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We review the properties of polarons nucleated by vacancies in solid He and compare the magne-
tostatic contribution to the recently observed anomalies in the susceptibility for densities close to the
melting curve. We show that the experimental results can be understood in terms of polaron effects
if the experiments were sensitive only to the bulk paramagnetic solid and could not see the spins
bound to the polarons. We also discuss the thermal relaxation of the spins in the polaron cloud and
its importance for the analysis of the experiments. The magnetic contribution to the pressure
P(H, T) due to the presence of polarons is calculated and new experiments are proposed to test for
the predicted polaron properties.

I. INTRODUCTION

The presence of vacancies in solid helium leads to a
number of striking and unusual effects that are intimately
related to the dominance of quantum effects in these
"quantum crystals. " Only some of the predicted proper-
ties have been verified and the purpose of this work is to
discuss the effects of vacancies on the nuclear magnetism
in solid He. The feature which distinguishes "quantum
solids" (such as the solid heliums and solid hydrogens)
from ordinary solids is the large quantum zero-point
motion of the atoms. The interatomic forces are weak,
the masses light, and the atoms are only weakly localized
with respect to their crystal lattice sites. This affects the
properties of vacancies in general in two ways. Firstly,
because of the kinetic zero-point motion of the atoms, an
atom may tunnel into a vacant site. The vacancies are
therefore delocalized, they should propagate through the
crystal as "vacancy waves" and form a band of energies
whose width is directly proportional to the vacancy mo-
bility. The vacancies tunnel through the lattice with fre-
quencies of the order of 10' Hz. The second consequence
is that, as opposed to ordinary solids, the vacancies make
a very substantial contribution to the thermal properties
of the solid; namely the heat capacity, the thermodynamic
pressure, nuclear spin-lattice relaxation, and the scattering
of lattice vibrations. ' As a result of the large zero-point
motion of the quantum solid, the mobility of the vacan-
cies also dominates the properties of the solid close to
melting, rather than the thermal vibrations. Finally, in
solid He, the vacancies can at low temperatures lead to
profound changes in the magnetism of the He atoms in
their surroundings. The reason for this is that the high
kinetic energy associated with the vacancies can be re-
duced if the nuclear spins of the surrounding atoms are
allowed to become polarized. This effect, first proposed
by Andreev and later by Lederer and coworkers, results
in a self-trapped bound polarization state which is split-
off from the extended vacancy bands. The analogy with
polaron formation in ionic solids is self-evident and the
vacancies surrounded by their polarization cloud are
therefore referred to as magnetic polarons.

The thermodynamic effects of polarons are due to (a)
the thermal population of the vacancy states and (b) the
temperature dependence of the size and shape of the po-
larization cloud. The former is relatively small [although
some experimental techniques (Ref. 5) are sensitive to
thermal populations as low as 10 ' ]. Some of the most
significant effects are due to the tempera('re dependence
of the nuclear spin polarization which increases with de-
creasing temperature. These observables are in fact asso-
ciated with the zero-point population of the vacancies.
We refer here to the low-temperature saturation of the va-
cancy concentration, x„, which is observed experimentally
to scale exponentially with the activation energy N( V).
The molar volume dependence at low densities, i.e., close
to the maximum molar volume, is given by 4( V)
—( V, —V)'~, and the dependence for the vacancy frac-
tion is x„-exp(V, —V)' . The critical molar volume
V, =24.95 cm /mole.

Magnetic polaron effects can only be observed over a
limited temperature range. If the number of vacancies is
large, e.g., in the immediate neighborhood of the melting
pressure minimum, the temperature range over which the
solid is stable is very small. As a result the solid melts be-
fore the polarons become large enough to be visible by
most experiments. One needs to have access to sufficient-
ly low temperatures and low densities for the observation
of significant polaron effects. The limiting molar volume
and temperature ranges are (see Fig. 1) then
Vm, & V&24.0 cm /mole and 100& T&16 mK. ' The
susceptibility measurements of Kirk et al. lie in this
range but very few experiments had explored this region
prior to their studies and they did not use the high-
precision techniques of Kirk et al. There is clearly a need
for more systematic experimental investigations of low-
density high-purity solid He in this temperature range.

The effects discussed below refer to the zero-point con-
centration of the vacancies. Whether these are somehow
frozen in (e.g. , defects that have not been able to diffuse to
a surface) or whether they refer to the intrinsic low tem-
perature zero-point saturation of the vacancy concentra-
tion, x„o, cannot be conclusively decided on the basis of
the experimental evidence that is currently available. We
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FIG. 1. Isochores on the phase diagram of bulk solid 'He
showing the typical trajectories followed by the experiments dis-
cussed in the text. [The melting curve appropriate for the ex-
periments of Kirk et aI. (Ref. 7) differs from the curve for bulk
solid because of the effects of constrained geometries on their
samples. ]
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FIG. 2. Volume dependence of the vacancy formation energy
N(v) observed in different experiments; NMR (open circles, Ref.
5 and triangles, Ref. 18, x-ray studies (solid circles, Ref. 6), and
pressure studies (open square, Ref. 9).

assume that x„o is intrinsic in the following. The evi-
dence supporting this assertion is derived from the low
temperature NMR measurements. At higher tempera-
tures, the spin diffusion in magnetic field gradients and
the nuclear spin-lattice relaxation rates (Tt ') both scale
as exp( —elks T) in their temperature dependence. Also
seen in x-ray studies and recent careful measurements of
the thermodynamic pressure, this temperature depen-
dence is interpreted as due to the thermal vacancies whose
activation energy, shown in Fig. 2 as a function of molar
volume, is reminiscent of vacancies. At lower tempera-

tures, (Tt) ' scales linearly with T and has been inter-
preted variously as due to a single-phonon process' or
due to the motion of vacancies. Additional support in
favor of the latter mechanism comes from Fig. 3. Using
data from Ref. 5 we have plotted TI T as a function of
N(V). The clear exponential dependence (the values for
24.6 cm /mole correspond to a reanalysis of the data re-
ported in Ref. 5) supports the interpretation in terms of a
vacancy mechanism and suggests a temperature-
independent x„. Furthermore, the analysis of the x-ray
scattering studies indicate an approximately constant
concentration of vacancies with x, (melt) —5X 10 over a
very substantial portion of the melting curve (3.0 & T & 0.3
K). The magnetic polarons are therefore expected to be
abundant in a low-density solid and constitute an assem-
bly of noninteracting, heavy, but nevertheless mobile car-
riers of polarization. In the appendix, we have calculated
the internal modes of a magnetic polaron. The energy
scales for the internal energies are typically 0.3 K and
therefore negligible at millikelvin temperatures. This
means that the polaron dynamics can be treated as that of
a rigid body. The internal modes may be important in
determining the frequency dependence of (T&) ' but we
defer that analysis for the moment.

The principal motivation for the present study stems
from the recent susceptibility measurements of Kirk
et al. (for high molar volume samples of solid He) who
observed an anomalous decrease in the susceptibility
below the Curie-Weiss law at low temperatures. This
anomaly can be understood" in terms of the formation of
magnetic polarons and the theoretical T deduction
agrees well with the experiments, using reasonable values
for the parameters.

Kirk' has put forward an alternative proposal, based
on the onset of degeneracy in the susceptibility of magnet-
ic polarons. He argues that the formation of a magnetic
polaron in fact lowers the degeneracy temperature for va-
cancies to TF-100 mK by raising their effective mass.
The degenerate magnetic polarons then respond with a
Pauli susceptibility, much smaller than the Curie-gneiss
law. It was also claimed that the fermion behavior of
magnetic polarons leads to the linear dependence
T~ T=const, akin to the Korringa relation for electrons. '

The temperature range over which the linear depen-
dence is observed, however, is much higher (typically,
T & 180 mK) than the temperature for which anomalies
have been seen ( T & 60 mK) in the susceptibility. At these
higher temperatures the vacancies presumably remain un-

dressed (very few polarized spins surround the vacancy)
and as stated above, the observations can be interpreted ei-
ther in terms of an exchange-vacancy coupling or an
exchange-phonon coupling.

The principal disagreement with Kirk's model lies in
whether the lost spins respond as a giant moment or
whether they constitute a degenerate Fermi liquid. For-
tunately, there is a simple test that will help decide be-
tween the two models. If the lost spins form a giant mo-
ment, it should be easy to saturate them at fields of the
order of a few kilogauss. The resulting effects are observ-
able in the finite field response of the susceptibility
and/or the isochores P(H, T). If the lost spins make up a
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Fermi liquid, no saturation effects should be seen.
We have also explored the possibility of super-

paramagnetism for the polarons. The giant moments can
interact with each other and may lead to an ordered state.
The interaction between polarons is assumed to be a clas-
sical dipole-dipole interaction. It is important to recog-
nize however, that the polarization of the polaron cloud
saturates due to the exchange interaction at around 10
spins/polaron. The dipolar interaction for the largest mo-
ment leads to an interaction energy scale less than 1 mK.
Since the typical temperatures vary from 10—100 mK,
polaron-polaron interactions remain negligible. Super-
paramagnetism is preceded by the appearance of the or-
dered state in the bulk solid He at 1 mK.

The outline of this paper is as follows. In Sec. II, we
summarize the principal properties of the magnetic po-
larons. Section III discusses both the ac and dc suscepti-
bilities. Section IV includes a discussion of finite field
isochores P(H, T) and also the melting pressure P ( T).
Finally, Sec. V provides a summary of our conclusions.

II. THEORETICAL OVERVIEW

The thermodynamic properties of a magnetic polaron
can be determined from a free energy functional F( T),

square of the localization radius R. The lattice constant
is a. (The nearest-neighbor separation ao =a v 3/2. ) The
second group of terms represents the free energy gain in
the formation of magnetic polarons. Here n is the solid
He density. The magnetic polaron can be visualized as a

polarization cloud within which the vacancy is localized.
The entropy terms X(o) and X(s), represent the entropy
functionals for solid He and the polaron with average po-
larization s, respectively. While X(cr)=ln2 —o /2C is a
fair approximation (C is the Curie constant), X(s) should
be different and constructed such that the expected mag-
netic polaron polarization can be obtained by minimiza-
tion of fz(s) with respect to s.

In the absence of a magnetic field, o.~0. The function
t(s) is monotonic and largest at s= l. This determines
the polarization of the polaron. Clearly, the strong
discontinuity in polarization at the polaron boundary is an
approximation. If the polarization varies less rapidly,
there might be surface energy terms that should be includ-
ed in the following. We however ignore these terms for
the moment, with the understanding that the radius of po-
laron may in reality, be larger than the estimates given
below. The corrections are however, not expected to be
important for large polarons.

The effective polaron free energy therefore becomes
(leaving aside the constant shifts)

2

F( T) =Fs„g,( T) +x,ft, ( T),

with

Fg„)k(o, T)= —,zJo' oH —TX(o—) (2)

fz(T)=sr t — + nR (Tln2+ , zJ p~H—) . —

Minimization with respect to R yields a polaron size

m. ta
R =—

( Tln2+ , zJ p~H )——
4 n

(4)

(5)

and

f~(T) = t(s)+~ —t(s)
R

2

3
nR I T[X(s)—X(cr)]

, zJ(s o)+p—~H(s——o) ] . (3)

The quantity F&„&k(cr, T) is the energy functional for the
bulk solid He without vacancies. The polarization of
bulk He, oo(T), is obtained by minimizing this free ener-

gy. Here J denotes the antiferromagnetic exchange in-
teraction with each of z nearest neighbors, H is the exter-
nal magnetic field, and X(cr) the entropy. p& is the He
nuclear magnetic moment. The vacancy concentration x,
arises from the thermodynamics of vacancies and is in
general temperature dependent. As discussed above, it
saturates at low temperatures and we focus on this range
of temperature. We are thus dealing with only the zero-
point population of the vacancies.

The magnetic free energy density (per vacancy), fz(T),
consists of two classes of terms. In the first group, the
first two terms refer to the formation energy t(s) which
depends on the environment polarization s, and the kinet-
ic energy of localization which scales inversely as the

Equations (4) and (5) were given in Ref. 3. The result-
ing polaron consists of N, p

=4~nR /3 polarized spins. In
effect then, x„N,p spins respond as a polaron whereas
1 x N p spins maintain their paramagnetic response.
The polarons behave as a giant rigid body. As mentioned
above and in the Appendix, the internal excitations of a
polaron are much too high in energy. The translational
motion of this rigid body, however, is hindered by the
large mass associated with the number of spins increasing
with decreasing temperature. The problem is indeed very
similar to self-trapping (hence the name). Nevertheless,
the polarons hardly become sufficiently dense to form a
degenerate gas. The effective Fermi energy depends on
temperature

g2k2 g2(3 2 )2/3
$CB TF =

2m 2m —cb

where cb is the binding energy of the magnetic polaron.
There is a saturation of the polaron size. The radius R

in Eq. (5) decreases to a saturation value R, for
T & To =zJ/(21n2). (The Curie-Weiss temperature 6
=[61n(2s+1)/s(s+ 1)]TO.) This maximum size of the
polaron plays an important role in determining bounds on
various properties. Equation (6) gives a lower bound to
the Fermi energy at approximately 10 K. The degen-
eracy remains elusive until the system is cooled to a tem-
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perature below that bound.
We now consider the energy of interaction between the

polarons. Cxiven that the number of polarons is tempera-
ture independent, the energy of interaction increases with
decreasing temperature because of the increase in polaron
moment,

m 2

Ed =
3

—xvNsP cd
T

ed is the dipolar energy for interaction between two He
spins in a lattice ( —10 K). The largest value of Ed is
obtained at saturation and is of the order of (or less than)
1 mK. In the temperature range where polaron effects are
expected to be present (and observed if our interpretation
is correct) neither the degeneracy, nor superparamagne-
tism appears to be an important effect.

III. MAGNETIC RESPONSE
6X X t=1- =x,~, =x,pA

3/5

(10)

(8b). As shown in Fig. 3, it agrees very well with the
currently available data of Kirk et al.

(3) When the polaron response is visible, the static sus-
ceptibility is given by

2

M= [1 x„N—,p+x„(p~N, p) /kT]H . (9)T+e
In this case the important temperature-dependent

correction is the last term which is proportional to
N, z-(T+TD) . The susceptibility is now enhanced
with a T " dependence, as opposed to the reduction
seen in (2) above which scales as T ~ . Both of the
responses, in Eqs. (2) and (3) saturate near To-zJ/In2.

Equation (8b) can be rewritten in the form of a change
in susceptibility 6X such that

Criven the enhanced polarization in the neighborhood of
vacancies, the effect of vacancies should be most easily
observed in response to applied magnetic fields. In this
section we discuss the magnetic response including the
susceptibility and the nuclear spin lattice relaxation time.
We remark that one of the most characteristic signatures
of polarons, noted originally by Delrieu, ' is the saturation
of the polaron moment by relatively low fields. This sa-
turation field is given by

kgT kgT
H, (T)= = =AT(T+ To) i . (8)

M~] p~Xp
At high T( » To ), H, ( T ) ~ T and as the polaron

size saturates near T=Tp, the dependence becomes linear
with H, (T) ~ T. In contrast, if the polaron gas becomes
degenerate, the saturation field H, ~ TF( —T ) and has
a much weaker temperature dependence. The effect of
this saturation field on the field dependence of the iso-
chores [P(H, T)] is discussed in the following section.
Here we calculate the spin susceptibility and spin-lattice
relaxation time Ti.

7 is the susceptibility of paramagnetic spins subject to the
caveat given above. In Fig. 4, we compare" Eq. (10) with
the experiments ' for two molar volumes, V =24.42
cm /mole and V =24.21 cm /mole. The high-
temperature limit of Eq. (10) is limited by rather small
polarons. Experimental curves yield

=c[(T+0.012) i —5.2],
+CW

where c=0.054 and 0.033 for V =24.42 and 24.21
cm /mole, respectively. Evidently, the polaron size satu-
rates at Tp ——12 rnK. Recovering the exchange constant

lO

A. Susceptibility

The magnetic moment of solid He, containing fer-
romagnetic polarons is given by

I.O
I- 0.8
I- o.e

M =Mcw+xUMpol ~

M,w =q„'H(T+e) '(1 x„N„), -—
M~( p~N, px, L [p~N——,pH/kT],

(8a)

(8b)

(8c) 0.2—

where the Curie-Weiss law [Eq. (8b)] takes into account
only the paramagnetic spins. Since the polaron is large we
have treated its field response as that of a Langevin func-
tion. The consequences are the following:

(1) The saturation field, as mentioned above, is small
and has a specific temperature dependence.

(2) The Curie-Weiss susceptibility of the paramagnetic
spins is altered in its temperature dependence. If the po-
laron moment is invisible to the experimental probe, either
because of long relaxation times or because of frequency
shifts, the observed susceptibility would be given by Eq.

O. I

0 2
4 (K)

FIG. 3. Variation of the product T& T with the vacancy for-
mation N(U). The relaxation times Tl given in the figure refer
only to the regime where a linear temperature dependence
( T& ~ T ') has been observed (see Ref. 5). The solid circles are
taken from Ref. 5 and the open circle corresponds to a
reanalysis of the data of Chapellier et al. for molar volume
V =24.62 cm /mole (Tl T=0.61 s K and 4=1.05 K).
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FIG. 4. Comparison of the observed temperature dependence
of the deviation 5+ of the nuclear spin susceptibility from the
Curie-Weiss value with the anticipated variation ( T+ To )

for a rigid polaron model.

J, we find a value of 2 mK, in order of magnitude com-
parable to the independent' susceptibility measurements.
The constant A in Eq. (10) consists of natural constants
and is given as approximately 10. In order to deduce the
vacancy hopping energy t from the constant c in Eq. (11),
we need x, . Using x, =5&10, the maximum value re-
ported so far by x-ray studies near the melting curve, we
find t = 1 and 0.44 K for V =24.42 and 24.21 cm /mole,
respectively. Again there is quantitative agreement with
known values. Theoretical estimates based on the overlap
of distorted Gaussian wave functions yield values t —1 K
(Refs. 1 and 16) and these are consistent with measure-
ments of spin diffusion by Reich and analyses of the heat
capacity studies by Hetherington. ' Measurements of the
nuclear spin relaxation times at high temperatures' how-
ever, imply much smaller values, with t as low as 50 rnK
and these latter values are not understood. The relaxation
studies differ from the other experimental probes in that
they are sensitive only to the motion of vacancies and
measure the fluctuation rates at the nuclear Larmor fre-
quency (typically 100 MHz). The interpretation of the T~
results therefore hinges crucially on the models assumed
for the dependence of the spin-spin correlation functions
on the hopping time t. At the present time there is insuf-
ficient experimental data to determine whether the
discrepancy lies in the models used or on a subtle varia-
tion of the dynamics across the vacancy bandwidth. Tl,
studies over a broad range of frequencies could help
resolve this dilemma.

The agreement between known parameter values and
the numbers derived from the fit is encouraging. This is
especially so in view of the rather qualitative nature of the
calculation. At high temperatures, the anomalous contri-
bution to the susceptibility 5X in Eq. (11) is observed to
decrease to zero rather abruptly at 60 mK—leading to the
constant 5.2. If we nonetheless apply Eq. (10) at T=60
mK, there are only approximately 50 spins in the polaron.
It is precisely for this number of spins that our approxi-
mation of a constant polarization across the polaron must
break down. There are a number of effects which become

important in the limit of small polaron size. A first at-
tempt to include size effects for small polarons has been
made by Montaumbaux et al. These authors estimated
the critical radius for the formation for a polaron cloud to
be R, =l.gao (ao being the nearest-neighbor separation).
If we interpret the apparent cutoff of the anomaly in the
susceptibility seen at 60 mK as due to the fact that the ra-
dius has dropped to R„we find R, (apparent)=1. 9 ao at
T=50 mK using t= 1 K. This is in good agreement with
the estimate of Montaumbaux et al. and indicates that
the interpretation of both the temperature dependence
( T ~ for 50 & T & 16 mK) and the cutoff are self-
consistent, and both features give values of t consistent
with other experimental data.

B. Nuclear spin lattice relaxation

The spin-lattice relaxation rate T&
' has been found

proportional to T by Chapellier et al. in the temperature
range T ~60 mK. In this temperature range, the polaron
is small and its effects are negligible. In other words, the
analysis by Chapellier et al. using energy bands for va-
cancy motion is quite adequate. When the polaron does
become large, the dominant relaxation mechanism is com-
pletely different and ferromagnetic polarons play no role.
This is because the solid, at least partially, melts. If the
melting curve is lowered below the bulk value due to the
effects of constrained geometries in the experiments of
Kirk et al. so that a large amount of solid is still present,
we expect an additional spin diffusion constant derived
from the dipolar interaction between the polarized clus-
ters. This diffusion constant is much smaller, of the order
of (p~X,~) x„/J compared to the He spin diffusion con-
stant. To our knowledge, no experiments report the ex-
istence of such a mechanism.

It is worth pointing out that spin diffusion away from
the polaron cloud is strongly bottlenecked by the high po-
larization P of the spins in the cloud. The flip-flop rate
between spins in the polaron varies as 1 —P and since
P-tanh (ptvH;„, /2k' T), where H;„, is the polarizing
field in the cloud (-0.1 kG), this polarization barrier
reduces the relaxation rate by several orders of magnitude.
It will lead to an exponential temperature dependence
(1—P ) -exp( @tv H;„,/k& T). —This has not been ob-
served, probably because the relaxation times become very
long, rendering the polarons invisible to the experiments
employed. This inability to observe the spins in the cloud
(without special precautions) is the central premise in our
interpretation of the data of Kirk et al.

In the model of Chapellier et al. , the relaxation is as-
sumed to proceed via a sequential coupling of four energy
baths: Zeeman (Z) ~Exchange (E)~Vacancies ( V)
~phonon bath (8). The weak link is the exchange-
vacancy coupling and this leads to not only the linear
temperature dependence (for "frozen in" or ground state
vacancies), but also to a very strong volume dependence
arising from the coupling of the exchange to vacancies.

The exchange-vacancy coupling is assured by a Raman
process of simultaneous excitation to, and emission from,
energy levels in a broad band cV(E) of vacancy states.
The intrinsic relaxation rate, on summing over all avail-
able states, is
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Ti(Fy) —— f f M N(E)[1 N—(E)]p(E)p(E')5(E E—'+J)dEdE'

M ksTp (EF) . (12)

M is the matrix element for the coupling of vacancy
waves to the exchange system and EF is the Fermi energy
for the vacancy states. The resulting temperature depen-
dence is

T)(gv) T-const .

The density dependence is given by M - [ V( 8J/
BV)]—18J. The Gruneisen constant for the intrinsic re-
laxation rate is then y;„,„„-2yJ (the exchange Gruneisen).
Experiments actually follow the Zeeman energy which is
bottlenecked by the exchange-vacancy coupling and the
observed relaxation is

The vacancy concentration x„ is taken to be
exp[ —aN(v)]. The corresponding BM/BV is dominated
by the square root singularity in ax, /aV. Ignoring all
other contributions, the effect of ferromagnetic polarons
on P„(H, T) can be expressed as

P(H) =P(0)+— H'
4 (V, V)'~' kT

for H(H, (T) (16)

P(H) =P(0)+—,(p~N, p)H
(V, —V)'

CE

Cz+ CE
T v Fv) —12(J/cot ) T

& ~ Fz~,
—1 2 (13) for H &H, (T) (17)

where C„ is the heat capacity of bath x, and col is the nu-
clear Larmor frequency. The observed density depen-
dence therefore has a Gruneisen constant

(Ti)-4
(i.e., the same as J ) where we do not include the volume
dependence of the vacancy fraction x, . Representing the
latter by y~ (which is not known), we finally have

)'(Ti) 4r J-+2)'

IV. MAGNETOELASTIC EFFECTS

Since the molar volume dependence of the exchange in-
tegral is large (e.g., the magnetic Gruneisen constant is
18), the magnetoelastic effects are in general very large in
solid He. At low densities, the polarons are present and
cause some profound shifts of the isochore Pv( T,H ).
This can be seen by recalling that the magnetic field
dependence of Pz(T) can be obtained from the Maxwell
relation

where H, (T)=kT/p~N, ~(T). There are two notable
differences between Eqs. (16) and (17) and Eq. (14). The
first difference is that the pressure increases with field.
We have omitted the Curie-Weiss correction in deriving
Eqs. (16) and (17). However, when important, it further
adds to the positive field dependence. The second effect is
in the magnetic field dependence. Since the polarons can
be saturated at H, (T), the pressure depends linearly on
field for H &H, (T). The Curie-Weiss correction still pro-
vides a quadratic field dependence. At low temperatures
(N,~ &&1), polarons dominate and it should be possible to
detect their linear field dependence. These effects are
dominant near the melting pressure minimum because of
the square root divergence in the molar volume depen-
dence. Typically, X,p ranges from 70—700. The scale
field H, (T)/T varies as 20 kG/K. At 50 mK, this leads
to a typical critical field H, (T)=1 kG. The order of
magnitude effect in Eq. (17) can then be estimated to be of
the order of a few percent.

m( v) =mcw+x„N, &mz,

where

(15)

mp p~L (p~N, pH /p T ) —m cw-—
mcw=p~(T+6) 'H .

as am
aa, = av,

In the absence of ferromagnetic polarons, the molar
volume dependence of M( V) arises from the same depen-
dence of the Curie-Weiss constant 0 [i.e., that of J(V)].
The resulting P (H) is given by

ao HP(H) =P(0)— (14)(T+e)2 av 2

In the presence of ferromagnetic polarons, the magneti-
zation becomes

V. SUMMARY

The analyses presented above show that the recently ob-
served anomalies in the nuclear magnetic susceptibility of
He at high molar volumes can be understood in terms of

the effects of magnetic polarons which are nucleated by
delocalized point defects in the solid. The model predicts
two features, (i) a (T+To) temperatuare dependence
with saturation at low temperatures ( T & To-ZJ ) due to
spin exchange and (ii) a null effect for temperatures
T & T„-60mK corresponding to the critical radius for a
magnetic polaron. Both effects are seen experimentally,
and the required tunneling energy needed to fit the data is
given by t —1 K which is consistent with other experi-
mental results. New experiments, in particular studies of
the contribution to the field dependence of the thermo-
dynamic pressure, are suggested to further test the predic-
tions of the model proposed.
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APPENDIX

In the introduction we refer to the possibility of inter-
nal modes for the magnetic polarons. In the following, we
derive the energies of these internal modes. The classical
calculation of the polaron free energy in Eq. (4) can be
rewritten as an expectation value of a quantum Hamil-
tonian 0,

E=+ta + R nTln2=(H),
R

(Al)

with

(A2)
2m

The mass m and the potential strength g can be ex-
pressed in terms of the hopping energy t and the entropy
terms n1ln2, respectively. From dimensional analysis,
any expectation value of II must scale with

One can therefore ignore the internal modes at mK
temperatures and the polarons respond as a rigid body.
The internal modes can however, affect the frequency
dependence of T&. We outline an approximate calculation
of these energy levels.

If the vacancy wave function is ll(r), the lowest mode
can be calculated variationally using g(r) =e " with a
as the variational parameter. The lowest state, corre-
sponding to orbital quantum number I =0, is given by

E=(H) = I dU
~

V1l
~

2+gr3$~
2m

(A4)

4=—m ta
2m*

~4~
Tl 2g= n n (A5)

The finite angular momentum ( 1&0) states can be ob-
tained from an effective potential

where ll is normalized. Equation (A4) when compared to
Eq. (Al) leads to the identification

3/5

g /
m

=(tT ~') ~'=0 3K at T=. 50 mK . (A3) and

l(l+ 1 )A'
V ff(r) = +gr

2m *r

Et ———'3 [l(l+1)] 1+ [l(1+1)]3
Vs

g2 2/3 3/5

m* (A6)

These states have meaning only when they are below
the cutoff E, =z[t(l) —t(0)]. The cutoff describes the
evident free mobility of the vacancies in a randomly po-
larized environment. Indeed, the identification of the
binding potential as gr is also questionable and the po-
tential should be cutoff at the energy E, . This cutoff will

further lead to a rise in the eigenvalues Eq. (A6). Thus an
internal mode of the vacancy can be excited. The lifetime
of this level is expected to be rather short on account of
the close proximity to the potential cutoff and the extend-
ed state solutions for the vacancy motion.
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