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He- He mixture as a weak link for Josephson effects in superfluid 3He
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We discuss the Josephson current for a special weak-link arrangement in superfluid 'He-B. The
weak link is made out of a He- He mixture which separates two regions of pure 'He. For large
separations (D ))g ) we find Josephson's current-phase relation I =nv, sing, and calculate the crit-
ical velocity v, .
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FIG. 1. Two types of weak-link structures.

A solution of liquid He in He separates at low tem-
peratures into two phases, an essentially pure He liquid
and a He-rich mixture with about 6%%uo dissolved He.
Pure He is a Fermi liquid which exhibits p-wave super-
fluidity below 1 mK (at vapor pressure). The He atoms
in the mixture form a dilute Fermi liquid whose excitation
spectrum is strongly influenced by the coupling to the
background of superfluid He. The dilute Fermi liquid
does not become superfluid down to the lowest achieved
temperatures, which are about 0.2 mK for cooling the
mixture. Hence, superfluid He in contact with the mix-
ture is the equivalent to the well-studied system of a su-
perconductor in contact with a normal metal (N-S con-
tact). Because of this analogy one expects to find in the
coupled system of two Fermi liquids, familiar effects
from superconductivity such as the induced weak super-
fluidity in the normal liquid (proximity effect). Another
somewhat more complicated arrangement is an S-N-S
junction. Of special interest here are Josephson effects,
where the Josephson coupling is provided by pair tunnel-
ing through the normal layer.

In the present paper we discuss some aspects of the
Josephson coupling of two vessels filled with superfluid
He which are weakly linked by a bridge of He-"He mix-

ture. Two realizations of such systems are sketched in
Fig. 1. In Fig. 1(a) the weak link between the two super-
fluids is provided by pores filled with the He- He mix-

ture. In Fig. 1(b) superfluid He floats on top of mixture,
and is separated into two halves by a blade which slightly
dips into the mixture and blocks any direct connection be-
tween the two halves. If the He barrier were absent, one
can, in principle, perform tunneling experiments by creat-
ing a weak link between two baths of He. However, in
this case the diameter of the pore connecting the two
baths must be less than the Bardeen-Cooper-Schrieffer
(BCS) coherence length go

——hv /F2 kyar&T, so that the su-
perfluid state is destroyed inside the pore. The fabrication
of such a small pore is not a simple matter. On the other
hand, when the pores are filled by He- He mixture as
shown in Fig. 1(a), we shall show that the requirement for
a significant critical current is that the thickness D of the
barrier should not exceed a few times the thermal coher-
ence length of the mixture, gM ——A'vF I2~ktt T, where vF is
the Fermi velocity of the mixture. The radius r of the
pore is limited only by the condition that the pore will
remain filled. If the surface tension between the He and
the mixture were the only factor, the condition is simply
r (D, obtained by a minimization of the interface area.
By going to low temperature ( T « T, ), gM can be made
much larger than go, so that the requirement on the pore
dimensions r and D is much less stringent.

Our main goal is a calculation of the critical current of
the envisaged weak links. We first consider in Sec. II the
idealized arrangement of two half spaces of superfluid
He separated by a thin planar film of He- He mixture of

constant thickness D. We calculate the dependence of the
critical current density on the thickness D. In Sec. III we
discuss qualitatively the generalizations of these results to
more realistic situations, such as thin pores filled with the
mixture, and summarize our results.

II. THE S-N-S INUNCTION

An idealized S-N-S junction is sketched in Fig. 2. S
stands for superfluid He; we assume it to be in its 8
phase represented by the Balian-Werthammer state. N
stands for the He- He mixture which we describe by a
normal Fermi liquid. The He background remains in its
equilibrium state and is of no interest in the present con-
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FIG. 2. S-N-S sandwich geometry.
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FIG. 3. Classical trajectories of quasiparticles at an interface.

text. The pairing interaction in the mixture is assumed to
be small and will be neglected ( T, '"'""'=0). The thick-
ness D of the N region shall be a few times the thermal
coherence length gM of the mixture. At the temperatures
of interest, the quasiparticle mean free path exceeds gM by
more than an order of magnitude, and we can neglect col-
lision effects and work in the "clean limit" ( i ~~D).

The critical current of a clean S-N-S junction with con-
ventional superconductors has been the subject of various
theoretical studies (see Likharev's review, ' Sec. III D, for a
detailed discussion). We can profit appreciably from the
know-how developed in the theory of superconductivity.
However, one should point out two complications, which
are particular to an S-N-S contact in superfluid He, and
are consequences of its unconventional type of pairing.
First, the triplet character of the order parameter implies
the existence of more than one "phase. " In addition to
the conventional phase whose variation across the bridge
leads to a mass supercurrent through the junction, one has
"magnetic phases. " They are described by a three-
dimensional (3D) rotation matrix R; with, e.g. , the rota-
tion axis and angle as degrees of freedom. The second
complication originates from the anisotropic (p-wave) na-
ture of the order parameter in He. Reflections of quasi-
particles at the N-S interfaces cause depairing effects
which lead to distortions of the order parameter within a
distance from the interface of the order of the coherence
length go (=fiuF/2~k' T, ). These depairing effects must
be included in a calculation of Josephson effects in our S-
N-S junction. The magnitude of the depairing effects de-
pends critically on the reflection and transmission proba-
bilities for quasiparticles at the N-S interfaces. Following
Ref. 3, we assume a perfect interface without roughness
and a step-function potential at the interface. The height
of the potential step is determined by the differences in
Fermi energies in pure and diluted He. The reflection
probability R is then given by

R =(v~„—uz~) /(u~ +vq„)

of scattering processes at the interface is sketched in Fig.
3.

We will calculate the Josephson supercurrent by solving
the quasiclassical differential equations (Eilenberger's
equations) for our S-N-S system:

[iE r3 +(p,x ),g(p, x;E„)]+iv (x)B„g(p,x;c,„)=0, (2a)

[g(p,x;e„)] = rr— (2b)

We adopt the notation of Ref. 4. g and 6 are 4~4 ma-
trices which represent the quasiclassical propagator and
the order-parameter field. c.„ is the Matsubara frequency
[E„=(2n —1)AT], and u(x) is the x component of the
velocity of a quasiparticle moving in direction p (p is a
unit vector). In terms of the Fermi velocities in pure ( vF)
and diluted ( uF ) He we have

uFp. p„ f« ~x
~

&D/2,
u(x)= .

vF p.p„ for
~

x
~

&D/2

b, (p, )~x.5+(p) for x~+ oo,

(p) for x~ —ao .
(3)

Elsewhere the order parameter has to be calculated self-
consistently from the solution of Eilenberger's equations.
At the two interfaces the quasiclassical propagators are, in

general, discontinuous. The jumps in g are determined by
the boundary conditions of Zaitsev and Kieselmann:

(p„ is the unit vector in the x direction). The phase and
spin orientation of the triplet order parameter shall be
fixed at x =+~.

2++d =0, (4a)

where v~„and u2„are the velocity components (perpendic-
ular to the interface) of the incident and transmitted
quasiparticles. The reflection probability is unity for
quasiparticles hitting the interface at glancing angles
below the critical angle of total reflection. The kinematics

~ 1 —R
s+-+ 1+R --'-+ 2-+S,S 7T ——d (4b)

Here, the indices + refer to the two sides of an interface,
and
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—sice + slee

d+ =g+(p+ ~xi'En ) —g+(p+»Iisn )

s+ ——g+ (p+"',xi, c.„)+g+ (p+, xi, E„)

are the differences and sums of propagators along incom-
ing (p+) reflected (p+"') momentum directions. xi are
coordinates of the interfaces (xi ———+D/2), and R is the
(momentum dependent) reflection coefficient. Our nota-
tion for the four momentum directions is explained in
Fig. 4.

Having solved Eqs. (2a) and (2b) with the boundary
conditions (3), (4a), and (4b), one can determine the super-
current densities from

dipj =2NM(EF) T g v g(p, x;e„) (particle current)
4~

~n

(5)
and

dipj""=N~(EF) TgU; (g(p, x;E„))4~
n

(spin current) . (6)

g and g are the scalar and spin components of the Nambu
matrix g:

g+g.o (f + f o)ioy.
ioy(f + f'o') g'oyg ooy'' (7)

In Eqs. (5) and (6) NM(EF) denotes the quasiparticle den-
sity of states in the mixture, and v is the velocity of an
excitation (v =UF p). Because of current conservation
the Josephson currents can be calculated at an arbitrary
point x within the layer of He- He mixture.

It is no major problem to solve the quasiclassical equa-
tions for our S-N-S junction self-consistently on a com-
puter and to calculate the current-phase relation for this
system. Such a calculation has been performed successful-
ly for an N-S junction of diluted and pure He. Here we

l

in'l erface
FIG. 4. The four momentum directions which occur in the

boundary condition at a perfect interface.

prefer a more qualitative approach, because the highly
simplified geometry of our model S-N-S junction does not
warrant an involved calculation. We will take advantage
of available numerical solutions for a contact between a
saturated He- He mixture and pure He (N-S junction),
and will construct from them the solution for the S-N-S
junction. This is possible as long as the width D of the N
layer is large compared to the thermal coherence length
g~ ——A'UF /(2~k& T). In this case we can approximate the
solution of the S-N-S problem in zeroth order by a super-
position of two N-S solutions with interfaces at +D/2.
The Josephson coupling first appears in next order [order
exp( —D/gM)], and can be calculated by perturbation
theory. In the following we present the details of this ap-
proach.

We are interested in calculating the quasiclassical prop-
agator g(p, x;s„) in the region D/2 &x—&D/2 of dilut-
ed He. The order parameter b, (p,x) vanishes in this re-
gion, and Eilenberger's equation (2a) can be solved easily.
This differential equation has 16 independent fundamen-
tal solutions which can be characterized by their depen-
dence on x. One finds eight constant solutions, go —g7,
the most important one is the normal-state propagator

go ———im. sgn(E„)r3 .

It is unnecessary for our purpose to know the explicit
form of the other seven constant solutions. We just note
that the differential equation (2a) implies that

[g go]=0

for all constant solutions (i =0—7). The other eight fun-
damental solutions exhibit an exponential x dependence.
There are four solutions (gs —g~~ ) which decay exponen-
tially in the positive x direction, and four solutions
(g &2

—g» ) with exponential decay in the negative x direc-
tion:

gs . .
g~~ ——[b,; s+gn( „Ue) br3;]exp( —x /g'„),

g~2
. . g» ——[b,; —sgn(v„E„)r3b, ;]exp(+x/g„) .

Here, g„=
l

U /2e„
l

is an energy-dependent coherence
length and U„ the x component of v . The matrix 6;
stands for four conveniently chosen independent order-
parameter matrices (one singlet, three triplet). Some alge-
braic relations which will be useful for the following cal-
culations are

[gp, g; ] =0 for i = 8 —15,

g;g~ ——0 for i,j =8—11 or i,j =12—15 .

The physical propagator in the N region is a specific
linear combination of the 16 basic solutions. It is norrnal-
ized according to Eq. (2b) and matches the physical prop-
agator in the two S regions via the boundary conditions
(4a) and (4b).

Our ansatz for this solution is

g(P» E, ) =gp(E„)+gj ft(p;e„)exp[ —(x +D/2)/g„]+g„sh, (p;E„)exp[+(x —D 2/) g/„] +5g(p; E) .
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Here go is the bulk normal-state solution, and g~,~, and

g„~h, are given by the amplitude of the exponential tails of
the exact solutions of two N-S problems with the S region
on the left side (x & D/—2) and on the right side
(x &D/2), respectively. 5g(p;E„) is a spatially constant
correction of order exp( —D/g„). Near x =0 the above
ansatz keeps correctly the terms of order 1, exp( —D/2g„)
and exp( —D/g„). The first neglected terms are of the or-
der exp( —3D/2$n). The leading terms go, gi,r„and
g„~h, carry no supercurrent; all the information on the
Josephson current is contained in the correction term 5g.
This term can be calculated conveniently from the nor-
malization condition (2b) expanded through order
exp( —D/gn). One finds

[gt,r„g,h, jexp( —D/4. )+ [5g goj =0

5g(p;E„)=
[ I

e.
I
+«'+

I
~ I')'"]'

X sgnv„[b, +,b, ]exp( D—/g„)

+odd terms in E„. (12)

~e have set, for simplicity
~

b, + ~

=
~

b,
t

=
~

6
~

. A
phase difference P in the order parameter
6+ exp——(i P)h or equivalently,

6+ ——exp(if'/2)A exp( itt—tr3/2)

leads to

2m.
~

b,
~

' sing

[ I .I+( '. + I
~ I')'"]'

and, using [5g,go] =0, our general result for 5g:

5g(p ~en ) Z3[gieft(P~En )~fright(p' ~en) j2'
X sgnv„r3 exp( D /h „—)

+odd terms in c„, (13)

X exp( D/2g„) . — (10)

gleft(Pi En )
I
E.

I +«'+
I
~-

I

')'"

X [b. +sgn(E„v„)~rh ], (1 la)

This useful formula describes the induced weak super-
fluidity in the N layer in terms of the exponential tails of
an N-S solution. It is instructive to study the conse-
quences of Eq. (10) in the case of a piecewise constant
order-parameter field as shown in Fig. 5(b), and reflection
factor R =0. This simplified version of an S-N-S junc-
tion has been studied extensively. It admits an easy ana-
lytic solution for g. %'e find by solving the N-S contact
the amplitudes of the exponential tails in the N regions:

and consequently to a supercurrent proportional to sing
with the amplitude

4NM(Eg)(vF )J= exp( D /gM) sint)) —. '

I ~T+ [(~T)'+
~

~
~

']'"j'D

(14)

The result (14) is obtained from Eqs. (13) and (5) in the
limit D/gM »1. It agrees with the corresponding formu-
la for S-N-S contacts in superconductivity, which reflects
the similarity of He-B and singlet superconductors in
their nonmagnetic properties.

Next we consider magnetic Josephson currents. They
are caused by a relative rotation of the vector order pa-
rameter 6,+ and 5 . In Nambu-matrix notation the rota-
tion is described by

l I=exp ——O.S ~3 5 exp + —8 S z.
2 2 --3 (15)

frigh(P~En ) =
I
&.

I
+«'+ I ~+ I

')'"

X [b,+ —sgn(En v„)r36+] . (1 lb)

The vector 8=en specifies the rotation axis n and angle
0. S is the spin matrix in Nambu notation:

a. 0
S= 0 —cTy KJcTy

Formula (10) then gives 5g in terms of the order-
parameter matrices on the + and —sides:

Insertion of (15) into Eq. (12), and some simple algebraic
manipulations, lead to

5g(p;s„)= z, &
sgnv„[sin9(nX 6 ) X 6* +(1—cos8)(n. h )n X6*].r3S

[ I e.
I +«'+

I
~

)

')'"]

Xexp( D/g„)+odd term—s in E„. (16)

Using Eq. (6), one can calculate the spin-Josephson current in the limit D/gM »1:
2N~(EF)(vF )

Jax = exp( D /gM ) I sin9[n X itt, (p„)]—X4* (p„)
I ~T + [(~T)'+

~

6
~

']'~'
j
'D

+(1—cosO)n 6 (p„)nX6*(p„)j (17)
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We note that the current depends only on the pairing am-
plitude for quasiparticles moving in the x direction, i.e.,
perpendicular to the interfaces. This simple result is a
consequence of our limit D &&gM. Equation (17) can also
be written directly in terms of 6+(p ) and 6 (p„):

It &p)l
-=ft &p&f

~ SP111Jax—
2NM ( EF ) ( vF ) . . . , exp( —D/ M

t T+[(»'+
I
~ I'1'"I'

x«[&+(p )x&*(p )] (18)
-0/2 0/2

It is obvious from Eq. (18) that one obtains maximum
Josephson-spin current if the b, vectors ("d" vectors in
Leggett's notation) of the two 'He baths are orthogonal
(for momentum in the x direction). It is useful to intro-
duce a critical velocity U, defined by

(a)
IZI

Jrnax =nUc (19)

Here, n is the density of He particles in the mixture.
From Eq. (14) we find, using NM(FF)(vF ) = , nlm—*:

6R
—0/2 0/2

exp( —DAM ) («r T «
I
&

l
) .

6'
m*D (20)

The maximum spin current, Eq. (18), is given in terms of
U, by the suggestive formula

FIG. 5. Order parameter for an S-N-S sandwich geometry;
(a) shows the order parameter as calculated in Ref. 3, and (b) the
step-function approximation.

~ SPInJmax = n~c
2

(21)
v, = Z exp( —D/g~)

6A

m D
Our results so far are obtained for an undistorted step-
function order parameter as shown in Fig. 5(b). In reality,
the order-parameter field will be distorted by depairing ef-
fects at the interface and by the proximity effect between
He and the mixture. These effects have been included in

a recent numerical calculation of the order parameter near
the interface between He and the mixture. The result is
shown in Fig. 5(a). It is important for our calculation
that this deformation of the order parameter does not af-
fect the matrix structure of the amplitudes gt, r, (p„;e„)
and g„sh, (p„;E„). This is a consequence of the x indepen-
dence of the direction of the vector order parameter
b,(p„,x). Only the magnitude

I
b, (p„,x)

I
shows spatial

dependences. Equations (2a) and (2b) then imply that the
exact solutions g~, t, and g sh, differ from the results (1 la)
and (1 lb) simply by a renormalization factor Z, which
fully takes into account the order-parameter distortions
near the interfaces. Z can be obtained by solving Eqs.
(2a) and (2b) numerically. The renormalization factor has
already been calculated by Ashauer as a by-product of
her self-consistent calculation of the order parameter. We
use Ashauer's results for the temperature dependence of Z
which is shown in Fig. 6. Inclusion of the order-
parameter distortion leads to a reduction of the Josephson
currents by a factor Z, since g~,f, and g„g]„each carry a
factor Z in Eq. (10). Hence, we find the critical velocity:

f~k, T+[(~k,T)'+
I
4 I']'"I'

1.0

0.5

0.2 O. t

FIG. 6. Temperature dependence of the reduction factor Z
of the critical velocity in the weak link.

For clarity we have included fi and kz in formula (22). In
terms of U, the Josephson current density and spin current
density across the layer of normal fluid are given by
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j =nv, si nP=nv, 1m[4+(p ).b*(p„)/
I
&

I ],

j,~,„=n U—, Re[6,+(p„)X h* (p„)/
I
6

I ] .sPin 2
c

(23a)

(23b)
He

~ ~ ~
~ ~

R
'

~ ~

o

3He
0

6+ and 6 are the asymptotic order parameters faraway
from the junction. The vectors represented by boldface in
(23b) refer to spin directions, and

I

6
I

is the bulk energy
gap in the B phase. Equations (22), (23a) and (23b) are
our final results for the Josephson currents in an S-N-S
junction between He and a saturated He- He mixture.

FIG. 7. Sketch of a classical trajectory in a weak link with

specular walls.

III. DISCUSSION

Our calculations of the Josephson current in superfluid
He were done for a very simple geometry, namely an S-

N-S sandwich where a planar interlayer of He- He mix-
ture separates two baths of pure He. For a thick inter-
layer (D »gM) we find Josephson's current-phase rela-
tions with a critical current density of the order
(6nh'/m *D)exp( D/gM ). —[See Eqs. (22), (23a), and
(23b).]

We will discuss in this section the relevance of these re-
sults for more realistic weak-link geometries like narrow
pores filled with He- He mixture. The most important
additional effect which needs to be incorporated for such

more complicated geometries is quasiparticle scattering
off the walls in the constrictions.

The easiest case is specular walls. Here the appropriate
boundary condition is the continuity of g(p, R;e„) along
any classical trajectory R(s). A typical classical orbit
R(s) is sketched in Fig. 7. p(s) is the direction of the
velocity at R(s). One finds from the general quasiclassi-
cal equations that superfluidity penetrates into the mix-
ture along such classical trajectories. This process is
described by Eq. (2a) if x is interpreted as the spatial vari-
able along the trajectory. The solution of the quasiclassi-
cal equations on a given trajectory can be found by the
methods of Sec. II. We obtain, e.g. , for the interference
term 5g, in generalization of Eq. (10),

i sgnc„ M
&3Igi.rt(pI Ri;E. ),g.,ht(p„R, ;e. )I exp[ —L(p)/I»F e. I]2~

(24)

j(R)=p nv. Im[h+(p. ) b —(pI )/I h
I ] (25)

where

I rrk~T+ [(mk~T)'+
I

6
I

']'~-'I' (26)

The unit vectors pi „' are the directions of the minimal
trajectory at the left and right interfaces (see Fig. 8). A
comparison with our results for a sandwich geometry
[Eqs. (22) and (23a)J shows that we simply have to replace
the thickness D by the minimal length L' ', and the nor-

Here, L (p) is the length of the trajectory measured from
one. interface to the other, (p~, RI) and (p„,R„) are the
directions and positions of the trajectory at its intersec-
tions with the left and right interfaces, respectively, and

g~, rt (g sh, ) describe, as in Sec. II, the induced superfluidi-

ty in the mixture at the respective interface.
Because of the exponential L dependence in Eq. (24) the

main contribution to the Josephson current at point R
comes from trajectories through R with length L near the
minimal length L' '. Figure 8 shows typical minimal tra-
jectories for the "razor-blade junction" in Fig. 1(b). For
L ' ' »gM we can expand the argument of the exponential
around the direction p' ' of the minimal trajectory, and
evaluate the supercurrent from formula (5). We find

f (d Q~/4m )exp[ L(p)/gM ]-6=
f (dQ&/4n)exp[ L' /I (p'p )gM I

]—
(27)

~ g ~

~ g I

X p

~ ~ ~
~ ~ ~ ~ ~

He

~ ~ ~

— He ~4
~ ~

FIG. 8. Minimal trajectory (dashed line) through point R.(o)
pi and p „are directions of the minimal trajectory at the in-
terfaces between bulk He and the mixture.

mal (p„) to the interlayer by the path directions p
' I, p I ',

p,' '. In addition, the renormalization factor Z will be
modified. It describes the effects of the order-parameter
distortions near the interfaces which will, in general, de-
pend on the specific geometry of the junction. The factor
G is a dimensionless quantity of order unity. It carries in-
formation on the classical trajectories in the link, and is
defined by
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A straight pore, for example, yields G = 1, independent of
the shape of its cross section.

We finally comment on the effects of rough walls on
the Josephson current. Roughness reduces the critical
current in two ways. Firstly, backward scattering of
quasiparticles will, in general, increase the average length
of a trajectory in the weak link, and hence reduce the fac-
tor exp( —L/gM). Secondly, because of anisotropic pair-
ing, we have depairing effects at rough walls which reduce
the induced superfluidity in the mixture, and consequently
also the critical current. A quantitative analysis of the ef-
fects of roughness probably needs a numerical solution of
the quasiclassical equations. Numerical studies have been
done successfully for superfluid He-8 near rough sur-
faces. ' Similar calculations for a Josephson junction are
feasible but certainly outside the scope of this paper. A
simple lower bound for the critical current may be ob-
tained by assuming that any scattering of a quasiparticle
at rough walls destroys completely its memory for super-
fluid coherence. In this model, only trajectories which do
not hit a wall contribute to the Josephson coupling. For-
mally, this effect can be described by a modified geometry

factor G which is obtained by setting in Eq. (27) the path
length L (p) = oo whenever the path hits a wall. This fac-
tor G depends on the particular geometry of the weak
link. For example, G =0 in the razor-blade geometry of
Fig. 1(b). The reason is that all classical trajectories
which link the two superfluid regions must hit the bottom
of the container.
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