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Fractal multilayered superconductors
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Artificially prepared multilayered films with periodic and fractal structure, consisting of amor-
phous superconducting and normal-metal layers, have been made by magnetron sputtering. The
structure has been confirmed directly by transmission electron micrographs of cross sections of the
multilayers. The observed upper parallel critical field of the superconducting transition is related

to the layering geometry.

It is of general interest to discover how familiar physical
properties are modified on fractals, in part because of the
numerous examples of fractal structures that exist in na-
ture, and also because of their possible connections to in-
homogeneous materials more generally. Fractals also,
with their fractional dimension, provide an opportunity to
study nature in noninteger dimensions. For these reasons,
the literature on the growth and properties of fractals is
rapidly growing. At the same time there is currently great
interest in artificially structured materials, in which
prescribed structures on a near-atomic scale can be pro-
duced using advanced vapor deposition and lithographic
techniques. Artifically structured periodic superlattices
and multilayers, for example, have been studied extensive-
ly over the past years.! Also, more recently, work has be-
gun on artificially structured quasiperiodic multilayers as
a way of understanding aperiodic structures.?? Two-
dimensional fractal networks of superconducting material
have also been made using advanced lithography,* as well
as percolative films that have fractal structure.® Here, we
report the use of recent advances in materials perparation
in order to make artificially structured multilayers with a
variety of structures, and in particular fractal structures,
in order to study physical phenomena in novel geometries.

Fractals are characterized by a self-similar structure,
i.e., a structure that repeats on all length scales.® Any
fractal structure in nature, however, has a finite number of
scales over which this structure persists. On the other
hand, physical phenomena have their own relevant length
scales. It is important therefore to match these physical
length scales to the range of the length scales in the model
fractal structure.

Here, in particular, we investigate superconducting
properties of multilayers consisting of alternating super-
conducting and normal layers. We have chosen to keep
the superconducting layers at a constant thickness and
vary the normal-metal thickness within the multilayer.
The way in which the normal-metal thickness is varied
determines a one-dimensional layering lattice, whose sites
are occupied by the superconducting layers. Using com-
puter controlled deposition, the possibilities are very rich.
The types of lattices that we have actually made are shown
in Fig. 1. They include periodic, “doubly” periodic, ran-
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dom, and fractal. Given these structures, one can then use
the temperature-dependent superconducting coherence
length to probe the structures. The thicknesses of the lay-
ers varied from 10 to 1000 A, which was determined by
consideration of the scales that we could “see” in our mea-
surements as the coherence length was varied by changing
the temperature.

Our fractal lattices are all of the same type, created by a
cascade procedure similar to that for the triadic Cantor
dust.® We start with an initiator segment and then cut out
a middle portion creating two segments, each being r times
the length of the original initiator. This process is then
continued on each remaining segment. At each stage of
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FIG. 1. Superconducting layers in various one-dimensional
geometries considered here.
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the process the length of the segment is reduced by a fac-
tor r (+ for the triadic set) and a gap is formed of length
1-2r. By varying r (0<r< %) we can vary the
Hausdorff-Besicovitch  (fractal) dimension,® D =In2/
In(1/r), and can then achieve any dimension between O
and 1. Our layered fractal samples are thus completely
characterized by the fractal dimension of the layering D,
the number of scales of the fractal structure in the sample,
and the thickness of the individual superconducting layers,
So0.

For our system we used amorphous Mo, —,Ge, of two
different compositions, x ~20%, with bulk 7.~7.5 K, for
the superconducting layers and x —~60%, with bulk 7, <1
K, for the “normal” layers. These films were magnetron
cosputtered onto a-Si3Ny substrates, with a thin a-Ge un-
derlayer, in order to grow the films on an appropriate
amorphous base, and also a protective overlayer of a-Ge.
Substrates were on a continually rotating table in order to
achieve uniform coverage and the deposition rates are less
than a monolayer per revolution. The layers of the two
compositions were put down alternately via computer con-
trol of the target shutter. In this way we could make mul-
tilayers in any prescribed layering geometry.

Single-layer a-(Mo-Ge) films of various compositions
and thicknesses prepared in this fashion have been studied
much in the past’ and have been shown on the basis of
transport properties to be homogeneous down to 10 A. It
has also been found that the 7. in these single films is
depressed substantially from the bulk value as the thick-
ness of the film is reduced. This depression has been attri-
buted to localization and interaction effects.” However, in
a multilayer structure it is not clear what the 7, of the su-
perconducting layers should be, as we will discuss later.

A series of samples with periodic and fractal layering
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was made. We confirmed the structures by cross-sectional
transmission electron microscopy (TEM). The cross sec-
tions were prepared by ultramicrotomy?® (i.e., cutting the
sample with a microtome blade) and by the conventional
mechanical polishing and ion milling technique.® Figure 2
shows the micrographs of cross sections of a periodically
layered sample and a fractal one, done by each technique.

The cross-sectioned periodic sample has 180-A layers.
The darker regions are Mo-rich (superconducting) layers,
while the lighter ones are Ge-rich (normal). Both layers
are amorphous, as expected from the deposition condi-
tions, and the contrast between the layers is mass contrast.
A small-angle scattering (SAS) pattern from the TEM
showed sharp spots due to the bilayer periodicity. The
fractal sample shown in Fig. 2 has a layering dimension of
0.88. The self-similar structure can be seen on five scales
in this sample. The Mo-rich layers here are 100 A thick
and the Ge-rich layers vary in thickness between 9 and
1000 A. Note that the interfaces in both samples are
sharp and smooth. The deposition rate appears well con-
trolled and the thickness is very uniform in lateral extent.
Even the thinnest Ge-rich layer (only 9 A) can be seen
quite clearly through the few-hundred-angstrom-thick sec-
tion.

We note that the sections prepared by ultramicrotomy
offer large viewing areas that extend from top to bottom of
the film (in both cases here 4000~5000 A) and by viewing
several sections cut at one time, one can examine the film
structure even more extensively to determine its homo-
geneity. This technique does, however, introduce some ar-
tifacts such as the obvious compression ““wrinkles” perpen-
dicular to the layers; see Ref. 7 for more discussion of this
technique.

X-ray diffraction was also performed on selected sam-

FIG. 2. TEM micrographs of cross sections of a periodic (on the left) and a fractal multilayer (on the right), each prepared in two
ways. The top micrographs (a) and (b), are of sections prepared by the mechanical polishing and ion milling technique and were done
by Robert Byers at Stanford. The bottom sections (c) and (d) were prepared by ultramicrotomy performed by Ann Marshall at the
Stanford Center for Material Research. The interlayer spacing for the periodic multilayer in (a) and (c) is 360 A. The smallest Ge-

rich layers of the fractal multilayer in (b) and (d) are 9 A thick.
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ples. Since these samples are made up of amorphous lay-
ers, only the low-angle data should show features due to
the layering. Figure 3 shows the low-angle x-ray
diffraction data of representative periodic and fractal sam-
ples. The periodic sample exhibits low-angle reflections
corresponding to the layer repeat distance s; s =40 A in
this sample. From the width of the low-angle peaks one
can estimate the rms deviation, ds/s ~d(260)/26, to be less
than 5%. However, this system is not ideal for x-ray study
because of the relatively small difference of the scattering
power between the two layers, the intensity of the peaks
being proportional to the square of this difference.

A similar x-ray diffraction scan for a triadic-Cantor-set
fractal sample shows a hierarchy of peaks. We correlate
the largest peaks to the smallest spacing of the layers in
this fractal (here 40 A), the next order of peaks with the
next scale, which is three times the previous, and so on.
These data agree qualitatively with what one would expect
for a Cantor set!® where there is a hierarchy of weak side-
bands, assuming that we have not resolved the higher or-
ders. The slight asymmetry of the sidebands is believed to
be due to imperfect adjustment of the deposition rates to
produce an ideal triadic Cantor set. High-angle x-ray
analysis showed no signs of crystalline inclusions in the
samples.

The upper parallel critical field H., for periodic mul-
tilayered superconductors has been much studied in the
past.!! One observes two types of behavior, qualitatively,
depending on the relative magnitudes of the superconduct-
ing coherence length and the interlayer spacing. When the
coherence length is large enough that the order parameter

—
|
» . . =1
= (40A)
z N
3 \
© | \’ i
o 1 ‘,‘
2 / I
g \IV\//‘J \"’\/‘w-\ j \ A
- V/\J W\-"\,\ }
PERIODIC MULTILAYER 4V W“wwmw“f'-*‘pt
1 2 3 4 5 8 7 8 9 10
|
VAV
I |
172 \
-
z
=)
o
o
e
o
o
-
FRACTAL MULTILAYER

T2 3 4 5 6 7 8 9§ 10
20 (deg)

FIG. 3. Low-angle x-ray diffraction scans of periodic and
fractal multilayers. The inset on the fractal data is a more care-
ful scan to show the peaks.
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averages over the whole system, bulk anisotropic behavior
is observed. This is characterized by linear temperature
dependence of H., near 7.. However, if the coherence
length is smaller than the spacing, then the critical field is
determined by the single-film two-dimensional (2D) be-
havior, i.e., a square root temperature dependence. It is
well known that the coherence length can be used in this
way as a caliper of the structure in the system. Thus, in
the case of the periodic multilayer, when the coherence
length is on the scale of the variations of the material, one
observed experimentally a crossover from 3D to 2D behav-
ior. In the fractal, we would therefore expect to see struc-
ture on successive length scales.

Critical-field data were taken on a number of samples
with different geometries. Some of the data is shown in
Fig. 4. H.,(T) is defined consistently by the midpoint of
the superconducting transition. The critical field and the
temperature are normalized on this plot to take out any
materials dependence and reveal only the structural depen-
dence. In Fig. 4(a) data are shown for a periodic sample
in which the coherence length is always larger than the
spacing where we see the expected linear behavior. The
critical field data for fractals of different dimensions are
also shown. D refers to the layering dimension (1 for
periodic and O for single film). The same data [from Fig.
4(a)] are shown on a log plot in Fig. 5 to reveal any
power-law dependence. The data that are shown are not
very sensitive to the choice of T,, which from experimental
considerations we believe to be correct to within 2%. One
can describe the data over this temperature range by
power laws, (1 —¢)?, and assign critical-field exponents y
where y varies between 1 and 3. We see a systematic de-
crease of the critical-field exponent with decreasing fractal
dimension. The perpendicular critical field, however,
shows the usual linear T dependence in all the samples,
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FIG. 4. Upper parallel critical-field H., data for representa-
tive samples of various geometries.
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FIG. 5. Log plot of the critical-field data from Fig. 4(a). The
inset shows the results of the scaling model calculations. The
lines on the data for the fractal samples are a fit using the scaling
model.

from which one can extract the parallel coherence lengths.
The specific material parameters of the samples shown in
Figs. 4 and 5 are given in Table I. The parallel coherence
lengths given for each of the samples are derived from data
of the same sample set.

In Fig. 4(b) we show the data for the “doubly” periodic
and random samples. The doubly periodic sample is made
up of six groups of ten closely spaced superconducting lay-
ers separated by normal metal spacings of 250 A. The
critical field of the doubly periodic sample shows two
linear regions with a crossover corresponding to when the
temperature-dependent perpendicular coherence length is
roughly 250 A. The random sample, on the other hand,
which is made up of superconducting layers separated by
randomly assigned thicknesses of normal metal, exhibits
almost linear behavior, which corresponds to the average
layering dimension of one in the sample.

From the results presented above it is clear that fractal
(and other aperiodic) multilayers can be successfully fa-
bricated, and on length scales that clearly affect the super-
conducting properties of the multilayer. The question
remains, however, whether the observed behavior for the
fractal multilayers is universal and therefore dependent
only on the fractal dimensionality, or whether other
nonuniversal factors are important. At the present time
the data are insufficient to answer this question entirely
from an experimental point of view. In order to gain some
insight into the universality of our results theroretically,
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we have considered a simple, phenomenological scaling
theory of the critical fields for fractal multilayers.

We assume that the layers are Josephson coupled and
that the physics of H., is governed by the change in the
zero-temperature coherence length as the temperature-
dependent coherence length spans a different number of
layers in the fractal. This approach is similar to taking a
scale-dependent diffusion coefficient, 12 only here the
coherence length is related to the strength of the Josephson
coupling. Note that the model must be self-consistent, be-
cause as the temperature-dependent coherence length
changes the number of coupled layes, this will, in turn,
change the zero-temperature coherence length. We
neglect possible changes in 7. and only consider the
change in the critical field slope as a function of length
scale. Any changes in 7, should not alter the results quali-
tatively.

Consider a fractal structure such as that in Fig. 1 (e.g.,
triadic Cantor set). We assume that the critical field
parallel to the layers has the usual bulk anisotropic depen-
dence

%0
H =

2rE(e)EL ()

where the coherence length perpendicular to the layers de-
pends on temperature explicitly in the usual manner near
T., i, (1—¢)72 and also implicitly because the
effective zero-temperature coherence length depends on
the length scale s. Specifically,

gJ_(t)Eé_L(t,s)Eé_L(O,S)

(1)

1 t=l
Vi—t’ T,

Thus, we define a series of perpendicular zero-
temperature coherence lengths &, , for each scale of the
fractal s,. The crossover from one scale to the next should
occur when the temperature-dependent coherence length is
comparable to the next scale of the fractal. Label these
crossover temperatures f,, 1 —t, =[£,(0)/s,]%. Assuming
Josephson coupling, the zero-temperature coherence
length falls off exponentially with the normal metal spac-
ing:

E1n1(0) =£,,(0)e ~2Gnr1=2m) )

where s, =2@"1/Dg, and q are related to the material in

question, i.e., a is inversely proportional to the coherence
length of the normal material. However, £,,(0) is not
directly related to the coherence length of the supercon-

TABLE I. Description of the samples and experimental values of their superconducting transition
temperatures T, critical-field exponents 7, and the parallel zero-temperature coherence lengths used in

the normalization of critical fields.

Layer spacing &i(0)?
Sample No. Geometry Dimension A) T. (K) y(exp) A)
1 Periodic D=1 s =60 4.46 1 60
2 Random D=1 s =60 4.17 0.84 60
3 Fractal D=0.73 51=50 3.72 0.65 58
4 Fractal D =0.83 51=220 5.61 0.74 58
5 Fractal D =0.57 s1=80 2.80 0.60 58
6 “Doubly” periodic D=1 51=40, 52=650 6.27 1 48

#Parallel zero-temperature coherence lengths are derived from samples from the same set.
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ducting material. Physically, &,, is the effective perpen-
dicular coherence length of the smallest structural unit
(i.e., triad) in the multilayer.

The self-consistency equation is

é.Ln(t) =Sn

at crossover, and it defines implicitly n(z), which we now
take to be a continuous function of ¢. Solving for the rela-
tion between » and ¢, we find

]_tn+1=(l —11)2_2"/0

21/D__2

xexp | —2as;(2"P—1) ST

, (3

which cannot be solved explicitly, but can be evaluated nu-
merically. One can then compute the critical field depen-
dence on temperature. The general results of such a calcu-
lation are shown in the inset of Fig. 5 for some representa-
tive material parameters, and specific fits to our data, as
discussed below, are shown by the solid lines through the
data points. For D =1 calculations yield linear H,; behav-
ior and in the limit D— O critical field is square root for
all temperatures. For 0 <D <1 and far from T,, or for
small lengths, the linear dependence is recovered (due to
the smallest scale built into the model). Near T, or for
long length scales, the behavior is essentially two dimen-
sional with only a weak logarithmic correction revealing
the three-dimensional long-range order. The crossover
temperature between these two regimes depends on D, as
seen in the figure, and the parameter a.

The physical origin of the limiting behavior as T— T,
can be understood simply by noting that using
Sn+1—S1~Sp+1 in (2) and (3), it follows from (3) that
27D _1n(1 —1¢) 172, Solving for H.;, we obtain to first or-
der H.y~ (1 —1)Y2/—1n(1 —¢), which shows that the log-
arithmic factor is a consequence of the exponential fall off
of the interlayer Josephson coupling.

Clearly, within this model the coupling in the layered
direction is very tenuous. Basically, we find that if the
coupling falls off exponentially, the behavior of the system
is essentially governed by the dimension of the individual
superconducting elements (here it is the topological di-
mension of the fractal, i.e., 2D), independent of its fractal
dimensionality.

This model is consistent with our experimental results,
assuming that for the range of data available we are in the
crossover region, as shown by the rectangle of the inset of
Fig. 5. Quantitative fits to the data are shown by the solid
lines through the data, using @ and the normalization as
free parameters, and s; and D as given by deposition con-
ditions. The fits yield values for a of (50 A) ~! < a < (100
A) 7! compared with the estimated value a~&,(0) ™!
~ (80 A) ~!. The fit is quite satisfactory, but should not
be regarded as a definitive confirmation of the theory. We
point out that if this picture is correct, then we are not ob-
serving universal behavior (as a function of fractal dimen-
sion, for example) and that the particular critical field ex-
ponent that we extract from our measurements is in a
crossover regime. However, there clearly is a systematic
dependence of these exponents as the fractal dimension is
varied.
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The sensitivity of H., to the materials properties on
various length scales can be seen directly in the case of the
doubly periodic sample shown in Fig. 4(b), which has
periodicity on two well-separated length scales. The data
very clearly show the crossover. Thus there can be little
doubt that the curvature seen in the H. curves for the
fractal samples results from the series of length scales in
the structure.

To definitively answer the question of whether the be-
havior seen is the true long length scale result or not, a
more precise theory may be required. Also, there are cer-
tain features of the behavior of our multilayers which sug-
gest that other factors in addition to the Josephson cou-
pling are playing a role. As we noted earlier, from the
work of Graybeal we know that the transition tempera-
tures of isolated thin films of these amorphous supercon-
ductors are greatly reduced below their bulk values. For
example, an isolated 30-A film of the superconducting ma-
terial (21% Ge) used in the multilayers, has a T, =3.4 K.
On the other hand, when these 30-A layers are incorporat-
ed into a multilayer, the 7. can be higher. More
specifically, T.’s in the range 3.8 K <7, <6.6 K are ob-
served in periodic multilayers consisting of 30-A supercon-
ducting (21% Ge) layers and normal layers (60% Ge)
ranging in thickness from 10 to 90 A. Taking into con-
sideration the proximity effect, which tends to reduce T, it
is clear that the T, of the individual layers, when embed-
ded in the multilayer, must be above the value for an iso-
lated film. Tentative examination of this question suggests
that the T.’s of the superconducting layers themselves may
be very near the bulk value for the material, and over the
whole range of normal layer thicknesses (i.e., for different
values of coupling). This striking result clearly needs much
closer examination before a definitive understanding of our
multilayers will be possible.!> However, there is no evi-
dence that these T, effects are the controlling factor in the
observed critical field curves.

In summary, we have prepared multilayered films with
superconducting layers on a fractal lattice. We observe
new behavior of the upper critical field that is directly re-
lated to the fractal structure of the layering. A continuous
crossover from 2D to 3D behavior is observed as the frac-
tal dimension is changed. Using a simple scaling approach
one can describe this behavior qualitatively. The model
predicts a universal behavior that is almost 2D-like and if
the model is essentially correct and applicable to our sam-
ples, it follows also that experimentally we are observing
only a transition into that regime.
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FIG. 2. TEM micrographs of cross sections of a periodic (on the left) and a fractal multilayer (on the right), each prepared in two
ways. The top micrographs (a) and (b), are of sections prepared by the mechanical polishing and ion milling technique and were done
by Robert Byers at Stanford. The bottom sections (c) and (d) were prepared by ultramicrotomy performed by Ann Marshall at the
Stanford Center for Material Research. The interlayer spacing for the periodic multilayer in (a) and (c) is 360 A. The smallest Ge-
rich layers of the fractal multilayer in (b) and (d) are 9 A thick.
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