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Melnikov's method for nonperiodic perturbations and the bifurcations in a Josephson junction
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We consider a Josephson junction with an applied dc current and nonperiodic time-dependent
magnetic field. Despite this nonperiodicity, one may use Melnikov s method to derive the bifurca-
tion curves analytically. We give the critical theoretical value I, of the dc current separating quali-
tatively different regions, essentially one region where the solutions (Josephson phase difference P)
rotate (infinite period) and another region where they oscillate (finite period). Numerical simula-
tions are given and the results are in good agreement with the theoretical predictions.

I. INTRODUCTION

II. THE JOSEPHSON JUNCTION IN MAGNETIC FIELD

A "small" (compared with the Josephson penetration
depth) Josephson junction may be represented by an
equivalent circuit whose balance equation is

C + —V(t)+I, sin[/(t)] =Id, ,
dV 1

(2. 1)

where CdV/dt is the displacement current through the
capacitor C, (1/R)V(t) is the current through the resistor

Nonlinear dynamics of the Josephson oscillator has
been extensively studied in both theory and experiment.
Huberman, Crutchfield, and Packard' first showed that
the rf-biased Josephson junction should exhibit chaotic
and bifurcating solutions for a variety of junction parame-
ters. This in turn led to a number of simulations ' show-
ing the effects which should be observed in a real Joseph-
son junction. In particular, several mechanisms leading to
the chaos are found through the quasiperiodic responses
and the period-doubling bifurcation. The lack of a global
theory leads almost all authors to use the perturbational
methods to study these phenomena. More recently Bar-
tuccelli et aI. applied Melnikov's method for prediction
of Smale horseshoe chaos in the rf-driven Josephson junc-
tion and showed that the Melnikov technique provides a
good, but slightly low, estimate of the chaos threshold.
The Smale horseshoe chaos is due essentially to the
periodicity in time of the perturbation considered by Bar-
tuccelli et al. (infinite intersections between stable and
unstable manifolds in the sections of Poincare). In this
paper, we use the Melnikov's method but with a non-
periodic perturbation. More precisely, we consider a
Josephson junction with applied dc-current and non-
periodic time-dependent magnetic field. In spite of this
nonperiodicity the Melnikov technique is still valid if the
perturbation is bounded. The paper is organized as fol-
lows. In Sec. II we review the Josephson junction equa-
tions and give the theoretical problem in which we are in-
terested. In Sec. III the Melnikov's method is reviewed.
Section IV presents our technique to derive the bifurca-
tion curves. Section V contains numerical simulations,
their comparison with the analytical predictions and con-
clusions.

R, and I, sin[/(t)] is the Josephson supercurrent. V(t) is
the actual voltage developed across the device and is relat-
ed to the phase difference P by the Josephson equation
Bp/t)t =2e Vlfi. Therefore the junction phase difference p
obeys the well-known pendulumlike kinetic equation:

x a'~ e i a~
C + — ' +I, sing =Id, .

Ze gt2 2e R Bt
(2.2)

I
&

is the maximum Josephson current, and will be allowed
to vary with time in the present paper, according to

I, (t) =I, I 1 ea [1—se—ch(bt )]{ . (2.3)

P+PJ.P+ { 1 ea [1——sech(bt)] I sing =eI, (2.4)

where eI =Id, /I& is the normalized current.
In what follows we take PJ. ——0 and focus on the theoret-

ical question: What should be the dependence of I in a
and b so that the oscillating solutions of Eq. (2.4) bifur-
cate to the rotating ones'? In other words, what is the
maximum I, (a,b) &0 such that the phase difference P
performs exactly 2m. rotation when t goes from 0 to infini-
ty'? This defines a critical value I, (a, b).

The aim of this work is to use Melnikov's method to
solve this problem despite the nonperiodicity of the pertur
bation (2.3). We deal with this problem exactly like bifur-
cations of planar homoclinic cycles. We emphasize that,
in the Melnikov's method, we replace a periodic perturba-
tion by a bounded one.

Hence we assume the maximum Josephson current to
jump from an initial value I& to a final one equal to
I

&
(1 —ea ) with (0 & e « 1). Note that there is no restric-

tion concerning b.
Experimentally, such a time variation of I& can be pro-

duced, either by a controlled modulation of an external
magnetic field dependence of the maximum Josephson
current or by modulating tunneling properties of a Pb-
CdS-Pb (CdS is cadmium sulfide) light-sensitive Joseph-
son junction through a laser illumination process. The
detailed technical processes will not be considered in this
paper.

We define r = toj t and PJ = ( I /coi )(1/RC), where
coj ——[2elfiI~/C]'~ is the plasma frequency. By this
choice and denoting t)P/t)r=P and t) P/Br =P, Eq. (2.2)
can be written, in dimensionless form, as
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III. MELNIKOV'S METHOD:
PERTURBATIONS OF PLANAR HOMOCLINIC ORBITS

Consider a system of ordinary differential equations of
the form'

dX
dt

=f(X)+Eg(X,t) (3.1)

where X =(x,y) HR and g periodic in time of period T.
Assume that, for e=O, the system (3.1) possesses a homo-
clinic orbit to hyperbolic saddle point, say po (or homo-
clinic cycles), and that the eigenvalues of the linearized
problem around of po are real and of opposite sign.
Therefore we define the Melnikov function by

+ 00

M(tp)= f f(Xp(t —tp)) Ag(Xo(t —to), t)
f —fo

Xexp tr Dz Xos ds dt

where Xo is the solution corresponding to the homoclinic
orbit (or cycle) of the unperturbed system. Here the Dx
denotes the partial derivative with respect to X and the
wedge product is defined as X& R, X2 ——x&y2 —x2y&. And
we have d(tp) =@M(tp)+.O(e ) where d(tp) is the separa-
tion distance between the stable and unstable perturbed
manifolds. Therefore, M (to ) provides a good measure [to
O(E )] of d(to).

In particular, if the system (3.1) is Hamiltonian one
may transform it as

We put X(x ={(},y =P) and write (4.1) as a first-order sys-
tem:

x=y,
y = —sinx+E[a(1 —sech(bt)) sinx+I j .

The unperturbed Hamiltonian of the system (4.2) is

(4.2)

20
t

FICi. 1. Time evolution of the phase difference x for a =0.2,
b =0.1. Upper curve, I =0.0059; lower curve, I =0.0060. The
upper curve corresponds to the oscillating solution while the
lower curve corresponds to the rotating one. The numerical bi-
furcation value of I is I~—0.0060 which is in good agreement
with the theoretical one I,=0.0062 given by Eq. (4.4).

aH aGx= +e

BH BG
ax 'ax '

and

H (x,y) = + 1 —cosx,
2

G (x,y, t) = a(1 —sech(bt) ) cosx Ix—
where H is the unperturbed Hamiltonian and G is the per-
turbation Hamiltonian. The dot denotes the derivative
with respect to time. In this case, the Melnikov function
reduces to

M(tp)= f [H(Xo(t —to)) G(Xo(t —to) t}]dt

where

BH BG dH BG
ax ay ay ax

denotes the Poisson bracket. "
IV. HOMOCLINIC CYCLE BIFURCATIONS

IN JOSEPHSON JUNCTIONS

is the perturbation Hamiltonian.
In the standard form, the system (4.2) reads

~ BHx=
By

aay=-
Bx

aG
'ax

Only when e=O, the system (4.2) is a true autonomous
phase problem, when m&0, it is one of the problems treat-
ed in the Sec. III above.

When e=O, the phase plane of (4.2) is simply that of
the pendulum. The heteroclinic orbits for the unper-
turbed system (e=O) are given by:

[x —(t),y —(t)]= [+2arctan[ sinh(t)], +2 sech(t)] .
The equation in which we are interested is

P+ [1—Ea(1 —sech(bt))] sing =EI . (4.1)
We now introduce the Melnikov function for the system
(4.2):

M (to,a, b, I)= —f x a ——I d
cosh[b (t + t, ) ]

+~ . + +~ x (sinx+-)=+I x dt —a dt
cosh[b (t +tp)]
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FIG. 2. Time evolution of the phase difference x for a =0.4,
b =0.1. Upper curve, I =0.0110; lower curve, I=0.0120. The
value given by Eq. (4.4) is I,=0.0124.
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FIG. 4. Time evolution of the phase difference x for a = 1.2,
b =0.1. Upper curve, I =0.030; lower curve, I =0.031. The
value given by Eq. (4.4) is I,=0.037.

where
. +

J= +~ x (sinx-) dt,
cosh[b(t +to)]

+ oo

x sinx —dt =0 .

By integrating by parts:

J= +~ x ( sinx+-)
dt

cosh[b (t +to)]
+ m sinh[b (t +to))2b- dt

cosh (t)cosh [b(t+to)]

dt .sinh(t)
cosh (t)cosh[b(t+to)]

When b =1, we calculate J:
sinh( to /2)J= —m

cosh (tQ/2)

Then

sinh(to/2)
Ms ~(t , 0Ia) =+2rtI+avr

cosh (tQ/2)

Here the Melnikov function is independent of e and time
dependent.

We will now concentrate only on the time-independent
bifurcation curves of the I-parametrized family curves. If
we define

sinh(to/2)
R( to) =—

2 cosh (to/2)

with

2v3
max [R(to)]=
t6R 9

then it follows from Melnikov's technique that if
I/a &2V3/9, the stable and unstable perturbed mani-
folds intersect for e sufficiently small, and if
I/a & 2v 3/9, no intersection can occur at all. In between
(transition from intersection of manifolds to no intersec-
tion), homoclinic bifurcation takes place. Thus, there is a
bifurcation in the I aplane, tangent to-

a
2v3

9
(4.3)

at I =a =0.
If 6~1, we approximate the expression J, and we have

-Sx

'u
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FIG. 3. Time evolution of the phase difference x for a =0.6,
b =0.1. Upper curve, I =0.0160; lower curve, I =0.0170. The
value given by Eq. (4.4) is I,=0.0186.
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FIG. 5. Time evolution of the phase difference x for a =1.8,
b =0.1. Upper curve, I =0.042; lower curve, I =0.043. The
value given by Eq. (4.4) is I,=0.050.
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if b(2
7T

Ic=
if b)2.

(4.4)

(4.5)

For b = 1, (4.4) is a good approximation of (4.3).

V. NUMERICAL RESULTS AND CONCLUSION

For different values of a and b we vary I from 10 to
10 '. Numerically there exists one value I& of I for
which the oscillating solutions bifurcate to the rotating
ones. More precisely, for all values than I& we have oscil-
lating solutions. Otherwise (I &I' ), no oscillating solu-
tions can occur and we have only the rotating phenomena.
In between (transition from oscillating solutions to rotat-
ing ones), a bifurcation takes place. In Fig. 1 we fix
a =0.2, b =0.1, and show the solutions x(t) of (4.2).

We use a Runge-Kutta scheme to compute numerically
the system (4.2), with the initial conditions

x(0)=
x(0)=0 .

Two significative curves are selected for I =0.0059 and
I =0.0060. The numerical bifurcation value is
I~—0.0060 which is in excellent agreement with the
theoretical value I,=0.0062!

Figures 2—5 are obtained in the same conditions with
different values of a and b F.or each figure the analytical
value I, is given.

We conclude that Melnikov's method provides an excel-
lent instrument to calculate the bifurcation curves analyti-
cally, even if the perturbations are not periodic. But our
main hypothesis is that the perturbation is bounded. The
generalization of this method to infinite dimensional evo-
lution equations was carried out by Holmes and
Marsden. ' It can be used for partial differential equa-
tions. In particular, Holmes' has applied these methods
to the sine-Gordon equation. In fact, his work can be suc-
cessfully used to study the soliton dynamics in the long
Josephson junctions.
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