pure Ni from the self-consistent poten-
tials given by Moruzzi et al. and construct the one-
electron Green's function G(r, r', E) of ideal Ni from the
calculated energy eigenvalues and wave functions. For
details about this procedure we refer to Refs. 11 and 23.
The Dyson equation for the Green's function G(r, r';E) of
the defect crystal is given by

[mc E+ V(r)]C&(+c—cr p4~ 0, =
ccr p4~ —[mc +E—V(r)]%~=0 .

By inserting the preceding equation

(2)

hyperfine fields the differences between the muffin-tin
and Wigner-Seitz results are very small and insignificant.
This is not necessarily also true for other physical proper-
ties. For instance Gunnarsson et al. find that atomic
sphere potentials yield important improvements in total-
energy calculations. Similarly we find important differ-
ences in isomer shift calculations. Since the differences
between both calculations are so small, the results given in
the following sections will only refer to Wigner-Seitz po-
tentials. The charge density inside the cluster is complete-
ly redetermined in each iteration and the ideal crystal po-
tential is only used to describe the embedding of this clus-
ter into the ideal crystal. Compared to our previous calcu-
lations where only the charge perturbations Ap and po-
tential perturbations AV are recalculated inside the clus-
ter, this has the advantage that inside the cluster different
exchange correlation potentials can be used as well as rela-
tivistic corrections can be applied without changing the
host Green's functions (see below).

In the KKR Green's function method one works with a
double expansion of the Green's function G (r+ R",
r'+R";E) into radial eigenfunctions of the local muffin-
tin potentials. Of central importance are the expansion
coefficients GLI (E), the so-called structural Careen's
functions. They are related to the corresponding expan-
sion coefficients GLL (E) by a Dyson equation. For de-
tails about the method and the calculational procedure we
refer to Ref. 23. Here we will shortly discuss a scalar rel-
ativistic extension of the Green's function method.

One possible way of solving the Dirac equation is the
elimination method. By decomposing the four-spinor

(a=1,2, 3,4) into a large component 4~ and a small
component Nz one obtains the coupled equations

G ( r, r';E) =G(r, r', E)
1cP~-

2mc +e —V(r)
ccrc.pN], E =mc +e (3)

+ I G(r, r";E)b,V(r")G(r",r', E)dr",

0

where KV(r)= V(r) —V(r) is the potential perturbation
being localized near the defect. We allow perturbed po-
tentials for the impurity and for the 12 nearest neighbors.

The perturbed potentials are either of muffin-tin form,
as the ones in the ideal crystal, or of Wigner-Seitz form,
i.e., spherically symmetric inside the Wigner-Seitz sphere.
In the latter case the potentials are partially overlapping
and KKR theory is not strictly valid for such potentials.
However, it is thought that the errors involved are smaller
than the improvements gained by the fact that the poten-
tials are better filling up the space. This is an important
argument for impurity calculations, since the muffin-tin
zero potential is determined by the host and cannot be
changed near the impurity. Thus we consider a cluster of
13 Wigner-Seitz potentials being embedded in an other-
wise ideal crystal of muffin-tin potentials. Our calcula-
tions show, that both for the local moments and for the

into the first one, we obtain an equation for the large
component alone. Using the operator identity

cr Acr B= A B+io ( A y B), (4)

2

+ V(r, e) —e 4& ——0
2m

with

1
V(r, e) = V(r)+ cr.p2m 1+ e —V(r)

2mc

—1 o"p .

Defining the relativistic mass M(r) =m +[a—V(r)]/2c
the potential can also be written as

this can be written as a Schrodinger-type equation with an
energy-dependent potential
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V(r, e) = V(r)+
2M r

BV 1 BVa+, , Xp
4M (r)c &r 4M (r)c

The last term is the spin-orbit coupling term. For the charge density n (r) one obtains

~(r)= y. [ I
c'i. (r) I'+

I
@2.(r)

s=1

4M'( )
'

2 g2

4M (r)c

ae'„(r) aa „(r)
Br

X
ar

Again the last term represents a spin-orbit —type contribution to the charge density.
In the scalar relativistic approximation ' one completely neglects spin-orbit couplings. This amounts to replacing

the potential V(r, e) in Eq. (5) by

V(r, e) = V(r)+ p2m 1+
2

E—V(r)
2mc

—1 p

and the charge density in Eq. (7) by
r

g2n(r)= g I@~,(r) I'+
4M (r)c

2
BN),

Br (9)

V(r) —e C CT'P

—2mc —e+ V(r) (10)0 1G2& G22C(7'P

By elimination the submatrices G& 2, G2 &, and G22 can be expressed in terms of G».
1

G2] =
2

CCT pG1
2mc +e—V

A similar equation is obtained for 6
& z if one writes Eq. (10) in the inverted form G (H —e) = —1:

The main advantage of the scalar relativistic approximation is that spin remains a good quantum number, and magnetic
problems can be treated with the same ease as in the nonrelativistic theory. For a central symmetric potential also angu-
lar momentum is a good quantum number.

The above discussion can be easily extended to the Dirac Green s function, representing a 4)&4 spinor matrix. By
decomposition into 2&(2 submatrices we obtain in matrix form

G» GI2

1G)2=G) )cw'p
2mc +e—V

Inserting this expression for 6, z into (10) one obtains for 62&

1 1 1G22= + ca'pG& &car p2mc +e—V 2mc +e —V 2mc +e—V

G» is determined by the equation

(12)

(13)

+ V(r, e) —e G»(r, r';e) = —5(r —r') .
2m (14)

The charge density is obtained by summing Im6 (e) over all occupied states:

6'F 2

n (r)= ——f delm g [6,(r, r;e)+Gz'2(r, r;e)] .
7T s=l

In the scalar relativistic approximation we neglect the spin-orbit term in the potential, i.e., we replace V(r, e) by Eq. (&).
Furthermore, also for the charge density we neglect the spin-orbit contribution, so that

EF 2

n(r)= ——f delm g 6&'&(r, r;e)+ z 2 B,.B, G~'&(r, r';e) I,
7T 4M (r)c
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III. RELATIVISTIC CORRECTIONS
FOR THE HYPERFINE FIELD

pressed by the large component N&. Introducing S(r) as
the reciprocal of the relativistic mass enhancement

—]
The most important contribution to the hyperfine field

is the Fermi contact interaction. In this approximation
the hyperfine field is given by the spin density m (0) at
the nuclear position

8w
Hhf — pBm (o)

3

S( )=
M(r) 2mc~

the energy change AE can be written as

e
h, E = — (C)&

~

{o"A(r)S(r)o p2mc

(21)

(17)

m(0)= f de[n+(O, e) —n (O, e)] .

Here n+(O, e) are the local densities of states for spin-up
and -down electrons at the nuclear position. Shortly after
Fermi's article, Breit' derived the correct relativistic ex-
pression for the hyperfine interaction showing that rela-
tivistic corrections are already important for nuclei with
moderately large nuclear charges. This is essentially due
to the fact that the hyperfine field is determined from the
behavior of the wave functions close to the nucleus where
relativistic effects are most important.

In many applications relativistic corrections to the hy-
perfine field are calculated by employing the contact in-
teraction formula, but using semirelativistic wave func-
tions averaged out over the size of the atomic nucleus. '
Pyykko, Pajanne, and Inokuti and more recently Asada
and Terakura have shown that this leads to a serious
overestimation of the relativistic effects. Due to the im-
portance of this problem we will rederive here the correct
relativistic expression for the hyperfine field due to
Breit. ' Moreover we will show that this expression can
be uniquely split up into three contributions, which are
relativistic generalizations of the orbital, dipolar, and con-
tact contributions to the hyperfine field. The new formu-
la for the contact interaction shows that in the relativistic
case the spin density m (0) at the nucleus has to be aver-
aged over a small region near the nucleus whose diameter
is the Thomson radius rz ——Ze fmc .

For the hyperfine interaction we consider the effect of
the vector potential A produced by the nuclear moment
M,

+o"po"A(r)S(r) j ~
N, ) . (22)

Due to Eq. (18), (3A/Br vanishes. For spherical potentials
also A(BS/Br) vanishes. The o-independent term 2SA p
gives rise to an orbital contribution to AE. Introducing
the angular momentum operator L=r&p this contribu-
tion can be written as

e S(r)
AEo,b;„]——— M 4 ) L N)

mc r
(24)

The standard nonrelativistic orbital contribution is ob-
tained by setting 5=—1 and by identifying the large com-
ponent N& with the Schrodinger wave function Ns, h.

The remaining spin contributions to AE can be evaluat-
ed by realizing that

MH(r) =B,X A=8„X B,X

8~ 1
M5(r) — [M —3r(r M)], r=r/r

3 r3 (2&)

is the magnetic field due to the nuclear moment. The last
term in (25) gives rise to the dipolar contribution

Using the operator identity (4) for the Pauli matrices, we
obtain for the bracketed operator

{cr . . o -
j =2S(r)A.p+ — S(r)+—A

~ aA S aS
i Br i Br

+S(r)iria. ((3,X A)+bio X A . (23)
BS
Br

A(r)=MXr/r =B,X
r ~Edipo]ar 4 ] &

p.M —3 p-r M-rS(r)
r

(26)

on the electronic motion. We restrict ourselves to a single
electron since the generalization to many electrons is
straightforward. In first-order perturbation theory the
change AE of the energy due to the vector potential A is
given by

AE = —e(g
/

a.A(r)
/
@), (19)

0

where P is an eigenspinor of the unperturbed Dirac Ham-
iltonian and a=(ai, a2, aq) are the first three Dirac ma-
trices. By decomposing the four-spinor g into its large
component NI and small component +2, one obtains

AE = —e((C&&
~

o.A
~
42)+(42

~

o"A 4, )), (20)

where o = (cr, , o.2, o i) are the Pauli matrices. Using Eq.
(3), the small component wave function 4&2 can be ex-

where p =eA/2mco =@~o is the magnetic moment
operator of the electron. Again the standard nonrelativis-
tic results follow by setting S=1 and by replacing N] by
the Schrodinger wave function.

The two remaining terms, i.e., the 5(r) term from Eq.
(25) and the last term from Eq. (23), give rise to the con-
tact interaction.

AE„„„„=— ps(Ni
~

S(r)M.o5(r)
~
Ni)

8m

3

as
I B +1 [M o —(M.r)(o.r)] 4',

)
.

r2 Br

(27)

In deriving the preceding expression we have used the ro-
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with

ms h(0) (Cs h I
a5«)

I +s.h&

(28)

where ms, h(0) is the Schrodinger spin density at the nu-
cleus. Contrary to this in the relativistic case the first
term vanishes, as can be seen as follows. For small dis-
tances, the relativistic s ~ ~2 and p»2 wave functions
diverge as

4&(r)-r ', with A, =(1—a Z )'~ (29)

where Z is the nuclear charge and a=,37 is the fine
structure constant. Since S(r)-(2mc IZe )r for small r,
the product

I
N(r)

I
S(r)-r ' and vanishes for r ~0,

provided Z& 118. Therefore the 5 function gives no con-
tribution and the second term in Eq. (27) is the relativistic
analogue to the contact interaction. It has indeed very
similar properties. For a pure Coulomb potential
V(r) = —Ze /r the derivative dSIdr simulates a 5 func-
tion:

tational invariance of the potential V(r).
In the nonrelativistic limit we have S= 1 and

BS/Br=0. Therefore the second term vanishes and the
first term yields the Fermi contact interaction

8m
b, EB ——— IBM ms, h(0),

3

Thus in the relativistic case the spin density at the nuclear
position has to be replaced by the average of the spin den-
sity over a region near the nucleus whose diameter is the
Thomson radius rz-. Since the Thomson radius is always
much larger than the nuclear radius r„, i.e., for Z=28
(Ni), we have rrl2r„=8. 5 whereas for Z=46 (Pd),
rr/2ro= 11.4, it is clear that the finite size of the nucleus
is not of importance for the hyperfine field.

The continuous transition of the relativistic results with
the averaged moment m,„ to its nonrelativistic value
ms, h(0) can be understood as follows. The relativistic
charge and spin densities diverge near the origin, i.e.,

m(r) —r = . .. for r «rr .—2k-2= 1

+2Z 2
(33)

Therefore we average Eq. (33) over this divergence region
so that m, „ is always larger than the nonrelativistic value
ms, h(0). The relativistic enhancement m, „/ms, h(0) ap-
proaches one for small charges Z and slowly increases
with increasing Z. For hydrogenic wave functions Breit'
and Pyykko et al. have calculated the relativistic
enhancement in the atomic case. For s-wave functions
they obtain

msv n (2A, +2n —2+3' )

ms h(0)
' x(4x' —1)a'

5z.(r) = as
4~r 2 Qr

1

4nr

rz/2

1+ 2
r +rz-/2

2mc

2

with

A =2(n —1)A, +n —2n +2

(34)

(30)

with

Ze
ry =

mc
The only important contributions to the integral in Eq.

(27) are obtained from r values of the order of or smaller
than the Thomas radius rr Theref. ore 5r(r) effectively
represents a smeared-out 5 function, since the integral

J dr5r(r)=
1+

2mc

(31)

~Econtact = 8m.

3 PB (~ 1 I
5T(r)M a

I @i&

8~
PaMmav

with

m,„=f dr'5r(r')m(r')

and

(32)

m(r') =(e,
I
a"5(r—r')

I
e, & .

Since BS/Br gives only important contributions for small
distances, the largest contributions to the contact interac-
tion arise from s-wave functions, for which (M r)(a r)
can be replaced by —,M.cr. Taking everything together
the contact interaction for s electrons is given by

=1+ +———11 3 1 11 1 (Za)'+O((Za) ) .
6 2 n 6 n2

For Z=28 (Ni), the enhancement is 9.4%, whereas for
Z=46 (Pd), it is 28% and for Z=78 (Pt) it is 230% (al-
ways for the valence s electrons).

It is quite interesting to compare the relativistic
enhancement of the hyperfine fields with the correspond-
ing enhancement of the isomer shifts. The isomer shifts
are determined by a certain average of the charge density
over the nuclear volume. In Schrodinger theory the s
charge density is practically constant within the nucleus
so that the finite size is unimportant. In Dirac theory the
charge density at the nuclear volume is decisive and leads
to an important enhancement of the isomer shifts. Since
the nuclear radius is much smaller than the Thomson ra-
dius, this enhancement is appreciably larger than the one
for the hyperfine fields. Shirley gives a tabulation of
this isomer shift enhancement factor S(Z) for atoms.
For Z=28 (Ni), Z=46 (Pd), and Z=78 (Pt), he obtains
S(Z) = 1.37, 2. 18, and 8.10, respectively. Essentially the
same enhancement factor is also obtained for the hyper-
fine field if erroneously the Fermi contact formula is used
together with relativistic enhanced wave-functions aver-
aged over the nuclear volume. ' In some cases this un-
justified procedure yields even a better agreement with the
experimental data. For example, for pure Fe we calculate
a nonrelativistic hyperfine field of —267 kG which is in
reasonable agreement with Janak's value of —260 kG, but
still far off the experimental value of —339 kG. A proper
relativistic treatment yields —288 kG, still appreciably
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lower than the experiment. However with an enhance-
ment factor of 1.32 as appropriate for the isomer shift of
Fe one obtains a value of —267X1.32=352 kG in ap-
parently good agreement with the experiment.

The preceding discussion is generalized to the case of
many electrons by summing over a11 occupied states with
energies e smaller than the Fermi energy eF. In the
semirelativistic approximation the large and small com-
ponent wave functions N& and Nq for 5 states are given by

4&i ——R p (r)
~

g- ),
4~

+z —— io r—pp(r)
i

X+-),
4~

(35)

with

(36)

Here n p (e) is the s density of states in the Wigner-Seitz
(WS) sphere. The matrix elements Fp (e) are given by

+ 4mc 1 wsR

Fp (e)=- drR p (r, e)pp (r, e)
4~

f dr ~Rp(r, e)
~

1 ws BS+-
(37)

Due to Eq. (31) in the nonrelativistic limit the matrix ele-
ments Fp (e) approach

Fp (e) =
~
Rp (O, e)

~

pp (r) = Si(r)B„Rp (r),+

2mc

where
i
X +—) denotes the spin-up and -down states and

Rp (r) radial s-wave functions (for valence states being
normalized in the Wigner-Seitz sphere). After some sim-

ple algebra the energy change AE follows as

CF«= — I,m f d~[Fp (E)np (t) —Fp (c)np (E)]
3

IV. LOCAL MOMENTS

In the following we will present the results of extensive
calculations for the local moments of the impurities and
their nearest neighbors (NN). The aim of this effort was
to get an idea of the numerical precision of the calcula-
tional procedures as well as of possible systematic errors
involved in the exchange correlation approximation.

In order to check for possible numerical errors in the
calculation, we have developed a second program for im-
purity calculations, being in many ways different from the
one used by Zeller. ' For instance Zeller's program is
based on a frozen-core approximation and a muffin-tin
form of the atomic potentials. Relativistic effects are not
included. Moreover only the perturbed charges hp(r) in-
side the cluster of 13 atoms are calculated self-
consistently. The exchange-correlation potential used is
the one of Moruzzi et al. Contrary to that, the present
program is based on the embedding philosophy discussed
in Sec. II, so that the total charge density p(r) is recalcu-
lated. Core relaxations are explicitly allowed. Wigner-
Seitz potentials are used for the 13 atoms in the cluster
and relativistic effects are included in the semirelativistic
approximation. Furthermore, three different exchange
correlation (XC) potentials are used, i.e., the one of von
Barth and Hedin' (vBH) or of Vosko, Wilk, and Nusair '

(VWN) or of Moruzzi, Janak, and Williams (MJW).
Table I shows the calculated moments for 3d-impurities

in Ni. The local moments are defined as the total magnet-
ization within the local Wigner-Seitz sphere. The results
for three different XC potentials are given which have
been calculated both nonrelativistically (NRL) and semire-
lativistically (SRA). When we compare the NRL results
with the MJW exchange with the ones obtained by Zell-
er' in line 1, we see that both programs yield practically
identical results. A noticeable exception is Cr, and to
some smaller degree Mn, where appreciable differences
occur. We will comment on this problem later on.

The scattering of the moment values for different ex-
change correlation potentials can give us a feeling for the

TABLE I. Local moments of 3d impurities in Ni for different XC potentials in the nonrelativistic
(NRL) and scalar relativistic (SRA) approximation. vBH is the von Barth-Hedin XC potential (Ref.
19), MJW is the Moruzzi-Janak-Williams XC potential (Ref. 20), V%'N is the Vosko-Wilk-Nusair XC
potential (Ref. 21), Z is the theoretical results of Zeller (Ref. 14)~ The local moments are given in units
of pg.

Potential Sc
Impurity

Cr Mn Fe Co Cu

—0.14 —0.56 —1.69 3.02 2.70 1.70 0.58 —0.01

NRL vBH
VWN
MJW

SRA vBH
VWN
MJW

—0.13
—0.14
—0.14

—0.13
—0.14
—0.14

—0.25
—0.26
—0.27

—0.25
—0.26
—0.27

—0.46
—0.50
—0.52

—0.46
—0.50
—0.51

—1.17
—1 ~ 34
—1.40

—1.08
—1.24
—1.31

2.83
2.91
2.94

2.75
2.84
2.87

2.63
2.67
2.68

2.62
2.66
2.68

1.68
1.70
1.71

1.69
1.72
1.73

0.58
0.59
0.60

0.61
0.62
0.62

—0.01
—0.01
—0.01

—0.00
—0.00
—0.00
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TABLE II. Local moments of 4d impurities in Ni (same nomenclature as Table I).

Potential Zr Nb
Impurity

Mo Tc Ru Rh Pd Ag

Z —0.08 —0.14 —0.21 —0.24 —0.03 0.66 0.57 0.20 —0.01

SRA vBH
VWN
MJW —0.08

—0.13
—0.14
—0.14

—0.18
—0.20
—0.20

—0.21
—0.22
—0.22

—0.06
—0.05
—0.05

0.50
0.54
0.55

0.54
0.56
0.56

0.23
0.23
0.24

—0.00
—0.00
—0.00

errors involved in the exchange correlation approxima-
tion. The results for 3d impurities in Table I and the cor-
responding results for 4d impurities in Table II show a
clear trend. The vBH exchange always gives the smallest
moments and the MJW exchange always the largest ones,
which the VMN values are intermediate. This behavior
has its origin in the polarization dependence of the XC
potentials used. One finds that for all densities the ex-
change splitting of the MJW potential is larger than the
vBH one and that the VWN one is intermediate. There-
fore the MJW potential shows a somewhat stronger ten-
dency toward magnetism than the VWN one. With the
exception of Cr, the absolute magnitude of the differences
in Tables I and II is however very small and completely
insignificant in comparison with typical experimental er-
rors. We believe therefore that, with the exception of Cr
and possibly Mn, the calculated values given in Tables I
and II are reliable.

As one expects for 3d impurities, relativistic effects are
quite unimportant. For 4d impurities the changes are
slightly larger but also rather small so that we have only
listed the relativistic results.

Figures 1(a) and 1(b) show the calculated impurity mo-
ments for the 3d and 4d impurities in Ni (semirelativistic
approximation and VWN exchange). For a detailed com-

I I I 1 Q I 1 l I I I I I I I I I I

~ theory
~ experiment

parison with the experimental data we refer to Zeller's pa-
per. ' Here we want only to comment on why our calcu-
lations for Cr yield so widely different results. Whereas
Co, Fe, and Mn couple ferromagnetically to the Ni-host
moment, Cr, V, Ti, and Sc have an antiparallel moment.
Calculations with noninteger nuclear charges Z show'
that there is a considerable range of Z values for which
both a ferromagnetic and antiferromagnetic solution exist,
e.g., for Mn. When progressing from Mn to Cr, the fer-
romagnetic solution becomes instable, whereas when we
go from Mn to Fe the antiferromagnetic solution disap-
pears. Thus both for Cr and Mn one is close to instabili-
ties and any small change in the numerical procedures or
in the XC potential can lead to large differences. Physi-
cally this is due to the fact that at the instability the sus-
ceptibilities of the system diverge. This is a severe prob-
lem for Cr, where the calculated values range from —1.08
to —1.70pz. The uncertainty is sufficiently large that we
should not take the disagreement with the experimental
value of —0.2+0.6pz (Ref. 37) serious. For Mn this
problem also exists, however here the uncertainty is con-
siderably smaller. However in the other cases we consider
our calculations as reliable. Especially we believe that the
very large moment of about 2pz reported for Rh in Ni
(Ref. 38) is unrealistic.

The changes of the moment on a neighboring host atom
are listed in Table III. The moment is only slightly
changed when the impurity moment aligns to the host
moments, but strongly decreases for the antiparallel con-
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0

C)

0 r I
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Sc Ti V Cr NnFe Co Ni Cu
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v
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FIG. 1. Calculated local moments for 3d impurities and 4d
impurities in Ni. The calculations refer to the semirelativistic
approximation with VWN exchange correlation. The triangles
denote experimental values.

FICx. 2. Calculated hyperfine fields for 3d and 4d impurities
in Ni. The large dots refer to the semirelativistic approximation
the small ones to the nonrelativistic calculation. The experimen-
tal values ( V) are taken from a recent data collection (Ref. 2).
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TABLE III. Change of the moment of a nearest-neighbor Ni atom (same nomenclature as Table I).

Potential
Impurity

Mn Fe Co

SRA vBH —0.15 —0.19 —0.20 —0.19 —0.03 —0.01
VW N —0.15 —0.19 —0.20 —0.19 —0.03 —0.01
MJW —0.15 —0.19 —0.20 —0.19 —0.03 —0.01

+ 0.01
+ 0.00
+ 0.00

0.00 —0.03
0.00 —0.03
0.00 —0.03

Potential Zl Nb Mo
Impurity

TG Ru Pd Ag
SRA VWN —0.18 —0.25 —0.27 —0.23 —0.07 —O.OI —0.01 —0.04

figuration. ' Table III demonstrates that these changes
are very insensitive to the form of the XC potential.

V. HYPERFINE FIELDS

Table IV gives the calculated hyperfine fields of 31 im-
purities in Ni, Table V gives the corresponding values for
the 4d impurities. Listed are both the nonrelativistic
(NRL) and the relativistic results (SRA). The values refer
to the VWN exchange correlation potential. Figures 2(a)
and 2(b) show a comparison between the calculated and
experimental data. We obtain strong negative values for
the ferromagnetically aligned impurities (Co, Fe, Mn and
Pd, Rh, Ru) and moderately negative ones for the impuri-
ties with negative moments (Cr, . . . , Sc and Tc, . . . , Y).
For both series the values for the antiferromagnetic im-
purities agree very well with the experiments, however
there are serious disagreements for the ferromagnetically
aligned impurities. Especially the calculated values for Fe
and Mn, the impurities with the largest moments, are far
too small. In the 4d series the values for Rh and Ru are
also somewhat too small. We will come back to these
discrepancies later. Despite these deficiencies we can say
that our calculations reproduce the experimentally ob-
served trends of the hyperfine fields.

Tables IV and V as well as Fig. 2 contain both the rela-
tivistic as well as the nonrelativistic results. In general we
see that in the 3d series the relativistic corrections are
rather small, typically 10% for the ferromagnetic impuri-
ties. Contrary for the 4d series, the corrections are quite

important, For Rh, Pd, and Ag they are as large as 30%
and lead to a considerable improvement of the nonrela-
tivistic va1ues. Note that the valence properties, especially
the local moments, are changed only very little due to rel-
ativistic effects. The comparatively large corrections for
the hyperfine fields arise mostly from the inner core re-
gion where the Coulomb potential is large so that relativ-
istic effects become important. The corrections are how-
ever considerably smaller than the relativistic enhance-
ment of the charge densities at the origin. For instance
for Fe, we have a nearly 50% enhancement of the charge
and spin density near the origin. Thus the relativistic
correction for the hyperfine fields would be grossly in er-
ror, if the Fermi contact interaction formula, instead of
the correct Breit formula, were used. Our calculated
corrections are in reasonable agreement with the values
given by Pyykko et al. for hydrogen1ike models. For in-
stance for the neighboring Ni atoms the enhancement is
around 9—10% for all impurities studied in agreement
with Pyykko et al. However, sizable deviations can occur
if the valence properties, especially the local moments, are
changed by relativistic corrections. Then the enhance-
ment can be considerably larger or smaller than the hy-
drogenic values. For example, for V we obtain an
enhancement of 23%, compared to 6% of Pyykko et al. ;
for Mo the enhancement is 34% instead of 23&o for the
hydrogenic model. Thus the hydrogenlike corrections
given by Pyykko et aI. are of limited usefulness.

Table VI shows the dependence of the hyperfine fields
on the exchange correlation potentials. Similar to the re-

TABLE IV. Hyperfine fields of 3d impurities in Ni. Listed are the calculated hyperfine fields in the
nonrelativistic (NRL) and semirelativistic approximation Using the VWN XC potential. Hqf is the core
contribution, Hzf the valence one, and Hff=Hff+Hqf the total value. The experimental values Hfg'
are taken from Krane (Ref. 2). All data in kG.

Hyperfine
fields

NRL Hgg

HI

SRA Hgg
H
Hg

H exit

Sc

13
—41
—28

13
44

—31

24
—47
—23

25
—52
—27

45
—61
—16

47
—67
—19

Cr

122
—111

11

121
—116

5

—3

Impurity
Mn

—277
124

—152

—292
131

—160

Fe

—261
103

—158

—283
114

—169

—270

Co

—172
40

—132

—191
48

—143

Ni

—64
—20
—84

—74
—21
—95

CU

—3
—48
—51

—4
—55
—59
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TABLE V. Hyperfine fields of 4d impurities in Ni (same nomenclature as in Table IV).

Hyperfine
fields Zr Nb Mo

Impurity
Tc Ru Rh Pd Ag

NRL Hhf
H
H

SRA Hhf
H
H

~exit

17
—71
—55

19
—88
—68

—57

27
—73
—46

33
—90
—57

—47

36
—74
—38

44
—94
—50

—41

37
—73
—36

47
—95
—48

—40

1

—58
—58

7
—78
—71

—100
—23

—123

—123
—24

—147

—217

—89
—41

—130

—126
—39

—165

—225

—34
—73

—107

—57
—85

—142

—170

—2
—88
—90

—7
—113
—120

—122

suits for the moments (Tables I and II) the vBH potential
gives normally the smallest and the MJW potential the
largest value for the hyperfine fields of the impurities.
The differences are typically 10%%uo and considerably larger
than the corresponding difference for the local moments.

Next we discuss the individual contributions to the hy-
perfine fields, i.e., the core and valence contributions
which are listed in Tables IV and V. The core polarization
is large for magnetic impurities. It is due to the exchange
interaction of the polarized d shell with the s orbitals of
the core. As a result a weak s polarization is induced at
the nuclear position, which is in general opposite to the
local moment. Since the exchange interaction is weak the
core polarization and thus the core hyperfine field Hhg is
expected to scale with the local moment M&„. Figures 3
and 4 illustrate that this is indeed the case. Plotted are
the local moments (left scale) and the core hyperfine fields
(inverted right scale) for both the 3d and 4d series. Since
the curves for the local moments and the core hyperfine
fields more or less coincide we obtain the following simple
relation: Hh~ ——CM~ with C=- —100 kG/pz for the 3d
series and C=- —200 kG/pz for the 4d series. That the

core polarization is opposite to the local moment, i.e.,
C& 0, has been explained by Freeman and Watson and
can qualitatively be understood as follows. The majority s
electrons in the core will be pulled into the region of the
spin-polarized d shell, since the exchange interaction is at-
tractive, whereas the minority electrons will be repelled
from the d shell. At the nuclear position we have there-
fore an excess of minority electrons, i.e., a negative polari-
zation. A closer look at the data in the Tables I, II, IV,
and V reveals that the constant C slowly changes in the
3d and 4d series. For instance in the 3d series the lowest
value is —95 for Ti and V, the highest one is —120 for
Ni, whereas in the 4d series the constant C varies from
—203 for Y to —243 for Pd. This variation is due to the
change of the valence-d and core-s wave functions
through the transition metal series and therefore not
surprising at all. On the contrary it is surprising that the
variation is so small.

Despite the fact that the total core polarization is al-
ways opposite in sign to the local moment, the individual
contributions from the 1s, 2s, . . . shells can have different
signs. Table VII shows the shell decomposition of the hy-
perfine fields for the 3d elements, V and Fe, and the 4d
ones, Nb and Ru. Note that V and Nb have a negative

I I i I Q I I I
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UJ
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FICx. 3. Core hyperfine fields (right scale) and local moments
(left scale) for 3d impurities in Ni. Note the inverted scale for
the core hyperfine fields.

FIG. 4. Core hyperfine fields (right scale) and local moments
(left scale) for 4d impurities in Ni. Note the inverted scale for
the core hyperfine fields.
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TABLE VI. Hyperfine fields for 3d and 4d impurities in Ni. The table gives the hyperfine field
values, calculated in the semirelativistic approximation for three different exchange-correlation poten-
tials. All data in kG.

Potentials

vBH
VWN
MJW

Potentials

vBH
VWN
MJW

Sc

—29
—28
—31

—68

—25
—28
—27

Zl

—53
—57
—58

—18
—16
—20

Nb

—46
—50
—51

Cr

1

11
6

Mo

—44
—48
—49

Impurity
Mn

—150
—152
—163

Impurity
Tc

—64
—71
—72

Fe

—160
—158
—171

Ru

—135
—147
—151

Co

—136
—132
—146

—154
—165
—168

Ni

—90
—84
—97

Pd

—133
—142
—144

CU

—56
—51
—61

Ag

—112
—120
—122

moment, whereas the moment of Fe and Ru is positive
(with respect to the host moment). In the 3d series the ls
and especially the 2s contribution are opposite to the local
moment, whereas the 3s contribution has the same sign as
the local moment. In the 4d series the most important
contributions come from the 2s and 4s levels. Both are
opposite to the local moments.

The valence contributions to the hyperfine fields are
more complicated. They are plotted in Figs. 5 and 6 for
the 3d and 4d impurities (right scale) together with the
corresponding local moments (left scale). It is seen that
up to a more or less constant negative contribution the
valence hyperfine fields follow closely the local moment
curves. The constant negative contribution is quite analo-
gous to the negative hyperfine field of the early sp impuri-
ties. ' The hybridization of the impurity s orbitals
with the spin-polarized d orbitals of the neighboring Ni
atoms induces a weak s polarization, which is negative for
the early':sp impurities. This "transferred hyperfine field"

I I I I i I I I I

is also negative for the transition metal impurities, since
their potentials are weak in the sense of Katayama
et al. One expects the transferred contribution to be
essentially proportional to the local moments of the neigh-
boring host atoms. Since these moments are strongly re-
duced for the impurities with negative moments (Sc, . . .,
Cr and Y, . . ., Tc) the corresponding transferred fields
should be substantially smaller than the ones of the fer-
romagnetic impurities. Indeed Figs. 5 and 6 give an indi-
cation of such an effect, since the difference between the
local moment curve and the valence field curve is substan-
tially reduced for the impurities with negative moments.

In addition to this negative transferred hyperfine field
we obtain for magnetic impurities a "local valence hyper-
fine field" which dominates the behavior seen in Figs. 5
and 6. The figures demonstrate that this local contribu-
tion is proportional to the local moment; however con-
trary to the core hyperfine field the proportionality con-
stant is positive. It is tempting to interpret this behavior
analogous to the core polarization, i.e., the s-d exchange
interaction pulls the majority valence s electrons inward
and pushes the minority s electrons outward so that the
polarization at the nucleus is positive. However this ef-
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FIG. 5. Valence hyperfine fields (right scale) and local mo-
ments (left scale) for 3d impurities in Ni.

FIG. 6. Valence hyperfine fields (right scale) and local mo-
ments (left scale) for 4d impurities in Ni.
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TABLE VII. Shell decomposition of the hyperfine fields. Decomposition of the hyperfine field of V,
Fe, Nb, and Ru into the different shell contributions (semirelativistic approximation with VWN XC po-
tentials).

V
Fe

1s

2
—23

2$

65
—603

3$

—20
342

4s

—67
114

Total

—19
—169

1s 2$ 3$ 4s 5s Total

Nb
Ru

1

—5

8
—46

—2
3

36
—75

—94
—24

—50
—147

feet is of minor importance for the valence electrons. The
dominating mechanism is a repopulation effect, i.e., more
majority and less minority s states are occupied, leading
to a valence s moment in the impurity Wigner-Seitz cell.
Figure 7 shows, that the valence hyperfine field is in a
rather good approximation proportional to this local s
moment. A similar proportionality is also obtained
within the 4d series. Going back to Eq. (36) we conclude
that for the valence hyperfine fields the difference
between the spin-up and spin-down density of states
is most important. The matrix elements
F (e) =-( 1 /—4')

~
R,—(O, e)

~

do not depend strongly on the
spin direction nor on the energy, so that in a rough ap-
proximation AE is proportional to the local s moment
M, :

M, = f de[n,+(e) n, (e)] .—

The proportionality constant, essentially given by a suit-
able average of the square of the s-wave function at the
origin, is more or less the same throughout the whole 3d
series.

We will now discuss the hyperfine fields of the neighbor
ing Ni atoms, which are listed in Table VIII. Figure 8

shows the change of the hyperfine field (left scale) of a
NN Ni atom with respect to a bulk Ni atom together with
the change of the corresponding local Ni moment (right
inverted scale). Both for the moments and for the hyper-
fine fields we obtain similar s-shaped curves. According
to the above discussion this strongly indicates that the lo-
cal contributions (of core and valence) to EH„f are impor-
tant. However there are also indications for important
transferred contributions. For instance for Co, Fe, and
Mn the local moments on the neighboring sites are practi-
cally unchanged. Here the negative values for EHh~ arise
from the large impurity moments on the adjacent site
leading to a negative transferred hyperfine contribution
proportional to the change AM =M; P

—MN; of the mo-
ment on the impurity site. Contrarily for Cr, V, and Ti as
well as for Mo, Nb, . . ., the change KM' is negative, re-
sulting in a sizable transferred contribution to hH which
is positive.

The division of the hyperfine field into a local and a
transferred contribution and the above discussion suggest
a simple interpolation formula for the hyperfine fields in
terms of the moments of the considered atom and its
neighbors. We therefore set

Hhf —aMi +bMq„, +c g b,M;
i =NN

CO

2
I
CO

D

LUZ
K
Vl

LJO

3d series

yO
0

3d series Ld series

20—
L3

0

O

--02—

o

The first term aM& represents the local hyperfine
field, being the sum of the local core and valence contri-
butions, which are both proportional to the local moment
(see Fig. l). From the behavior of the hyperfine field
through the 3d and 4d series (Fig. 2) it is clear that the
constant a is negative since the core contribution dom-
inates. The second and third terms represent the

-2 I I I I I I i I I

Sc Ti V Cr Mn Fe Co Ni Cu

20 I I I

Sc Ti V Cr Mn Fe Co Ni Cu
02

Y Zr Nb Ho Tc Ru Rh Pd Ag

FIG. 7. Valence hyperfine fields (right scale) and local s mo-
ments (left scale) for 3d impurities in Ni.

FIG. 8. Change of the hyperfine field of a nearest-neighbor
(NN) atom (left scale) and change of the NN Ni moment (right
inverted scale) for 3d and 4d impurities in Ni.
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TABLE VIII. Change of the hyperfine fields of NN Ni atoms. The change of the hyperfine field
EHhq of NN Ni atoms with respect to a bulk Ni atom is given. AHhq and EHqf denote the core and
valence contributions.

AHhg

AHhg

~hf

Sc

18
—1

17

22
2

24

V

24
6

30

Cr

23
15
38

Mn

4
—20
—16

Fe

1

—20
—19

Co

—9
—10

Ni CU

~Hhf
~Hhf
~H hf

20
—2

18

Zl

25
0

25

30
3

32

Mo

32
5

37

Tc

27
8

34

Ru

9
5

14

Rh Pd Ag

transferred hyperfine field consisting of a constant contri-
bution bMh„, and a correction c g,. bM; if the moments
M; on the neighboring sites are changed by the amount

Further ranging changes are neglected. Clearly the
constants b and c are negative, since the potentials of the
transition metals are weak in the sense of Katayama
et al. An ansatz similar to the above one has already
been made by Campbell in trying to analyze the experi-
mental data for Fe. By taking the calculated values for
the moments of the impurities and the nearest neighbors
(Tables I, II, and III) the constants a, b, and c can be
determined by fitting the above ansatz to the calculated
hyperfine fields of the 3d impurities (Table IV) and their
nearest neighbors (Table V). A reasonable fit of both sets
of hyperfine fields is obtained with

a = —37, b -=—115, c:——10.4 (in units of kG/pz) .

For the 4d series, a reasonable fit of the calculated impur-
ity hyperfine fields is obtained with

a = —88, b:——199, c=- —15.4 (in units of kG/p~) .

It is clear that such a fit cannot accurately reproduce the
calculated values. For instance we have discussed that the
core hyperfine field is not accurately proportional to the
local moment. Similar arguments apply also for the
valence hyperfine field. Nevertheless we believe that the
important trends of the calculated hyperfine fields for 3d
and 4d impurities are well represented by the above rela-
tion.

We will now discuss the limitations of our calculations
From Fig. 2 it is clear that while our calculations repro-
duce the experimentally observed trends of the hyperfine
fields there are serious differences in cases where the local
moment is large. This includes Fe and Mn impurities in
Ni, but also, e.g. , pure Fe. What are the reasons for these
failures?

In our calculations we have completely neglected lattice
relaxations of the neighboring atoms. However at least
for neighboring atoms such as Co in Ni or Fe in Ni, relax-
ations are rather small. They are expected to be some-
what bigger for the early 3d impurities and for 4d impuri-
ties. In general, however, the effect on the local moments

and the hyperfine fields are not expected to be so large
that the discrepancies for Fe and Mn could be explained.

Our calculations are semirelativistic, i.e., we take mass-
velocity and Darwin-like terms into account while
neglecting spin-orbit coupling. We obtain, therefore, no
orbital contribution to the hyperfine field. Independently
of the magnitude of such a contribution, its sign should be
positive for Fe and Mn. Therefore, if anything, it would
enhance the discrepancies between theory and experiment.
Dipolar contributions vanish for the impurities due to the
cubic point symmetry. We have estimated them for the
change of the hyperfine fields of the neighboring atoms
and obtain small corrections of 1—2% of the values given
in Table VIII.

Another source of error could be relativistic corrections
to the local exchange potential as have been discussed by
Ramana and Rajagopal. ' Due to the rather high core
densities such effects could be important for the hyperfine
fields. Since the exchange-correlation potential is still lo-
cal, their inclusion does not complicate the calculations.
Weinert and Freeman have recently included such rela-
tivistic corrections for the paramagnetic exchange poten-
tial in Knight-shift calculations for Pt surfaces. Here the
corrections are quite small and negligible. However it
remains to be seen if this is also true for the spin-
dependent exchange potential as derived in Ref. 41.

Presumably the most serious approximation in our cal-
culation is the local density approximation. While it is
now well established that local moments can be calculated
quite successfully within this approximation, the applica-
tion to hyperfine fields is a different matter. While the
results for nonmagnetic impurities ' seem to indicate
that the transferred part of the hyperfine field can be cal-
culated reasonably well, the present results for magnetic
impurities, especially for Fe and Mn impurities, indicate
serious errors for the local contribution to the hyperfine
field. Since the latter contribution arises from the in-
herently nonlocal s-d exchange interaction deep in the
core, it seems to be natural to assume that the local densi-

ty approximation is the reason for this failure. This is in
line with the argument of Wilk and Vosko based on atom-
ic calculations. Nevertheless the errors are not as big as
one would expect from the latter publication, since the
general trends for the 3d and 4d impurities are well
represented.
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VI. SUMMARY

We have performed detailed self-consistent calculations
for the hyperfine fields of transition-metal impurities in
Ni. New formulas for the relativistic generalizations of
the contact, orbital, and dipolar contributions to the hy-
perfine fields are derived. For the relativistic contact in-
teraction the spin-density near the nucleus has to be aver-
aged over a region whose diameter is the Thomson radius.

For transition metal impurities the core polarization in-
duced by sd exchange leads to a large core hyperfine field
being negative and proportional to the local moment. In
addition an important valence hyperfine field is obtained

consisting of a transferred and a local contribution. The
transferred field is negative for transition-metal impurities
and arises from the hybridization with the spin-polarized
d electrons of the Ni neighbors, as explained by Kataya-
ma et al. The local valence field is directly propor-
tional to the local moment, but contrary to the core field
it is positive. It is caused by the enhanced population of
the majority s-states.

The calculations reproduce the experimentally observed
trends for the hyperfine fields. However for large mo-
ment cases appreciable discrepancies occur which we be-
lieve are due to failures of the local density approximation
in describing the core polarization.

'Permanent address: Nara Medical University, Kashihara,
Nara 634, Japan.
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