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Effects of paramagnons in a proximity sandwich
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We have studied the effects that the existence of spin fluctuations on the normal side of a proxim-
ity sandwich can have on superconducting properties. We consider the critical temperature, its
functional derivative with paramagnon spectral density, the frequency-dependent gap, and the
quasiparticle density of states. The question of the interplay of phonon and paramagnon structure
in tunneling characteristics is addressed. Comparison with experiment is made for the case of Pd.

I. INTRODUCTION

It has long been thought that Pd is not observed to be a
superconductor' down to the lowest temperatures tested
[—2 mK (Ref. 2)] because of the inhibiting effects of
"spin fluctuations" or "paramagnons" which are pair
breaking. The possible existence of spin fluctuations is
linked to its strongly enhanced spin susceptibility and at-
tendant large temperature dependence. The Stoner
enhancement factor of Pd is 9.3, and the characteristic
spin-fluctuation temperature (Ts„) has been estimated to
be as low as 250 K. ' '

A metal which may have even larger spin-fluctuation
effects is TiBe2. Its Stoner factor is 65 (Ref. 4) with a
very strong temperature dependence in the susceptibili-
ty. ' Also, the low-temperature electronic specific heat
( C) is clearly observed to bend upward at low temperature
on a C/T versus T plot ( T is the temperature). This in-
dicates fairly unambiguously ' a ( T/TsF ) ln( T/TsF )

term as predicted in theories of paramagnons. "' Even
more importantly, in building a case that spin fluctuations
exist in this material, is the fact that the
( T/TsF) ln(T/TsF) is largely quenched by an external
magnetic field of 17 T (Ref. 10) in accord with theoretical
expectations. ' The characteristic spin-fluctuation tem-
perature TsF ——2.5 meV is very low and a rough estimate
of the electron mass enhancement factor due to paramag-
nons is A.sF—-0.5. ' In such a system there should be
large effects introduced by the paramagnons when super-
conductivity is induced in it by placing it in proximity to
a good superconductor such as Pb.

In intrinsic superconductors the possibility of paramag-
non effects has been extensively studied' ' in recent
years, but no definitive conclusion has yet been reached,
possibly because the values of ksF are small and the
characteristic temperature TsF large. If TsF is much
larger than a phonon energy, paramagnons simply lead to
a constant renormalization' of the electron-phonon
interaction so that there is no easily identifiable trace of
their existence. This should not be the case for systems
with small TsF for which the paramagnon spectral densi-
ty should be directly reflected in the current voltage (IV)-
characteristic of a tunnel junction at low energies.

In this paper we study the effect of low-energy
paramagnons on the superconducting properties of a
proximity sandwich. The normal and superconducting
side are coupled to each other according to the McMil-
lan tunneling model. This should be adequate for our
work since one of our main purposes is to study the struc-
ture in I- V characteristics that results from the phonons
and paramagnons on the normal side. While the induced
Pb phonon structure may not always be well represented
by the model and interference effects due to reflections at
film boundaries are left out, the McMillan model was
found to be quite adequate in our previous consideration
of phonon structure in Cu sandwiches. While it is true
that boundary scattering could affect the paramag-
non spectral density [P(to)], particularly at low energies,
here we take the approach that P(to) is to be determined
from tunneling experiments and so contains all these com-
plications. Thus no attempt is made to calculate it direct-
ly from first principles. In fact, paramagnon theory
remains at such a primitive level that it could not be ex-
pected to yield qualitatively reliable results.

In Sec. II the necessary set of four linearized Eliashberg
equations written on the imaginary frequency axis
are given and solved numerically. They are needed to
study the effect on the junction critical temperature T,
of the existence of a paramagnon spectral density P~(to)
on the normal side. Numerical solutions for T, are
presented for P&(to)&0 and compared with the P~(to) =0
case. In addition, the functional derivative of T, , with
respect to Ptv (to), is derived in a simple approximation for
the case of no net interaction on the normal side (the main
derivation is contained in an appendix. ) It is found that
paramagnons are increasingly more effective in reducing
T, as their energy is lowered. In Sec. III we introduce
the real frequency axis version of the Eliashberg equation
at zero temperature ( T =0). Solutions of the equations
for the real and imaginary part of the gap on normal and
superconducting sides are given and paramagnon struc-
tures discussed. From these solutions, the I- V charac-
teristics of the normal side are computed and the charac-
teristic signature of the paramagnons in d V /dI
described. Also, an extensive discussion is given of the in-

terplay of phonon and paramagnon structure when TsF is
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comparable in size to the Debye temperature. In Sec. IV
the specific case of Pd is considered in some detail while
in a last section (V) we draw some conclusions.

II. PARAMAGNONS ON SANDWICH
CRITICAL TEMPERATURE

For the critical temperature (T, ) the linearized
Eliashberg equations hold. On the imaginary frequency
axis with cu„=AT—,(2n —1) they are '

As(n) =7rT, g [Xs (m —n) —ps]

As(m) b,~(n)
X +I

(
~s(m)

[
[a~(n)

[

cps(n) =co„+nT, g As (m —n)sgnco +I ssgnco„ (2)

and

&~(n) =7TT, y [&~(m n) p~—)—
b,~(m) as(&)

X +I~
f
co~(m)

/ f
cps(n)

/

c5&(n) =co„+vrT, g A&(m —n)sgnco +I &sgnco„. (2')

In these equations b,sz(n) are the pairing energy on the
superconducting and normal side of the sandwich, respec-
tively, with cos~ the renormalization Z(ice„) times m„
The coupling between the two sides enter through the
McMillan tunneling parameters I &, I z, one of which is
taken to be an adjustable parameter with

(system I). We do not include any attraction produced by
phonons, but include a Coulomb repulsion of p~ ——0. 1.
We compare this system with the case in which the nor-
mal material has no phonons and also no paramagnons
and the same value of p~ (system II).

Figure I gives the critical temperature T, of the
sandwich, Pb-normal metal, normalized to the Pb value
(T, ) as a function of the coupling parameter I s for two
different values of I &. The solid line corresponds to I &
very small, I z &0. 1 meV with A, sF

——0 (system II), while
the points denoted by plus signs ( ~ ) indicate the results
obtained for system I with the same value of I z. We see
that in this limit the two systems give almost the same
variation of T, /T, versus I z and that this variation
follows very closely the Abrikosov-Gorkov results. Note
that the results for system I (with paramagnons) end at
T, /T, =0.45. Below this value of the reduced tem-
perature, we were no longer able to converge our results.

The dashed line in Fig. 1 is for system I but with
I ~ ——1.0 meV (a smaller thickness of normal metal rela-
tive to the superconducting thickness than previously con-
sidered). It is seen that this curve lies far below the one
for the system with no paramagnons (system II) with the
same value of I z which is represented by the dotted line.
The differences between the two curves increase markedly
with increasing I ~. It is important to note, however, that
such a comparison may not be quite fair when it is real-
ized that I z is a fitting parameter when a comparison of
theory with experiment is attempted. In this regard we
need to keep in mind that in reducing Eqs. (1) and (2) in a
Bardeen-Cooper-Schrieffer (BCS-) type model, I s and I ~
get renormalized by 1 + ks (0) and 1 + k& (0), respective-

Is
Ix

dhNx(0)
dsNs(0)

In Eq. (3), d~ and ds are the normal and superconducting
layer thicknesses and N~(0) (Ns(0)) the electronic densi-
ty of state on the normal (superconducting) side. The
Coulomb pseudopotential is denoted by p& z and
Ag~s(m —n) is related to the spectral densities on each
side,

1.0

TNs
C

Tc

0.5
20[ax, sP (&)+Pm, s(&)]

A, g~ s(m —.n) = dA
Q +(co„—co )

(4)

with a F(Q) [P(Q)] the electron-phonon (paramagnon)
spectral density. For the superconducting side we take
asF(Q) to be that of Pb (Ref. 28) and Ps(Q) =0.

To illustrate the effect that the presence of paramag-
nons on the normal side of a proximity sandwich intro-
duce on its critical temperature, we consider two systems.
We study Pb in proximity with a normal material that has
P~(Q) given by a Lorentzian distribution peaked at 2.5
meV with a width of 2 meV and a paramagnon mass re-
normalization constant

P~ ( Cil )d Cil

X,„=2f X,„=07

'0 1.0
I

2.0
I 1

3.0 4.0
Is (rneV)

I

S.O
I

6.0

FIG. 1. Critical temperature T, of a proximity sandwich
with Pb on the superconducting side and a material in which
paramagnons are present on the normal side. The T, values
are normalized to the T, of Pb ( T, ). The solid line is for
I & ——0. 1 meV and A,sF ——0 and is close to the Abrikosov-Gorkov
variation. The points denoted by plus signs (+ ) are for the
same I ~ but with A,sF ——0.7. The dashed line is for I ~ ——1 meV
and ksF ——0.7, the dashed-dotted line for I ~ ——1.7 meV and
A,sF ——0.7, and the dotted line is for I ~ ——1 meV and A.sF ——0. In
all cases p~ ——0. 1.
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ly. This is discussed by Mitrovic.
If A+,(—n —m ) is approximated by a constant value
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The above would indicate that when comparing results for
systems I and II we should perhaps recognize from the
outset that one effect of paramagnons on the normal side
is to renormalize I ~ by a factor of (1+AsF) '. The
dashed-dotted curve in Fig. 1 is for system I with
I N

——1.7 meV which corresponds to a renormalized
I N

——1. It is seen that even when I N is increased to 1.7
meV the curve for T, /T, is still significantly below the
dotted curve which applies to system II. Thus, even when
a renormalization of I N is accounted for, the curves for
the variation of the normalized junction temperature
against I s do not follow the same pattern with and
without paramagnons. Difference certainly arise which
reflect the presence of paramagnons in the normal side of
the junction which go beyond a renormalization of I N.

In a later section, after we have presented the real axis
version of the Eliashberg equations, we will discuss, in
parallel fashion to what we have just done for the critical
temperature, the effect of P&(co) on the normal side gap
edge Q~. It will be found to be reduced by Pz(co) in a
similar fashion to the junction critical temperature T,

It is interesting to know how the position in energy of
the spin fluctuations affects the junction critical tempera-
ture. Such a question can be answered directly from func-
tional derivative considerations. In the Appendix we give
a derivation of a simple formula for the functional deriva-
tive of T, with P~(co ) of the normal side.

NS5T, /5P&(QO) gives the effectiveness in depressing the
junction temperature of adding an infinitesimal amount of
paramagnon spectral weight, at frequency Qp. In Fig. 2
we compare results for 5T, /5P&(QO) with similar re-
sults for 5T, /5a~F(AO) which can be obtained from
formula (A14) on changing the sign in front of the first of
the two sums. We see that paramagnons always reduce
T, and become increasingly more effective as the frequen-

FIG. 2. Functional derivatives of the critical temperature of
a proximity sandwich. The top curve gives functional derivative
with respect to the electron-phonon spectral density

NS 26T, /5a~F(QO) and the bottom curve the functional derivative
with respect to the paramagnon spectral density 5T, /5P~(Qo).
In each curve the proportionality factor

r r,
m(1+X~ ) 1— r0&' a+-

2m.kg T, 2~k g T, 2

has been left out and only the remaining sums in Eq. {A14) are
included.

cy Qp tends to zero. In fact, the functional derivative
diverges like 1/Qp as Op~0. This divergence comes
from the n =m term in the double sum of (A14). By con-
trast, this term cancels out for 5T, /5a~F(QO), and in
this case the functional derivative goes to zero at Op~0
havin~ had a maximum at a higher frequency around
7kz T, . Note that what is plotted in Fig. 2 is
5T,'/5P~(QO) and 5T,'/5a&F(co), which differ from the
actual functional derivatives by the numerical factor

r r, 1

~(1+&~) 1 —(I /2rrk T, )P'(I /2@k T, + —, )

This was done for clarity since it does not change the
shape of the curve. It should be remembered, however,
that the absolute value of 5T, /5P„(co) is additionally
proportional to each I N and I s. This makes sense since
for small I s there is only a very small layer of normal
metal compared to superconductor and so the normal side
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can have little effect on the junction temperature. For I N

small the opposite holds and the junction temperature it-
self is small. We next consider the gap at zero tempera-
ture.

III. GAP AND I- V CHARACTERISTICS

To calculate the current-voltage (I V) c-haracteristics
expected from a proximity sandwich with paramagnons
on the normal side it is most convenient to use the zero-

l

temperature Eliashberg equations written on the rea1
axis. The necessary equations are

il N, S~S,N(~)
bN, S(co)ZN, S(co) =QN, S(co)+

2

'
z
', z2, (8)[~'—~s, N(~) ]'"

P r,
ZN, S(~)=ZNS(~)+

[~ —~s, N(~)]

with

CO ~NS(~ )
NN, S(co)= J 'den'Re

[(~')' —&N s(~')]
2 1 1

J dv[aN sF(v) PN s(—v)] +
6) +63+v—L 0 co —cc)+v—l 0

(10)

and

[1—ZN s(co)]= J des'Re
I

2 2 i/2 dv aN, sF v +PN, s &f(~')' —~N, S(~')]'" 6P +&+V—l 0 & —&+V—l 0I +

where bN(co) [hs(co)] is the complex gap as a function of
real frequency for the normal Ã (superconducting S) side
and ZN(co) [Zs(co)] the renormalization functions. The
first term on the right-hand side of (8) and (9) introduces
into the equations the normal (X) superconducting (S)
side phonons or paramagnons while the second term deals
with the coupling between the two sides of the sandwich.

Solutions of the above equations for the gap are given
in Fig. 3(a), where we show the real and imaginary part of
b, (co) on both normal and superconducting side. They ap-
ply to a Pb-normal metal junction with aNF(co) taken to
be zero and PN(co) a cutoff Lorentzian centered at 2.5
meV with width of 0.5 meV and a A, &I;——0.5 where

~N

+N

' 1/2
As+AN

(12)

to the paramagnons will be reflected in the current-
voltage (I V) characteris-tics for tunneling on the normal
side of the sandwich.

Before discussing I- V characteristic we discuss the ex-
plicit effect of paramagnons on the gap edge on the nor-
mal side of the junction. The BCS McMillan tunneling
model for a system with I s ——0 and where no phonon or
paramagnons are present in the normal side predicts an
induced gap AN that satisfies the equation

~sF= 2 j P(co )

is the paramagnon electron mass renormalization parame-
ter. These parameters were chosen for convenience but
would not be completely unrealistic for the case of TiBe2.
We note that the imaginary part of each 6N and As start
to be nonzero at a frequency equal to the normal side gap
(b,N =0.9 meV). Also note that the real part of bs has a
small structure at this same frequency. The Pb transverse
and longitudinal phonons are clearly seen in the rea1 part
of bs(co) at approximately S and 10 meV, respectively,
and, because the phonon spectral density asF(co) is at-
tractive, the gap is increased at these frequencies. In con-
trast the real part of the normal side gap b N(co) shows a
large reduction at 3.5 meV reflecting the paramagnon
spectral density PN(co) which is pair breaking and peaked
around 2.5 meV. We stress that the paramagnon "hole"
in 6N is displaced by the gap value AN —-0.9 meV so that
it is centered around 3.5 meV. This very large feature due

PN(co)+it Nbs(co)i[co —bs(co)]'
bN(~)= p 2 2 1/2ZN(co)+i I N /[co —bs(co)]

(13)

where PN and ZN are given by Eqs. (10) and (11). We
consider the case in which only paramagnons are present
in the system, and neglect phonons and Coulomb repu1-
sion. To obtain the gap edge we assume that b,N(co) is a
constant equal to the induced gap edge AN and that the
paramagnon distribution PN(Q) can be approximated by a
constant A,sz for co&cos~ and zero beyond. With these
considerations:

If this equation is used to estimate the induced gap edge
of a system that actually has paramagnons, it would yield
values much larger than the real ones. To understand
this, let us go back to the Eliashberg equations (8)—(11)
and approximate them using the two-square-well model
for the electron-phonon interaction. '

We have that [Eqs. (8) and (9)]



3260 H. G. ZARATE AND J. P. CARBOTTE 35

E

I—
&3
CL
O

I.20

I. I 5—
N(w)
V(0)

I.I 0—

I.OO

(b)

0.95—

I i I

4 5 6
~ (meV)

IO
0.90 6

~ (meV)
IO

0.020
(c)

0.0 I 5—

O.OIO—

0.005—

E 0.0
&[cu

-0.005-

-0.0 I 0-

—O.OI 5—

-0.02000 ' l

5.0 IO.O l50
~ (mev)

20.0 25D

FIG. 3. Solution of the real axis Eliashberg equations for a material with a paramagnon distribution given by a Lorentzian at 2.5
meV with a width of 0.5 meV, XsF——0.5, and a Coulomb repulsion pz ——0. 1 in proximity with Pb. The coupling constants are I ~ ——6
meV, 1 q

——0. 1 meV. (a) gives the real and imaginary part of the gap function in the superconducting and normal side [
Rehz(co); ———,Imhq(co);, Reh~(co); and ———., Imhv(co)] in meV. (b) shows the tunneling density of states on the nor-
mal side of the junction in the paramagnon region (solid line), to be compared with the density of states of the normal side of the Pb-
Cu (dashed line) proximity sandwich of approximately the same induced gap. (c) gives the second derivative of the I- V characteristics
d V/dI (in meV ') in the same frequency region.

~SF f sF +.Iv ~x ~s
I +~sF +~ (co A~ )

'~ — (As —A~ )
'~

1+
(g2 ~2 )1/2

(14)

where

~N
~N= 1+A,sF

(15)

Solving the integral in this equation and assuming
QsF&~AN, we obtain after some simple algebra an ap-
proximated equation for the gap edge for a system where
paramagnons are represented by a characteristic frequency
AsF and a renormalization constant XsF..

ksF 20,sF1+ ln
1+AsF ON

Ag+ON

Aq —QN

1/2
~N

AN
(16)

If A.sF
——0, Eq. (16) reduces to Eq. (12) if we use the renor-

malized I N instead of I N. The presence of the term with
the logarithm reduces considerably the values of AN that
are solutions to (16) as compared with the solution to Eq.
(12) for the same value of I z.

Table I gives the values of QN obtained as solutions of
Eqs. (12) and (16) to be compared with that obtained as a
solution to the complete set of Eliashberg equations [Eqs.
(8) and (11)] for several values of I ~. In all cases the
paramagnon spectral density P~(Q, ) used in the complete
equations [Eqs. (8) and (11)] was a Lorentzian peaking at
2.5 meV with a width of 2 meV. The first column of
Table I gives Q~' as calculated from Eq. (12) with the re-
normalized j. N replacing I N. Column 2 gives the Q,N"""
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TABLE I. The zero-temperature gap edge on the normal side
of the junction calculated from Eq. (12) with no paramagnons
included (Q,N') compared with that from Eq. (16) with paramag-
nons (Q~ ). We see the drastic difference between these two re-
sults. Also given for comparison is Q,Nh"", the gap edge ob-
tained from full numerical solutions of Eqs. (8)—(11), which is
seen to agree reasonably well with QN

gRe
N

0.24
0.46
1.02
1.28

~Eliash
4LN

0.10
0.25
0.78
0.94

gBCS
N

0.10
0.26
0.81
0.95

r (me V)

0.5
1.0
5

6

A SF

0.7
0.5
0.7
0.5

as obtained with Eqs. (g)—(11) with the paramagnon dis-
tribution described above and a Coulomb repulsion
p*=0.1. The third column gives Q,z obtained from Eq.
(16) with QsF ——3.0 meV. We see that Eq. (16) agrees
surprisingly well with the results of the full numerical cal-
culations but that Eq. (12) in which paramagnons are ig-
nored overestimates the gap edge on the normal site quite
drastically. This is similar to the results obtained for the
critical temperature in the preceding section and shows
that paramagnons can have a drastic effect on supercon-
ducting properties. We will see this to be the case in the
I- V characteristics which we now turn to.

The conductance o.(V) at zero temperature is propor-
tional to the quasiparticle density of states:

(dI /d V)s
a( V)= =Re

(dI/dV)~ [~~ g~~(~)]'~2
(17)

It is shown in Fig. 3(b). The important feature of this
curve is the very marked dip centered around V=co=3
meV which is due to the paramagnon spectral density of
the normal metal. For comparison, and to emphasize this
feature, the partial dashed curve shown is for the case of a
proximity sandwich Pb-Cu with the same gap. The
copper of course has no paramagnons. The contrast is
striking and we conclude that paramagnons at low fre-
quencies show up clearly in cr(V) for the parameters
chosen. In Fig. 3(c) we show the second derivative
d2V/dI versus V for the same case as in the two previ-
ous figures. We emphasize the positive peak center
roughly at 3.5 meV and extending from about 2.7 meV to
4.5 meV, which is a reflection of the corresponding dip in
Fig. 3(a). This is due to the paramagnons. To end we
note that for the curves just shown I &

——6 and I z is very
small. This value of I z may be too large in realistic cases
since in dealing with the transition metal Pd Dumoulin
et al. have found smaller values of the transmission
coefficient and hence of I z. We have made other calcu-
lations with smaller values of I z but do not show these
here since no new physics was found to emerge.

So far, we have considered only the case of Qsp suffi-
ciently small that its characteristic structure will not in-
terfere significantly with phonon structure and we have
left a~E(co) out of the calculations. This simulates the
expected situation in TiBe2. We wish now to consider the

case when paramagnon and phonon characteristic energies
are comparable in size. This may well be the case for Pd.

In Fig. 4 we show the electron-phonon spectral density
for Pd taken from a graph in the paper of Pinski et al.
These authors calculated this quantity from first principle
and found that the mass enhancement (A,~)

a~F(~)f 2 dCil (1&)

0.3—

0.2— a2 F(~)
N

O.l— ~ 0 ~
~ ~ ~

0
~ ~

30

Ol—

02 co

0.3

P„(au) without
cancellation

FICz. 4. The dotted line shows a I'(~) for Pd from Ref. 30
with A, N

——0.41. The solid line gives one of the models chosen
for PN(co) with A,sF ——0.32. We refer to it in the text as "the one
with cancellation. " The dashed line gives the model for PN(~)
"with no cancellation" and with the same value of A, sF.

is 0.41 in Pd. ' While it is not possible to know precisely
the errors involved in these calculations, such a large
value of A.z would imply that pure Pd is superconducting
unless paramagnons are present. We will not address the
difficult question of the existence of paramagnons in Pd
at this point but simply use the spectral density of Fig. 4
with several possible values of A,~ [readjusting accordingly
the overall size of a~F(co)]. For the paramagnon spectral
density P~(cu) we make two choices so as to illustrate how
they interfere with phonon structure if both characteristic
energies should be roughly the same. The two models are
triangular and shown in Fig. 4. In the first, which we will
refer to as "with cancellation, " the triangle is chosen so as
to get cancellation of the peaks in a&F(cu), while in the
second referred to as "with no cancellation" no special ef-
fort is made to produce maximum cancellation. Of course
some cancellation does take place even in this case. Re-
sults for d V/dl are found in Fig. 5. For these runs
I ~ ——1 meV, I ~ -—0, k~ ——0.41, and A,sF ——0.32 with a nor-
mal side gap of Az —-0.38 meV. The top figure is for the
model with no cancellation and considerable structure is
seen in the phonon and paramagnon region. The phonon
spectral density a F(co) has a peak at 17 meV, the peak in
P(cg) is at 22 meV, and the longitudinal phonons are cen-
tered at 25 meV so that the relevant structure extends
throughout the region 16 to 29 meV. Comparing this case
with the one where P(co) is chosen to cancel more effec-
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FIG. 5. d V/dI (in meV '
) for the normal side of a

sandwich that has on the normal side the phonon and paramag-
non distributions of Fig. 4. The top corresponds to the no can-
cellation model for P(O, ) and the bottom to the cancellation
model A,z ——0.41 and A.sF ——0.32. A case with I ~ ——1 meV was
chosen with a resulting induced gap of 0.35 meV in both cases.

tively against a~F(co) (lower curve) we see a very large
reduction of the Pd structure in this second instance. We
can conclude from this figure that, as anticipated by Mi-
trovic, the Pd phonon structure can be reduced by the
presence of paramagnons if P&(cu) largely cancels against
a F~(co) as a function of frequency. For the cancellation
to be effective, however, it must be a local frequency by
frequency cancellation and so both distributions need to
be of similar shape. For example, while we have chosen a
triangular distribution for Ptv (co) when its peak is taken to
fall near 17 meV, its shape is not so different from
a F(co) in Pd.

To illustrate these effects further we have considered a
somewhat different case in Fig. 6. What is shown in Fig.
6(a) are results for a case with I z ——0.97 meV, I &=-0,
0&——0.43 meV, and A.&

——0.25 with A.sF ——0. 15 so that the
difference k& —XsF——0. 1. This is to be compared with the
case I ~ ——0.77, A~=0. 42 meV (the same gap) but with
no spin fluctuation and A,z itself taken to be 0. 1 [Fig.
6(b)]. In both figures @*=0.1 so that, in effect, the Pd
has no net attraction: k& —A,sF —p* =0 in both instances.
What is important to realize is that even though we have
chosen P(co) to cancel substantially against a&F(co) the
Pd structure that we get in the first model k~ ——0.25,
A,sF——0. 15 is much larger than for no paramagnons and
k& ——0. 1. Thus the cancellation is not complete as expect-
ed from Fig. 4. It would, however, be quite artificial to

FIG. 6. (d V/dI )
~
„, ,~ (in meV ') for two systems where

A,~ —A,sF ——0. 1. The electron-phonon spectral density is the one
of Fig. 4 but with a rescaling factor and P(Q) is the cancella-
tion model times a constant. The top figure is for a case with
A,~ ——0.25 and ksF ——0. 15 and an induced gap Q& ——0.45 meV
(I ~ ——0.97 meV); the bottom one for k~ ——0. 1 and A.»——0 with
the same induced gap (I ~ ——0.77 meV).

try to have even more cancellation since then we would
need to have P&(cu) reflect tightly the shape of the
electron-phonon distribution, something which is not ex-
pected.

Before we turn to a more specific discussion of the case
of Pd for which tunneling results exist (Dumoulin
et al. ) we make one more point which is essential for
understanding the d V/dI structure in this case. Refer-
ring to Fig. 6 it is important to realize that for the case
A, & ——0. 1 and no paramagnons, the amount of phonon
structure obtained is considerably less than would have
been the case for a Al shape spectrum. Al exhibits a large
sharp longitudinal peak which would lead to a large struc-
ture in d V/dI even if the spectral weight is reduced to
k~ ——0. 1. Because the phonon structure in the Pd spec-
trum of Fig. 4 is more evenly spread among several fre-
quencies with a main peak at 17 meV and only a small
longitudinal peak beyond, it does not produce as sharp a
structure. A consequence of this is that the phenomeno-
logical technique developed to extract a value of A,z from
d V/dI structure would substantially underestimate it.
This was discussed in some detail within the context of
Cu-Pb proximity sandwich by Zarate and Carbotte to
which we refer the reader.

IV. THE SPECIFIC CASE OF Pd

The aim of this section is to analyze in some detail the
specific case of Pd and to see what normal-state parame-
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ters are most consistent with the present experimental
knowledge of its properties. In making this assessment we
will want to consider besides the theoretical estimate of
A.&

——0.4 in Pd, the possibility of some paramagnons as
well as the tunneling results of Dumoulin et al. In addi-
tion, the important de Haas —Van Alphen work of Dye
et al. needs to be included. These authors conclude that
the sum of A,&+A.sF-=0.4 in Pd. Finally, we should not
violate the observation that pure Pd does not supercon-
duct and also that irradiated Pd, which has a reduced spin
susceptibility, has a T, of 3 K. All these data are to
be kept in mind in what follows.

First, let us go back to Fig. 6. The Pd structure found
in this figure is smaller than that observed in the experi-
ment of Dumoulin et al. , indicating that A,z ——0. 1,
ksF ——0.0 or A,&

——0.25, A.sF
——0. 15 with p*=0.1 is not

consistent with experiment and a value of the effective
A.z —A.sF larger than 0.1 is needed. After a considerable
amount of trial and error we arrived at the model shown
in Fig. 7(a). It has A.~ ——0.275, XsF ——0. 125, and @*=0.15
with a gap Q& ——0.59 meV. The amount of Pd structure
seen is now in agreement with experiment. Also,
k&+A, sF

——0.4 is in agreement with the de Haas —van Al-
fen data. The net interaction in Pd measured by
A,z —A.sF —p =0 is consistent with no superconductivity
for pure Pd. Further, A.z ——0.275 is not so far off the
theoretical value of 0.41 considering the considerable un-
certainties in such calculated values. Finally, if we as-
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(in meV ') for a (co)F(co) of Pd
(Fig. 4) (a) with A, z ——0.275, P(co) given by the cancellation
model of Fig. 4 with ksF ——0. 125, and p*=0.15. The induced
gap is 0.63 meV (I & ——1.6 meV). (b) has A.~ ——0.3, A,sF ——0. 1,
and a gap Q~ ——0.55 meV (I ~ ——1.2 meV). It is included for
comparison and shows structure in the phonon-paramagnon re-
gion which is larger than found experimentally.

sume that k& of irradiated Pd is about the same as in pure
Pd, but that the spin fluctuations have been suppressed, a
net interaction of kz —p =0.125 is not inconsistent with
a critical temperature of 3 K.

The final model shown, for comparison in Fig. 7(b), is
for A,& ——0.3, ksF ——0. 1, and a gap 0&——0.52 meV. In this
case k~ —A,sF

——0.2, which is larger than the value of 0.15
considered in the previous example. The overall Pd struc-
ture is now a little too large to agree with experiment indi-
cating that A.& —ksF cannot be very different from 0.15 if
we are to get agreement with tunneling unless of course,
by accident, there was a more complete cancellation of
a Fz(co) against P~(co) than contemplated here. Finally,
if no paramagnons are included within the phonon region
the tunneling structure requires that k& ~0.2. This would
lead to a violation of the de Haas —van Alphen data, in-
crease seriously the discrepancy with the calculated
theoretical value of A,&, and would provide no explanation
of the irradiated Pd results.

V. CONCLUSIONS

We have studied several aspects of the superconducting
properties of a proximity sandwich in which paramagnons
of low energies are assumed to exit on the normal side.
Our analysis of the critical temperature of the junction
T, indicates that it is strongly affected by the paramag-
nons and that for a paramagnon mass renormalization pa-
rameter XsF——0.7, its value drops towards zero with in-
creasing barrier parameter I, much more rapidly than in
the corresponding case of zero net interaction on the nor-
mal side. The pattern of behavior obtained cannot be en-
tirely simulated by a redefinition of the unknown McMil-
lan proximity parameter I ~. Further, from consideration
of the functional derivative of T, with paramagnon
spectral density Pz(co) it is concluded that paramagnons
are increasingly more effective in depressing T, as their
frequency A, sF is lowered. This behavior is in contrast to
the case of phonons for which an optimum frequency ex-
ists around 7k&T, for enhancement of the critical tem-
perature.

Consideration of the normal side gap edge 0& in a sim-
ple model (which is found to be qualitatively correct) indi-
cates that 0& is also very much affected by the presence
of paramagnons on the normal side and that data on 0&
cannot be interpreted without explicit inclusion of
paramagnons.

Solutions of a set of four coupled Eliashberg equations
are generated on the real axis for several cases, but mainly
two models are considered. The first, which may be fairly
realistic in the case of TiBe2, takes the electron paramag-
non mass renormalization parameter XsF——0.5 and the
characteristic energy QsF ——2.5 meV. In the second model
A, sF —-0.1 and QsF-=25 meV, parameters that are some-
time quoted for Pd. In addition, some variations of these
parameters are considered when this is found useful.

From accurate solutions of the real axis Eliashberg
equations, tunneling characteristics are calculated for the
normal side of the sandwich. Large characteristic struc-
tures were found in the second derivative of voltage ( V)
with current (I) reflecting the paramagnon spectral densi-
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ty for ksF ——0.5 and cosF ——2.5 meV and from which infor-
mation can be derived on the shape and strength of the
spectral function. Because of the low paramagnon energy
characteristic of TiBe2, no phonons were considered on
the normal side of the sandwich in the above calculations
since they would not overlap. Next we studied the inter-
play of phonons with paramagnons where they possess
similar characteristic energies, as is likely to be the case in
Pd. It was found that some cancellation of paramagnon
and phonon structure in d V/dI can occur when the
spectra have very similar shapes. This was first em-
phasized by Mitrovic. Complete cancellation, however,
requires a frequency by frequency matching of the two
distributions.

Turning more specifically to the recent data of Dumou-
lin et al. on Pd, several calculations were done to try to
understand these data. We find that a very important
idea in the interpretation of the data is the realization that
the calculated electron-phonon spectral density of Pinski
et al. ' ' for Pd does not show a large distinct peak at the
longitudinal phonon energy. Instead, its prominent peak
is around 17 meV. This implies that the usual
phenomenological prescription for deducing A.~ from the
high-energy peak would importantly underestimate its
value while the 17-meV peak cannot be used because it is
far from Lorentzian in shape. These effects were dis-
cussed in detail by Zarate and Carbotte for Cu-Pb junc-
tions. The reader is referred to their paper for more ex-
planation.

In addition to the phonons, if paramagnons exist in Pd
in a significant amount they could reduce the phonon
structure. In fact a triangular shape for P(co) with a peak
around the Debye energy which may not be unrealistic for
Pd does lead to significant cancellation. With such a
model we are able to get reasonable agreement with the
amount of structure observed in tunneling assuming
k~ ——0.275, A.sF——0.125, and p*=0.15. This implies that
there would be no net attraction in Pd as measured by
A& —XsF —p* =0. This model is consistent with (a) no su-
perconductivity in pure palladium, (b) the de Haas —van
Alphen data indicating k&+AsF=-0. 4, (c) the theoretical
estimate that A,~ —-0.4, and (d) the observation of T, =-3
K for irradiated Pd, assuming that the major change
brought about by irradiation is the suppression of the
paramagnons. If instead of the above we chose A,+ ——0.3
and XsF——0. 1, so that k~ —ksF-=0. 2 rather than 0.15, the
predicted tunneling structure from Pd would be too large
while A,~ ——0.25 and ksF ——0. 15 give too little. This indi-
cates that X& —A.sF in Pd cannot be very different from
0.15 unless of course more cancellation occurs between
a~F and P&(co) than anticipated here, something which is
possible but unlikely.
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of this into (A4) for hs(n) gives after some rearrangement

APPENDIX: FUNCTIONAL DERIVATIVE
'6T, /6P (,co )

In this appendix we derive a simple, approximate, but
analytic expression for the functional derivative of the
sandwich critical temperature with respect to the normal
state paramagnon spectral density. In Eqs. (3) and (4) for
the normal side pairing energy and renormalization we
add to P(co) a delta function contribution at co=GO with
infinitesimal weight e. We treat this addition exactly but
use, for the remaining part A,z(m, n), the approximation
that it is a constant for

I
co„ I, I

co
I

both less than some
cutoff frequency (coD) and zero otherwise. If further, for
simplicity, we take A,~ —p& ——0, i.e., no net interaction on
the normal side, we get
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Noting that in the last term on the right-hand side of (A7) we can replace 6 s(m) by b. s to lowest order in e and then
substitution into (AS), yields the eigenvalue equation
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Substitution of (A3) into this last equation and working to first order in ef„yields after some algebra
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Ignoring the e correction in (A9) yields the critical temperature of the sandwich T, before augmentation of the paramag-
non spectral density which is given some simple algebra by the equation
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where g is a digamma function I =I s+I z and I s ——I s/(1+As ), I z ——I ~/(1+A~). When e is left in Eq. (A9) the
first term on the right-hand side also takes on the form (Al 1) but now with T, = T, +5T„which means that we get
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T,'~a (np) r„r,(1+ as )
6T, =

1 —( I s /2rrk~ T, )Q'(1 /2mk~ T, + —,
'

)

so that (Qp ——II /pm'T, )

(A13)

5T,
5P (Dp)

~N ~S 1

m(1+k+) 1 —(I /2mk T, }g'(I /2mk T, + —,
'

)

2QO 1 1

„Qp+(2n 2m) —rr (T, )
I
2n —1

I
(

I
2n —1

I
+I /n T, )

I
2m —1

I
(

I
2m —1

I
+ I /~T, )

sgn[(2m —1)(2n —1)]
I

2n —1
I

(
I
2n —1

I + I /n. T, )
(A14)

The sums in (A14) can be done numerically for a given value of Qp and I /rrT, with T,:T, the sandwich —c—ritical
temperature.
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