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Positron annihilation from F centers of alkali halide crystals
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Two-photon annihilation of a positron from an F center in an alkali halide crystal has been stud-
ied theoretically by accurately solving with the integral transform (generator coordinate method) the
two-particle (electron-positron) problem for two different model crystal potentials (an effective
Coulomb potential and the Qrumhansl-Schwarz cavity potential) which are often used in the
theoretical description of F centers. Calculations are presented of the stability and relevant expecta-
tion values of the positron-F-center system, the two-photon annihilation lifetime ~ and the angular
correlation distribution N(8) for sixteen different alkali halides. Comparison is made with available
experimental data and previous, less accurate calculations. It is demonstrated that a proper descrip-
tion of electron-positron correlation in the wave function is necessary in order to obtain meaningful
results. We have also established a range of effective charges, Z*, of the defect that can capture an
electron-positron pair in a stable state. For the Krumhansl-Schwarz potential, the present highly
accurate calculations show that all sixteen crystals have stable electron-positron states in the defect.

I. INTRODUCTION

In recent years, a number of experimental investiga-
tions' have been made of the annihilation of positrons
from alkali halide crystals which contain substantial con-
centrations of F color centers. Typically, a significant
change relative to that of the pure alkali halide crystal is
found in the angular distribution of two-photon annihila-
tion N(6), i.e., a new and narrow component in the low-
momentum (small angle 8) region appears. This has been
attributed to annihilation of positrons trapped by the de-
fect with the F-center electron, an (Fe+) complex or
center.

Several theoretical studies have been reported
wherein calculations have been made using model defect
potentials in the two-particle Schrodinger equation (de-
fined in Sec. II). These variational calculations have em-
ployed trial wave functions which were either uncorrelat-
ed or simply correlated for the electron-positron motion.
One problem with uncorrelated and simply correlated
treatments of the hydrogenic model potential is that with
the exception of LiF, this model potential leads to (Fe+)
complexes that are unstable ' with respect to free posi-
tronium [i.e., ground-state energies of the (Fe+) complex
which are greater than E(Ps)= —0.25 hartree]. Thus in
all these cases binding energies calculated relative to the
ground-state energy of the F center are misleading.

Thus a major purpose of the present paper is to proper-
ly assess the role of interparticle correlation in the varia-
tional treatment of the problem, and in the calculation of
the binding energy and the annihilation characteristics:
the lifetime ~ and the two-photon angular distribution
N(8).

Although experimental data are not available for all al-
kali halide systems, we shall present results for sixteen
systems: LiH, LiF, LiC1, and LiI; NaF, NaC1, NaBr, and
NaI; KF, KC1, KBr, and KI; and RbF, RbCl, RbBr, and
RbI.

During the course of this work we have also investigat-
ed the problem of stable binding of an electron-positron
pair to a Coulomb potential Z'/r for a range of values of
Z*. It is well known' that for Z*= 1 the system is un-
bound. We shall show that for 0.45& Z* &0.99 the sys-
tem becomes bound. This may be contrasted with the
range (0.7 &Z' &0.9) reported in earlier work for a sim-
ply correlated wave function.

The definition of the problem and the methodological
details can be found in Sec. II. The results are presented
and discussed in Sec. III. Concluding remarks are made
in Sec. IV.

Atomic units" are used throughout this paper except
where otherwise indicated.

II. THEORETICAL AND COMPUTATIONAL
CONSIDERATIONS

A. The Hamiltonian

The system under consideration is that of a normal F
center plus a positron, an Fe+ center. It consists of a
positron-electron pair in the field of the defect. The
Schrodinger equation to be solved for the (Fe+) center
problem is

HP(r+, r ) =Eg(r+, r )

with the Hamiltonian

H = ——,
' b+ ——,

'
b, + V(r+) —V(r ) —1 jr+ . (2)

The potential V(r) is the effective potential of an anion
vacancy of the host alkali halide crystal. In the present
study of S states, we assume that this potential is isotro-
pic [ V(r) = V(r) j and that the potential acting on the pos-
itron V(r+ ) and the electron V(r ) in the anion vacancy
are of the same form.

Of the models proposed for the description of the F
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center, ' two models for V(r) have been considered in
most studies in the literature ' for the Fe+ problem
and will be employed here.

1. Hydrogenic model

Z' =(86E), 2~/3)'~ (4)

The experimental F-band maxima tabulated by Zahrt
and Lin' were used in Ref. 7 to determine the values of
Z'. They may be found in our Table I.

2. Krumhansl-Schurarz (Refs. 13—15) cavity model

This potential may be written in the form

V(r) =Z'/r,
where the parameter Z' is empirically determined. We
have used the values of Z' given in Ref. 7. They were
determined by solving the F-center problem with this po-
tential to give the 1s-2p transition energy, AE], z~=3(Z*) /8, and choosing Z' to reproduce the maximum
of the experimental F band, presumably due to the 1s-2p
transition. As a result

B. Computational method

In our calculations, we used the method known in
atomic, molecular, and related problems' ' as the
integral-transform method and in nuclear physics as the
generator-coordinate method. '

Given the problem of finding the eigenfunctions of an
X-particle system with Hamiltonian H, the basic idea of
the method is to systematically generate trial functions tP

by the prescription:

$(X1,X2, . . . , XN ) =g(XN ) = S(tM )4(xN,'tM )dtM
DM

(6)

where DM is an M-dimensional integration domain for
the parameter (t) space, 4 is some known function (e.g. ,
an exact eigenfunction for some model Hamiltonian), and
the weight or shape function S(tM) is to be determined.
We shall assume that g, 4&, and S are all real.

Insertion of the ansatz (6) into the variational principle
and variation with respect to S(tM) yields a Fredholm-
type integral equation which may be solved by approxi-
mate numerical integration. This produces the secular
equations:

The potential for this model is of the form

Vo, r (R
V(r)=

(kor) ', r&R

where R is the radius of the cavity and ko is the static
dielectric constant of the crystal. The parameters of Ref.
13 for the KS model were used in our study and are listed
in Table I.

for j= 1,2, . . . , l., where

I(t;;tj)= jdx~[@(x~,t;)N(x~,'tj)],y

K( tt, tj ) = f dx~[4(x~,'t;)H&(x~;tj )],y~ .

(8)

Hydrogenlike model'
Crystal Z *

Cavity model (Krumhansl-Schwarz)"
R kp Vp

LiH
LiF
LiC1
LiI

0.485
0.697
0.562
0.478

3.859
3.794
4.84
5.67

3.61
1.92
2.75
3.80

0.3775
0.4152
0.3137
0.2616

TABLE I. Potential parameters describing the interaction of
e+ or e with an anion vacancy in alkali halide crystals.

[fOg],„=fOg +gOf, and hence the Hamiltonian kernel
K and the overlap kernel I are Hermitian.

The W, and t; are weights and abscissas, respectively,
for the numerical integration. We choose the sets [t;[
and I tj J to coincide, obtaining therefore a convergent
series of upper bounds to the true energy. '

As we are interested in the ground state of the (Fe+)
system, we choose 4(x~,'tM) to be

4(r+,r, r+,a, p, y)

=(4n ) 'exp( ar+ Pr— y—r+ ) . (10—)

NaF
NaCl
NaBr
NaI

0.598
0.512
0.475
0.455

4.37
5.317
5.63
6.11

1.74
2.25
2.62
2.91

0.3696
0.2947
0.2739
0.2507

This choice of N corresponds to the variational ansatz:
L

f(r+,r, r+ ) =(4m) ' g Ckexp( akr+ pk—r-
k=i

KF
KC1
KBr
KI

0.516
0.464
0.439
0.421

5.03
5.94
6.24
6.65

RbF
Rbcl
RbBr
RbI

0.505
0.441
0.411
0.396

5.33
6.18
6.47
6.92

'Due to Farazdel and Cade (Ref. 7).
Due to Zahrt and Lin (Ref. 13).

1.85
2.13
2.33
2.69

1.93
2.19
2.33
2.63

0.3202
0.2684
0.2527
0.2340

0.3016
0.2572
0.2444
0.2261

ykr+ ) —.

In effect the nonlinear parameters (a,p, y) are chosen to
be the lattice points of a three-dimensional quadrature
formula, and the linear coefficients are found by solving
the secular equation.

Note that for the ansatz (11) all integrals required for
the calculation of the energy and various other expecta-
tion values, and probability density functions, can be done
analytically.

It is evident that we may restrict our attention to finite
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values of ak, Pk, and yk, and so we choose the integration
domain of Eq. (6) to be a parallelotope in three space.
Thus, we may write

+k + [A 1 A21 pk + [Bi B2] yk + [G/ G2l (12)

for k = 1,2, . . . , L. The parallelotope is not completely
arbitrary. Since we are considering bound states, we must
have

minPk & 0, minyk & 0, (13)

where the minimum is to be taken over all
k E ( 1,2, . . . , L ). We allow the ak's to take on negative
values for the same reasons as in atomic systems. ' ' '

In order to ensure that all of the required integrals ex-
ist, we impose the following constraints:

With L=66 and the analogous ansatz to Eq. (11), the
ground-state energy was found to be —2.903 724363 a.u.
in comparison with the exact result of —2.903724377
a.u.

C. Other calculated quantities

3
~2y ~CK p

where

(16)

p= (q(r+, r )
~

&(r+ —r )
~
y(r+, r ) ) (17)

The spin-averaged annihilation rate for two-photon an-
nihilation, A, ir (and the corresponding lifetime, rzr A——zz ),,
is proportional to the electronic charge density p at the
positron, i.e.,

mill(p/, +p/+ak+a/) &0,
min(~k+~/+3 k+y/) &0,

(14a) and a is the fine-structure constant.
The angular distribution N(8) of the two emitted pho-

tons in the long-slit apparatus is

X(8)= f f ~X(p„,p~,p, =mc8)
~

dp„dp~, (18)

(14b)

where p=(p„,p~,p, ) is the total momentum (in our case
one positron and one F-center electron) of the annihilating
pair or the two emitted photons and

X(p)= f f exp( —ip r )5(r+ —r )P(r+, r )dr+dr

(19)

is the probability amplitude of finding an electron-
positron pair or the two emitted photons in the interval
between p and p+dp. The full width at half maximum
(FWHM) of X(8) will be designated by I /v.

We have calculated the expectation values

(r+ ) = f r+
~
g(r+, r )

~

dr+dr (20)

(r )= f r ~g(r+, r )~ dr+dr (21)ak ——(Az —Ai)( —,k(k+1)v 2)+Ai,
Pk =(BP—Bi )( —,k(k + 1)W3) +B/

yk =(Gq —Gi )( —,
' k (k + 1)v 5) +G,

( 1 5)
aild

(r+ )= f r+
~
g(r+, r )

~

dr+dr (22)

where the minimum in these constraints is to be taken
over all k E ( 1,2, . . . , L J and all 1 E [1,2, . . . , L J.

Thus, D3 is chosen to be a parallelotope defined by Eq.
(12), with Ai, Az, Bi, Bz, Gi, and Gi being variational
parameters subject to the constraints of Eqs. (13) and (14).

Finally, it is necessary to choose a quadrature scheme
for numerical integration of Eq. (7).' Monte Carlo
methods ' seem to be most appropriate because the
number of quadrature points required for satisfactory ac-
curacy is smaller than in traditional methods. We use one
particular method that was found to be quite success-
ful. ' ' In this method the quadrature points are pseu-
dorandom numbers in the unit cube which may be
mapped onto the required parallelotope by affine transfor-
mation. In this scheme the 3L nonlinear parameters are
generated by the following equations:

for all k = 1,2, . . . , L. In the above (x ) is defined to be
the fractional part of x. Note that A i, Aq, B/, Bq, G/,
and G2 are the variational parameters that define the
parallelotope of Eq. (12).

In our calculations all overlap, energy and other in-
tegrals were computed with the recursion relationships
given by Sack et al. ' ' ' for the Z'/r potential and
with suitable modifications for the Krumhansl-Schwarz
(KS) potential. The optimization of the variational pa-
rameters were carried out using Powell's algorithm
modified by the inclusion of a barrier function to handle
the constraints given by Eqs. (13) and (14). All of the al-
gorithms used for the solution of the secular equation
were standard EISPACK routines.

The present calculations were carried out on a Perkin-
Elmer-3251 computer using a 64-bit mantissa. In the Ap-
pendix a study on the number of terms L required in the
expansion of the wave function is reported and discussed.
We note that in the atomic helium problem' this method
yielded a truly compact and accurate wave function.

in order to characterize the distributions
~
g(r+, r )

~

III. RESULTS AND DISCUSSION

We begin the discussion with our results obtained for
hydrogenic potentials. In Table I are given the relevant
potential parameters used in the calculations. The fully
converged results for the lifetimes ~, the expectation
values (r+ ), (r ), (r+ ) along with the total energy
E(Fe+) are shown in Table II. Also shown are the bind-
ing energies of the positron, defined as E//(e + )
=E(F)—E(Fe+). E(F), the energy of the F center, is
equal to —(Z') /2 in this model. It should be pointed
out that only for the eleven cases mentioned in Table II,
the (Fe+ ) system was found to be stable. This can be con-
trasted with the results of Refs. 7 and 8, wherein only LiF
was found to be stable against dissociation into free posi-
tronium. In fact, at this stage it is quite interesting to ex-
amine the stability of a bound electron-positron pair in
the effective hydrogenic potential Z /r. It is well
known' that if Z' = 1 the system is unbound. In general,



353134 KANHERE, FARAZDEL, AND SMITH

e+ corn lex with the hydrogenic model po-ent calculations for the (Fe+ comp ex wi
nd not to be

T p
I RbC1, RbBr, and, e ctential ~ r .

d h fo o 1 fo th—E(Fe+) &0.25, an t erebound with respect to free positronium, i.e., —
tems are no inc ut included in this tabulation.

Crystal

LiH
LiF
LiC1
LiI

8.09
5.28
5.45
8.68

7.41
2.51
4.10
8.06

3.26
4.78
3.67
3.23

—E(Fe+ )

0.2522
0.2992
0.2614
0.2517

—Eg(e+ )'
(eV)

3.663
1.532
2.816
3.742

—E,(Ps)'
(eV)

0.060
1.339
0.310
0.046

~ (nsec)

0.5610
1.118
0.6840
0.5520

NaF
NaCl
NaBr
NaI

5.16
6.58
9.01

13.92

3.49
5.67
8.42

13.57

3.89
3.39
3.22
3.11

0.2685
0.2546
0.2516
0.2505

9.747
3.361
3.774
4.060

0.503
0.125
0.044
0.014

0.7670
0.5949
0.5486
0.5246

KF
Kcl

6.44
10.63

5.49
10.18

3.41
3.15

0.2550
0.2509

3.622
4.144

0.136
0.025

0.6006
0.5311

RbF 7.11 6.30 3.33 0.2536 3.431 0.098 0.5790
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TABLE III. Results of the present calculations for the (Fe+ ) complex with the Krumhansl-Schwarz
(cavity-model) potential.

LiH
LiF
LiC1
LiI

6.12
6.46
7.12
7.98

3.40
3.37
4.43
6.08

5.00
5.42
5.12
7.15

—E(Fe+ )

0.296 56
0.296 78
0.277 30
0.273 81

E~(e+)'
(eV)

2.638
1.616
2.280
2.841

EB(Ps )

(eV)

1.2669
1.2729
0.7429
0.6475

~ (nsec)

1.30
1.31
0.98
0.83

NaF
NaC1
NaBr
NaI

6.74
7.07
7.28
7.92

4.08
4.86
5.42
6.29

5.04
4.58
4.18
4.05

0.282 95
0.267 82
0.265 51
0.261 71

1.459
2.041
2.264
2.495

0.8966
0.4849
0.4220
0.3186

1.11
0.83
0.77
0.71

KF
Kcl
KBr
KI

7.05
7.76
7.86

10.14

4.90
6.11
6.36
7.82

4.48
3.98
3.90
6.85

0.271 00
0.261 52
0.260 34
0.264 45

1.682
2.348
2.348
2.721

0.5714
0.3135
0.2814
0.3932

0.86
0.70
0.70
1.02

RbF
Rbcl
RbBr
RbI

7.21
7.56
7.62
8.35

5.08
6.01
6.27
7.13

4.52
3.94
3.75
3.64

0.269 58
0.259 28
0.258 00
0.255 76

1.886
2.190
2.343
2.571

0.5328
0.2525
0.2177
0.1567

0.73
0.68
0.67
0.62

'Binding energy of a positron to an F center, E~(e+)=E(E)—E(Fe+ ).
Binding energy of positronium to the anion vacancy, Eg(Ps) —E(Fe+)= —0.25h —E(Fe+).

tern may be formally stable to a slightly lower value of
Z* than 0.45.

The behavior of the lifetime ~ as a function of Z' is
shown in Fig. 2(b). As expected the lifetime r monotoni-
cally decreases with Z'. This curve could be used to find
lifetimes of positrons for any defect modeled by an effec-
tive hydrogenic potential. We defer the comparison of
our lifetimes with experiment until after the discussion of
our results for the KS potentials.

The results for the KS potentials are presented in Table
III. There is a marked increase in the lifetimes as com-
pared to those for the Z'/» potential.

Our binding energies Ez(e+) are lower than those
found in Ref. 7 by a factor of 2. This is due to the suffi-
ciently correlated nature of the wave functions employed

in the present work. This fact highlights the importance
of electron-positron correlations in such systems. It is
also gratifying to see that for the KS potential the (Fe+)
complex is stable for all of the listed alkali halides. In
Ref. 7 only LiH, LiC1, NaF, KF, and RbF were found to
be stable with respect to free positronium for this poten-
tial.

In Ref. 7, the correlated calculation for those systems
for which the cavity radius is larger than 6.18 a.u. (e.g. ,
KBr, KI, RbC1, RbBr, and RbI) yielded the free positroni-
um energy and wave function. No such effect was found
in the present calculation for all sixteen crystals.

Our results for lifetimes (r) and FWHM (I ~) of the
angular correlation curves are compared in Table IV with
the available experimental data. The lifetimes obtained

TABLE IV. Comparison of theory and experiment. The lifetimes obtained in the most correlated
calculations of Ref. 7 are given in parentheses.

Crystal

NaC1

Expt b

1.09+0.02
1.1 +0. 1

~ (nsec)
KS

0.831
(0.61)

z4 —1

0.595

Expt b

3.7+0.2

I ~' (mrad)
KS

2.5

z*r—'

1.8

KC1 0.99+0.02
1.04

0.701
(0.64)

0.531 5.0+0.2
5.3

2.0 0.9

KBr 1.06+0.02 0.696
(NB)

NB' 5.0+0.2 2. 1 NB

KI 1.46+0.04 1.02
(NB)

NB 4.2+0.2 1.7 NB

I ~ indicates full width at half maximum of N (0), the two-photon angular correlation curve.
Experimental data is taken from the compilation in Refs. 1 and 2.

'NB denotes not bound with respect to the free positronium state.
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with the KS potential show much better agreement with
experiment due to the better representation of the actual
potential by the KS model. The improvement in the life-
times obtained with the present method over that of Ref.
7 is evident (numbers in parentheses). This shows once
again the importance of properly accounting for electron-
positron correlation.

The values of I & (FWHM) obtained for both potentials
are lower than the experimental values by almost a factor
of 2. The inclusion of correlation narrows the angular
correlation curve, an observation consistent with Ref. 7.
Since (r+ ), (r ), and (r+ ) are comparable to the size
of the F center, we believe that inclusion of nearest-
neighbor interactions is essential for realistic calculation
of angular correlations. It appears that the electron-
positron pair momentum distribution is more sensitive to
this interaction than are the lifetimes.

IV. CONCLUDING REMARKS

The present calculations have demonstrated that one
must include a high degree of electron-positron correla-
tion in the wave function of the (Fe+) system in order to
obtain reliable results for assessing the stability of the
(Fe+) system with respect to dissociation into either (i) a
positronium atom (Ps) and a defect ( —0.25 hartree) or (ii)
into a free positron and an electron bound to the defect
(i.e., a neutral F center). For the model parameters deter-
mined' for the description of the optical electron of the F
center, our calculations show that for al/ sixteen crystals
considered herein, the (Fe+ ) complex is stable with
respect to both channels (i) and (ii) for the Krumhansl-
Schwarz potential. For the hydrogenic model potential
(Z*lr) we find that the (Fe+) complex is not bound with
respect to (i) for KBr, KI, RbC1, RbBr, and RbI and is
bound for the remaining eleven crystals.

These results may be contrasted with earlier correlated
calculations which showed that for the Z*/r potential '

only LiF is stable with respect to channel (i) while for the
KS potential only LiH, LiF, LiC1, NaF, NaC1, and KF
exhibited such stability

The more realistic KS model yields the more satisfacto-
ry results with regard to stability and with regard to the
positron lifetimes for the only four crystals (NaC1, KCl,
KBr, and KI) for which experimental data is known to us.
However, the two-photon angular correlation function,
N(8) calculated for both models is much narrower than
the experimental data, but here again the results for the
KS model are significantly closer to experiment. Clearly
the calculated results could be improved in comparison
with experiment by choosing the model parameters on the
basis of the positron data. Such a choice would destroy

TABLE V. Results calculated for the Z*/r potential with
Z =0.65.

1

10
20
40
50

—E(Fe+)

0.2632
0.2814
0.2818
0.2821
0.2822

E~(e+)

0.0520
0.0702
0.0706
0.0709
0.0710

~ (nsec)

1.900
0.972
0.957
0.936
0.935

the connection with the description of the optical data.
The development of even more realistic models [including
the effects of pickoff, screening of the electron-positron
interaction by band electrons, the lattice structure, and
electron- (positron) phonon interactions] could lead to im-
proved results. Of course, it would be useful to have ex-
perimental data available for the other systems considered
in the present study.

An interesting result of the present work is that the
electron-positron system is bound in the Coulomb poten-
tial for 0.45 & Z* & 1.0. This is an additional demonstra-
tion' of the nonexistence of a bound state between a hy-
drogen atom and a positron.
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APPENDIX

—ykr+ ) (Al)

to obtain convergence of the Fe+ energy and the lifetime
In Table V, data is presented for the Z*/r potential

for Z* =0.65. In this case, E(Fe+) and ~ have converged,
i.e., 60 terms do not change the results to the reported
number of significant figures. It is clear that single-term
wave functions are unreliable in this case. For the KS po-
tential, L =45 was found to be sufficient.

In this appendix we report the results of a study of the
number of terms, L, required in the expansion of the wave
function

I.
P(r+,r, r+ )=(4~) ' g Ckexp( akr+ 13kr-—

k=1
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