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Subharmonic locking in Josephson weak links
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After some controversy, it has been shown that subharmonic voltage (phase) locking does not exist
in the ac-driven overdamped resistively shunted junction model of a Josephson weak link. We
predict that for a very similar system of a pair of coupled links without ac drive, mutual subhar-
monic locking can take place. We demonstrate our thesis both by a careful numerical simulation of
the exact equations of the model and by a second-order analytical perturbation calculation based on

the coupling parameter.

I. INTRODUCTION

It is now generally accepted that the resistively shunted
junction (RSJ) model, with capacitance set to zero, has
turned out to be adequate in predicting the principal
behavior of Josephson weak links.!

For a single link the corresponding differential equation
is

—Ising+ L d¢
I =1I_sin¢+ Ry 2¢ dt (1)
where I=14.+1,. is the sum of both supercurrent and
normal (quasiparticle) current through the junction, Ry is
the resistance of the quasiparticles, I. is the critical
current of the weak link, while ¢ is the phase difference
across it.

Despite the apparent simplicity of this equation there
has been controversy in the history of its use. Early nu-
merical work? seemed to indicate the existence of subhar-
monic dc voltage locking of the junction to the frequency
of an external ac current source, along with voltage lock-
ing and harmonic locking. Subsequent analytical work
has proven rigorously that the subharmonic type of lock-
ing with its corresponding voltage steps cannot occur in
this model.>* This contrasts with the more elaborate RSJ
model in which one presumes that the junction has capa-
citance as well as resistance. There, subharmonic locking
is predicted.® The overdamped (noncapacitive) RSJ model
contrasts further with the more elaborate model by hav-
ing, even when ac driven, no chaotic solutions, a conse-
quence of its two-dimensional phase space.>’ It has by
now been very amply demonstrated that the capacitive
model supports chaos when driven by an ac current
source.?

Since a weak link itself can act as a source of ac
current, the system of two dc-biased weak links, coupled
to each other via some mechanism! should bear strong
resemblance to the ac- and dc-biased single weak link. Of
course, the weak links’ mutual interaction distinguishes it
from the one-way action of an ac source upon a single
link.

It has been shown®~!? that the overdamped RSJ model
successfully describes many of the phenomena actually
observed experimentally for a coupled system. This in-
cludes mutual equal-voltage locking, harmonic-voltage
locking, as well as coherent effects outside locking zones.
It also predicts the possibility of mutual-voltage locking
of an indefinitely large number of such links which would
lead them to oscillate and radiate coherently.!> A review
of experimental and theoretical work on mutual equal-
voltage locking was published a few year ago.'*

The question addressed here is whether a pair of cou-
pled noncapacitive Josephson weak links can mutually
lock subharmonically; that is, given two positive relatively
prime integers n, n,, neither of which is unity, whether
there is a region in parameter space of nonzero measure
such that n,V,=n,V,, where V, and V, are the average
voltages of the individual junctions. To the best of our
knowledge, for such a system, this type of locking has not
yet been observed experimentally.

We approach the problem from two virtually indepen-
dent angles. The lesson to be learned from the original
mistaken positive result? for the ac-driven single link is
that numerical simulation of the equations alone might
not be an adequate test for this question. Numerical ap-
proximation of the differential equation itself might lead
to an effective spurious cos¢ term,* or possibly some other
defect. In addition, apparent locking for long periods
may be observed, only to be followed by slippage if the
simulation is allowed to continue long enough.

We therefore carried out a complementary analytical
perturbation expansion in order to corroborate the numer-
ical simulation. This had the added benefit of illuminat-
ing the qualitative behavior of the system in the region of
subharmonic locking. In particular this calculation
showed that the latter, unlike equal-voltage locking and
harmonic locking, cannot appear to first order in the cou-
pling constant a; perhaps a vestige of its nonexistence for
the ac-driven single link. This might explain in part why
subharmonic locking in this system has remained unob-
served,!® since for the most part experimental a values
have been modest.
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TABLE 1.
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A summary of the results on the locking interval for the 3:2 subharmonic (i.e.,

Vi/ V2=%), for three values of the coupling a. The other parameters are exactly those of the series-

aiding case of Refs. 9 and 11: I, =2, 1c1= 1.2, Ic2=0‘8, 8;=1, and Szz%. NS stands for numerical

simulation and PC for perturbation calculation.

Center of I, Locking Interval

Length of I, Locking Interval

a NS PC NS PC
0.05 1.816 461 1.816461 0.000018 0.000022
0.07 1.825910 1.825908 0.000035 0.000 046
0.20 1.867 100 1.866 940 0.000 180 0.000614

II. NUMERICAL SIMULATION

The equations which describe the system are, in ap-
propriate units,’

d
%:51(11 —I, sing)—all 1, sind,) ,

@)
02 51,1, sindy)—all, L, sing;)
dt — 227 4¢, 2 1 <y 1/ »

where ¢,,¢, are the phase difference across the weak
links; I, ,I., are the corresponding critical currents, while

a measures the coupling between junctions produced by
various mechanisms such as quasiparticle diffusion'® or
via a shunt resistor.” 8,6, are a measure of the asym-
metry of the junctions due to different resistances. ¢ is a
dimensionless time as described in Ref. 9.

A fourth-order Runge-Kutta method was used in
seventeen-decimal-digit arithmetic to solve the system (2).
Great care was taken using extremely long-time runs to
ensure that the short-time average (n,¢,-n,¢,) was indeed
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FIG. 1. An exploded view of the numerically determined I-V
curve in the vicinity of 3:2 locking for a pair of coupled Joseph-
son weak links. Parameters are the same as for Table I, except
we select the a=0.2 case; i.e., this is exactly the case of the
series aiding example of Refs. 9 and 11. 3V¥,-2V, is plotted so
that the locking zone is the zero of this variable. Small fluctua-
tions in the graph are due to the rapid oscillation ~2# which
exists in the corresponding time-dependent voltage. These
curves were determined by averaging over a time span of
120000 time units. (The end points of the zone as given in
Table I were determined over even much longer runs.)

constant in the locking zone. All but one parameter were
held constant at typical values while I, was used as the
control parameter, in exact accordance with the series-
aiding case associated with earlier practice.”''1?

In particular the 3:2 subharmonic was selected for de-
tailed consideration. Figure 1 shows the appropriate I-V
curve in the neighborhood of 3:2 locking illustrating the
latter’s continuous but rapid onset. Detailed determina-
tion of the I, locking interval was made for three values
of a. These intervals are listed together with the pertur-
bation results in Table I. The comparison will be made
below.

III. PERTURBATION ANALYSIS

As in previous work®~!! the analytic treatment of the
system (2) depends upon treating the coupling parameter
a as “small”. We employed the method of averaging'® as
we had done in Ref. 11, where, in order to implement the
technique, we described a necessary variable change from
(1,¢,) to (§1,&,) therein defined. Applying this process
here and fixing all parameters except say I,, subharmonic
dc voltage locking n,V,=n,¥, will then occur for those
I, which cause the time average

. 1 T d
Jlim — IR = (g1 —nag)dt 3)
to vanish.!! V1,» are the respective dc (or average) volt-

ages of links 1 and 2 while n,n, are positive relatively
prime integers, neither of which is unity.

It follows that it is convenient to introduce new vari-
ables when studying a particular n,:n,; locking zone by

E§=n1§1+n,8,

and
D=n§—n,&,, 4)

where we can anticipate that £ will be a “fast” variable
while D will be “slow.” We only give a bare sketch of the
ensuing calculation, since it is an adaptation of a similar
one carried out in Ref. 11. Since some of the symbols
have lengthy definitions we refer the reader to this same
source for any here undefined quantities.

In terms of £ and D, (2) becomes
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where

TE=(nyhitnyya), ¢5=,tn)/2,

Q*=(n,Ftn,F,),

g =[n;2r +145)*n;s1/2, 6)

F}-:Qj+aa§coshk- ,

Z},S=e—}"" scos(qs /2 E+€;9,47°D)
+Lj,sin(gs 76 +€;5977'D)

where the summations in (5) are over
r=0,1,2,..., s=-10,1, i,j=1,2,

but with i£j and €= —€;;=1.
The Krylov-Bogoliubov-Mitropolski technique'® is ap-

plied to (5) involving final change of variable to (£,D)
where

E=E+ay(E,D)+a*P(E,D)+0(a) ,

- - - @)
D=D+ao(&D)+a%0,(E,D)+0(a?),
leading to the differential equations

95 _ 0+ 1aB (D) +aBy(D)+0(a)
dt

— (8)
dD _ = 2409 3
?=Q +aAd,(D)+a4,(D)+0(a’) .

The equations determining A;, B;, ¥;, and o; are obtained
by inserting (7) and (8) into (5) and identifying like terms
in a. As part of the process 4; and B; are chosen so that
¥; and o; become periodic functions in € with zero aver-
age value.

It is readily shown that in this case 4, =0=B;. Hence
subharmonic locking is associated with second-order
terms in «, not first order as is the case of equal-voltage
locking or harmonic locking.”!! Thus from the second
equation of (8) we see that the criterion for subharmonic
locking is to second order in a: Q™ +a’4,(D)=0, the
real roots of which (if they exist) as a function of I, deter-
mine the locking interval. The coefficients A,(D) and
B, (D) are periodic functions of D. (The algebraic details
involved in the determination of 4, and B, are very ex-
tensive and for brevity are omitted.)

The fact that first-order terms in a vanish implies that
the width of the locking zone will be quadratic in a, and
hence much more difficult to observe for weak coupling
than equal voltage or harmonic locking, which are medi-
ated by a locking zone of order a.>!!

Finally, it should be noted that a telescoping or “renor-
malization” process which effectively redefines the fre-
quency, first introduced in Refs. 9 and 11 was again em-
ployed. This was done by choosing the A; in (6) so that
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the o} are zero and hence F;=(};. In this context as in
that of Ref. 11, it is not essential for the removal of secu-
lar terms as it had been in Ref. 9, but it does improve the
accuracy of the results considerably, especially in regard
to the position of the locking zone.

IV. RESULTS AND DISCUSSION

Both the numerical simulation and the analytical per-
turbation calculation predict subharmonic locking for this
system. We studied in detail the 3:2 subharmonic locking
interval in I, for three values of the coupling constant a.
The results are shown in Table I. A graphical display for
one case is given by the I- ¥V curves in Fig. 1.

As expected from the second order of the perturbation
calculation the predicted locking intervals are extremely
small at low coupling. For the two lower values of a the
analytical calculation is in remarkable agreement with the
“exact” numerical simulation, most especially in the
predicted location of the locking interval, but also in the
width of this interval. The renormalization or telescoping
process mentioned above in regard to the perturbation
theory is in good part responsible for the excellent posi-
tioning of the center of the interval. For the largest value
of a, of 0.2, the quantitative agreement is no longer good,
indicating the breakdown of second-order perturbation
theory for this process. The numerical simulation itself
indicates that the length of the interval is growing more
slowly than o? at @ =0.2, predicting the loss of validity of
the second-order calculation.

In the vicinity of a particular subharmonic locking
zone, perturbation theory, to a high degree of accuracy,
distills Eqs. (5)—(8) down to an equation governing the
appropriate average phase difference D,

4D _ 24+ BsinD),
dt

where 4 and B are functions of the parameters of the sys-
tem, A vanishing precisely at the center of the locking
zone. This simplified equation predicts that the interval
of locking will be a mapping of the interval
—7/25D <7/2 onto the appropriate I, interval. That
is, at the extreme of the locking zone where A =B the
average phase difference will be —w/2, while when
A = — B at the other extreme, D =m/2.

In close analogy with our discussions of “voltage pul-
ling” near equal voltage locking,”!! one would expect
from this equation partially coherent behavior just outside
the subharmonic locking interval. That is when | 4 | is
greater than | B | but approximately equal to | B |, one
expects long periods of almost constant average n,:n,
phase differences interrupted by rapid slippages of 2.
This was observed in the numerical simulation and was
used as a guide to ‘“zeroing in” on the locking zone. It
could be observed experimentally as well by observing
partially coherent behavior outside the actual locking
zone.

In conclusion we predict that mutual subharmonic volt-
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age locking of noncapacitive coupled weak links could be
observed experimentally, practically speaking at least, for
the lower values of n,,n; and for strong enough coupling.
This contrasts with the single ac driven noncapacitive
weak link where no such locking is possible, regardless of
the strength of the ac source.
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