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We study the consequences of rotational symmetry breaking in isotropic vector spin glasses.
Starting from a microscopic model we identify the underlying symmetries of time-dependent

(replica-dependent) SO(rn) rotations. The hydrodynamic triad theory is confirmed and the spin-

wave stiffness is related to a generalized transverse susceptibility. An expansion around mean-field

theory is used to calculate the stiffness approximately.

I. INTRODUCTION

The low-temperature properties of magnetic systems
with quenched random exchange (spin glasses) have been
studied extensively in recent years. Most theoretical work
is based on the spin-glass (SG) model of Edwards and An-
derson, ' who suggested that such systems might undergo
a phase transition to a SG state, in which the local mag-
netic moments acquire nonzero thermal expectation
values ( S(x) )&0. In the mean-field (MF) limit, the
model does show a sharp phase transition at a finite freez-
ing temperature Tg.

The Hamiltonian of the Edwards-Anderson (EA) model
is isotropic in spin space, so that a global rotation of all
spins around any axis in spin space is an exact symmetry
of the model. We are interested here in the manifestations
of the breaking of this rotational symmetry in the SG
phase, which we assume to exist for T & Tg. We limit our
considerations to a SG phase, in which the average mag-
netization vanishes and the system remains macroscopi-
cally isotropic. Thus, locally, the rotational symmetry is
spontaneously broken in the SG state, but there is no glo-
bal symmetry breaking.

The local magnetic moments point in noncollinear
directions. Therefore a global rotation of all spins around
any axis generates a new state, which can be dis-
tinguished from the unrotated state. The SO(m) symme-
try of the model is completely broken. Due to the isotropy
of the model, the rotated and the unrotated state have the
same free energy and are connected by a flat path in phase
space. Figure 1 gives a qualitative picture of the free-
energy surface. There are many valleys separated by
free-energy barriers and each valley is infinitely degen-
erate with a manifold of states generated by a uniform ro-
tation.

Given the spontaneous breaking of rotational symmetry
in the SG state, we expect to find low-energy excitations
corresponding to almost uniform rotations. These have
been analyzed within a phenom enological theory by

Halperin and Saslow. We briefly review the hydro-
dynamic theory. Below T~ the system will be found in
one of many possible equilibrium states. One such state is
singled out arbitrarily, denoted by ~ and specified by the
local magnetic moments I (S(x) ) I. Another equilibrium
state ~' is generated by a uniform rotation R of all spins

I R(S(x) )
In general, for an m-component spin system, we

represent a rotation R(0)=exp( —+s0 T ) by the
[m (m —I)]/2 generators T of SO(m) rotations. For
clarity of presentation it is sometimes useful to specialize
to Heisenberg spins. In that case, R(8) are the familiar
three-dimensional rotation matrices. For example, rota-
tions around the z axis are achieved by

cosO' sinO' 0

R;~ (6') = —sin8' cos6' 0
0 0 1,

where i and j denote Cartesian spin components. Of par-
ticular interest are infinitesimal rotations, for which
R;~.(H) reduces to

= IMl, etc.

x, ~y, 8z

FICx. 1. Schematic picture of the free-energy landscape, to
visualize that a uniform rotation by an angle 0 generates a de-
generate manifo1d for each valley.
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R,)(8)=5;J.+ok;J.8" . (1.2)

(We adopt a summation convention over repeated indices. )

Here ek;~ denotes the antisymmetric tensor e „,=1 and

e~ = —1 for all cyclic permutations. The relative angle
of the two configurations u and u' can then be represent-
ed as

O'= Ejk (SJ(x) ) (Sk(x) )
1

29 EA

with

qE&
—— g (S(x)) (S(x))1

mX

(1.3)

This concept can be generalized to a situation, in which
8'=8'(r) is a slowly varying function of space. Halperin
and Saslow define a fluctuating variable

8'(r)= g ejk(SJ(x))Sk(x),
1

2qEA
(1.4)

whose expectation value specifies the local orientation of a
rotated state with respect to the reference state ~. 8'(r) is
a coarse-grained variable: V denotes a hydrodynamic
volume, which contains a large number of spins n, but is
small compared to the macroscopic length scale.

The free energy of the twisted state is expected to be
higher than the free energy of the equilibrium state. For a
long-wavelength twist, Halperin and Saslow suggested the
following form:

oFe f d x g—— i

V8'i

2IEol
ps= (1.5)

Here, c0 is the ground-state energy per spin, a denotes the
lattice constant and we assume fixed length spins S =m.

The stiffness constant p, is a scalar, since the SG state is
macroscopically isotropic. In the hydrodynamic theory,
p, enters as an unknown parameter, which is assumed to
be finite.

The rotation angles 8'(r) are coupled to the magnetiza-
tion density via Poisson bracket relations. The resulting
dynamic excitations have a linear dispersion co-ck with
spin-wave velocity c =p, /7, with 7 the uniform magnet-
ic susceptibility. The damping is predicted to vanish like
k, so that the excitations are well defined in the long-
wavelength limit. The theory has been extended to in-
clude net ferromagnetic interactions as well as anisotro-
pies and nonzero remanent magnetization and external
field. '

The hydrodynamic theory is based on the assumption
of a finite exchange stiffness in the SG state. An upper
bound to p, is obtained by considering a rigid twist. The
resulting bare stiffness for a nearest-neighbor hypercubic
lattice in d dimension is

However, the true stiffness may be considerably reduced
even at zero temperature due to fluctuations in the
strength of the bonds JJ. Indeed, an important question
is whether or not the stiffness of the SG state is at all fi-
nite.

This problem has been addressed in various numerical
simulations. At zero temperature, p, can be deduced from
the energy difference of an equilibrium state and a state
with a macroscopic rotational gradient imposed. For a
nearest-neighbor planar SG, a finite stiffness was found in
d =2 and 3. As compared to the bare stiffness, its value
is reduced by —50%%uo. For Heisenberg spins in d =3 the
stiffness at T =0 was found to be ——,

' of its bare value
o 9, 10
$ ~

Information about the stiffness is contained in the spec-
trum of the Hessian matrix. " Due to the presence of
other low-energy excitations in spin glasses, it is difficult
to obtain reliable estimates for p, in that way.

Several authors"' have solved the microscopic equa-
tions of motion numerically for small samples. Propaga-
ting modes with a linear dispersion were found to exist for
planar spins" in three dimensions, but not for Heisenberg
spins. ' Note, however, that the relatively small sample
size severely restricts the range of wave numbers, which
are accessible to such a study.

Inelastic neutron scattering offers one possibility to
detect spin-wave excitations experimentally. So far no
propagating modes with linear dispersion have been ob-
served. ' Several reasons might account for this failure:
Possibly, the stiffness is so small that the energy range of
spin-wave excitations is beyond the resolution of current
experiments. The excitations might be overdamped due to
relaxation processes which have not been taken into ac-
count in the hydrodynamic theory. The analysis of neu-
tron scattering data is further complicated by the appear-
ance of quasielastic components, which are superimposed
on the spin-wave spectrum.

Recently, several authors' have observed ferromagnetic
spin waves in reentrant systems. Anomalies in the
linewidth and position of the spectra are observed simul-
taneously with the occurrence of a quasielastic peak,
which was taken as evidence for a SG phase.

Another possibility of observing low-energy excitations
is to measure the low-T magnetic specific heat and resis-
tivity. ' In most cases, the observed specific heat is dom-
inated by a linear term, which suggests that other low-

energy excitations are dominant at low T.
It is our aim to establish the hydrodynamic picture in a

microscopic theory. We want to check it for consistency
and provide a framework for a systematic calculation of
its parameters. We concentrate here on a discussion of p,
and address the following questions: Is there a finite stiff-
ness at zero temperature, and how does it compare to p, ?
What is p, at finite T, and in particular, what is its criti-
cal behavior? Even though our discussion is restricted to
the isotropic model, we point out that the framework is
general enough to also consider perturbations of the rota-
tional symmetry by weak uniform external fields and ran-
dom anisotropy. This will be discussed elsewhere. A
short summary of our work has been reported previous-

16
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II. A MICROSCOPIC DEFINITION
OF THE EXCHANGE STIFFNESS CONSTANT

We consider an EA model' for an m-component SG,

H = ——,
' g J S(x) S(x') . (2.1)

The exchange couplings IJ ~

I are Gaussian variables
with zero mean and variance [J ~ ]=J K(

~

x —x'
~

).
Here K is a nonrandom, function of

~

x —x' ~, normalized
such that Q„K(

~

x —x'
~

)=1. In real spin glasses K is
relatively short ranged. However, very little is known, at
present, about the low-temperature properties of the
short-range EA model. We will therefore assume that the
SG phase of the system has the same qualitative features
as the MF model, where the low-T phase is well under-
stood. ' ' Whether this assumption is valid for the
three-dimensional system is unclear at present.

In the MF model J~ is infinitely ranged with

K(
~

x —x'
~

) =1/N, N being the total number of spins.
MF theory predicts a second-order phase transition from
a paramagnetic to a SG phase with a nonzero value of the
EA order parameter, qE&

——[(S(x) ) .( S(x) ) ]/m. The
bold square brackets [ ] denote ensemble average over the
J„„.A full description of the SG phase must take into
account the existence of many equilibrium states which
are degenerate in the thermodynamic limit but have finite
free-energy differences in a finite system. '

The degenerate SG phases which are not related by a
global rotation are separated by free-energy barriers which
diverge in the N ~ ao limit. Thus, finite time (i.e.,
quasiequilibrium) quantities are obtained as thermal aver-
ages which are restricted to a single SG state ("valley" )

and the manifold of states which are related to it by a glo-
bal rotation. On the other hand, true equilibrium corre-
sponds to an average over all the valleys.

In order to calculate the exchange stiffness constant in
the SG phase, we concentrate on the following ensemble
averaged correlation function,

X (k)= g [(S(x) T (S(x)S(x'))T (S(x'))]e'"'*
4N „„, (2.2)

where 5 denotes the axis of rotation. In the limit of
long wavelength this will correspond to X (k)
= TqE& (8 (k)8 ( —k) ). Hence, the stiffness constant can
be defined as

(2.3)

where U is the volume of a unit cell. X (k) is a
quasiequilibrium quantity. All thermal averages in Eq.
(2.2) are restricted to a single valley.

The susceptibility X (k) can be intuitively thought of as
a response function to a twisting field. We envisage a
Heisenberg system where I (S(x)) I is one of its equilibri-
um states. We add a small longitudinal field
ht. (x)=hL, (S(x)). We assume that ht is small enough so

that (S(x) ) is not changed by the field, and the only ef-
fect of hL is to split the degeneracy between the state
I(S(x)) I and the rotated states IR(S) I. Next, we add a
small transverse field hT(x)

hT(x) =hTe„j (Si(x) ) cos(k.x),

where hT/hL, «1. If k=0 the only effect of hT is to ro-
tate the state (S)~R (S) where R is a uniform rotation
by an angle 0, =hT/hL around the z axis. If k is nonzero
(but small), the resultant state will have a nonuniform
long-wavelength angle of rotation 8,(x) relative to the
original state. The transverse response
[g„z 5( S(x) ) X ( S(x) ) ]/5h T is just

X'(k) = g e»je,II[(S;(x)St(x') ') (SJ(x) ) (S~(x') ) ] exp[ik (x —x')] .
4N„„, "' (2.4)

The bulk of the paper is devoted to a microscopic cal-
culation of X (k) and p, . Two independent approaches
have been used previously to calculate ensemble averaged
quantities in SG models. One is based on the dynamic
formulation and the other one on the replica trick. In
Secs. III and IV we will use the dynamic approach. We
first formulate the dynamic model and discuss its invari-
ance properties (Sec. III) and then (Sec. IV) present an ap-
proximate calculation of p, . In Sec. V we develop a
framework for a microscopic calculation of p, within the
replica formalism and use it to obtain an explicit MF ex-
pression for p, . A summary and discussion of the results
will be presented in Sec. VI.

III. INVARIANCE UNDER TIME-DEPENDENT
ROTATIONS

In the dynamic approach we calculate p, as the
static limit of a dynamic response function. In principle,
the dynamic approach is more general and allows one to
consider time-dependent perturbations and address the
problem of propagating modes and their damping. Here
we do not consider finite-time dynamics but rather con-
centrate on static or quasistatic quantities. We have
therefore chosen the simplest microscopic dynamics,
namely a purely relaxational equation of motion
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6(HEA+ V)r a, s(x, r) = —p +g(x, t) .
6S(x, t)

(3.1)

(g;(x, t)/J(x', t')) =6;~6 6(& —t')
I o

Instead of working with fixed-length spins it is more con-
venient to consider a soft-spin version of the EA model by
introducing a potential V(S ), that provides a local con-

Here, I o denotes a constant kinetic coefficient and the
thermal noise g(x, t) is a Gaussian random variable with
variance

straint on the length of the spin. For a discussion of
finite-time dynamics, it is certainly important to include
precessional terms in the equation of motion. As far as
equilibrium or quasiequilibrium properties are concerned,
we do not expect that they will be modified by the preces-
sion of spins at finite frequencies.

The quenched average over the random exchange can be
performed as for the Ising case ( m = 1). It is con-
venient to introduce auxiliary response fields S;(x,t) and
define a generating functional Zj J „}for correlations
and response functions. Since Z[J „}is properly nor-
malized, we can perform the quenched average directly on
Z[J„„}with the following result:

Z =[Z[J~ }]=f DIS,S}exp Lo(ss)+ g f dt[1;(x, t)iS;(x, t)+I;(x,t)s;(x, t)]

213 J g K ~ dt dt'[iS;(x, t)S;(x', t)isj(x, t')SJ(x', t')
X, X

+iS;(x,t)s; (x', t)iS~(x', t')S)(x, t')] (3.2)

where I.o is purely local,

i. (S,S)= f dt & iS;(x, t) —r a,S, (x, t)—6@~EA+ V) . ,- 1 6'(pv)+il o 'S;(x, t) — dt
6$;(x, t) 2 6S;(x,t)6S;(x, t)

(3.3)

The physical quantities of interest are the averaged multiple-spin correlation and response functions. These are obtained
from Z by functional differentiation with respect to the fields i;(x, t) and l;(x, t),

6l;, (xiti) 6l; (x„t„)6lj,(x', t', )
. . 61J (x', tM)

=[(iS; (xtt() . iS; (x„t„)s~,(x)t)) S~ (x~, t' ))] (3.4)

The SG phase is characterized by time-persistent parts in
both the local correlations

q J(t, t') = lim [(S;(x,—t)S~(x, t') )]r,[~ —~']-

and response functions

b,'~(t, t')= lim [(iS;(x,t')SJ(x, t))] .
I o(t —t'j~ ~

One possible state of the system is given by

q;, (t, r') =6,,q (t t'), —

(3.5)

(3.6)

(3.7)

b„', (t, t') =6,,b, '(t t')— {3.8)

Before we go on to discuss the rotational degeneracy of
this state, we briefly recall some of the properties of the
SCx state, which have been derived within the dynamic
mean-field theory (MFT).

The simplest MFT does not allow for an anomalous
response, i.e., 6'=0. In this case the frozen correlations
have a constant, finite value on the longest time scales.
This solution is identical to the solution of Sherrington
and Kirkpatrick (SK), which is known to be unstable
below T, .

Another MF solution has been proposed by Sommers.
To rederive it within the dynamic approach, ' one has
to assume the existence of one microscopic time scale ~~,
such that for ~ ~&1/~~,

a(s'(x) )
m, a ph;(x)

whereas for co&&1/ra, G(co)=1—q+b, . This solution
was shown to be stable on finite time scales, but is unsta-
ble on the longest time scales. ' These results are
straightforward generalizations of the corresponding cal-
culations for the Ising case.

In the stable MF solution one takes into account the re-
laxation of both q and 6 with a distribution of macro-
scopic time scales. ' These are due to "hopping" process-
es over energy barriers, which diverge in the thermo-
dynamic limit. The relaxation times have a hierarchical
structure that can be parametrized by x E [0,1], such that

&&~~, if y &x. The transitions between different states
give rise to a slow decay of frozen correlations

and an anomalous contribution,
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b, '(x) = [(iS(y,0).S(y, r„)) ]
m

to the low-frequency response

G(x) =1—q (1)+b(x)=1—q (1)+ f dye, '(y) .

In the finite time limit denoted by 7.
1
—the frozen corre-

lations are maximal and there is no anomalous response
b,(1)=0. On the longest time scale ro, frozen correlations
have completely decayed q(0) =0 and the response has
reached its equilibrium value G (0)= 1 —q (1)+b (0).

In the absence of external fields the Lagrangian is trivi-
ally invariant under a uniform rotation of all the spins.
More importantly, the spins at time t can be uniformly
rotated with respect to their direction at some other, arbi-
trary time t', provided the rotation is slow on the micro-
scopic time scale set by I p

'. The transformation

q(t, t')= lim [([R(8,).S(x,t)]-[R(8, ) S( xt')])]
I o(r —i')

=R(8, —8, )q (t t')— (3.10a)

(3.9) becomes an exact symmetry of L.
In this limit, nontriuial dynamics for 8(t) survives,

namely variations of 8(t), on macroscopic time scales
[r„j,which are associated with the hopping over macro-
scopic free-energy barriers. Rotations on time scales [r„J
leave L invariant, reflecting the absence of barriers to uni-
form rotations.

The invariance properties of the Lagrangian imply a
manifold of degenerate spin-glass states, which are related
to one another by time-dependent rotations. In Eqs. (3.7)
and (3.8), we have singled out that particular state, which
does not contain a slow time-dependent rotation. The
most general order parameters have the form

S(x,t)~R (8, )S(x,t),
S(x, t) ~R (8, )S(x,t)

(3.9) b, '(t, t')= lim [([R(8,) is(x, t)][R(8, ).S( xt')])]
I 0(r —t')

leaves the dynamic Lagrangian invariant, provided
I p 0~0. This can be easily checked with the explicit ex-
pression for L [Eqs. (3.2) and (3.3)]. The nonlocal part of
L (3.2) only involves scalar products of two spin operators
at the same time. The same is true for the local part Lp
(3.3), except for the term iS;(x, t)I 0 'B,S;(x,t). If we re-
quire I p 0~0 then the transformation defined in Eq.

(3.10b)

As discussed in Sec. II, the spin-wave stiffness p, is re-
lated to a quasiequilibrium susceptibility ps(k). In the
dynamic approach, this amounts to a particular choice of
time separations in a dynamic four-spin correlation,
namely,

(Tl
X'(x,x') = d(tz t4)[(S;(x,ti)Sj—(x, tz)Sk(x', t3)tSt(x', t4) )]Ezt~ezkt'4T (3.1 1)

with time ordering t, & t3 & t4 & tz and time separations t3 t, -ri, t4 —t3-r, , and (tz —t4) inte—grated up to time scales
v.1. For this ordering, the correlations factorize according to

7'(x, x') = d (tz t4)[(—S;(x,ti )) (Sk(x', t3) ) (Sj(x,tz)tSt(x ~t4) ) ]~zij ezkl .4T
We can then use the fluctuation dissipation theorem to relate the unaveraged response function

d (tp —t4)(Sj(x, tp)tSt(x', t4) ) = (Sj(x,tq )St(x', tp ) ) —(Sj(x,tp) ) (St(x'&ti) )

(3.12)

to the corresponding correlation function. The disconnected part does not contribute in Eq. (3.12), so that the definition
in (3.12) is indeed the same as the preceding definition of Eq. (2.2).

IV. CALCULATION OF p,

The four-spin interactions appearing in Eq. (3.2) are conveniently decoupled by a Gaussian transformation to local
two-spin operators

with

2+2
D exp — K ' ~x12 ~ x12A ~~+ln D N expL1

1,2 x, x'
(4.1)

2J2
Li Lo+ g Q Q

——~(x, 1,2)&P (x, 1)@~(x,2),
1,2 x

(4.2)
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with Lo given in Eq. (3.3). Here we have introduced the
following notation:

@ (x, l)=(iS; (xti),S; (x, t, ))

and zero otherwise. The expectation values of the Q
fields are related to spin correlations and response func-
tions via

is a two-component vector where the argument 1 = ( t „i& )

denotes the time argument and the Cartesian spin com-
ponent. Summation over greek indices is implied and

"dt, f"dt, y .
1,2 1 i, l2

( Q "(x,1,2)) = —g (&0 (x, I)@ (x,2)),
X

(Q '(x, 1,2))=—g(N'(x, l)@ (x,2))

(4.3)

(4.4)

The matrix A has components

g 1122 g 2211 g 1221 g 2112
and similar for higher-order cumulants. Here we concen-
trate on X'(k), which is given by

4' (x—x') = f d (t, —t4)[(Q,,"(x,t, , t, )Q„",(x', t3 4) ) —{Q„"(x,ti, t2) l(Qkt'(x', t3, t4) )]ezj~zkt (4.5)

for the particular ordering of external times t, &t3&t4&tq and times separation (t3 —ti)-ri, (t4 —t3)-ri. The in-
tegration over (t2 t4) extends—up to time scales r&.

In the MF approximation we replace the fields Q by their values at the saddle point

5LIQI
(4.6)

5Q ~(x, 1,2)

To go beyond MF theory we expand the Lagrangian L [QI in fluctuations 5Q ~(x, 1,2)=Q ~(x, 1,2) —Q ~(1,2). Up to
quadratic order this expansion reads

5LI. I5QI = —,
' g +5Q t'(x, 1,2), , 5Q "(x,3,4),

5Q ~(x, 1,2)5Qr (x', 3,4)

with

(4.7)

5L =K 'P J 3 ~ 6(1—3)5(2—4) —g'J (e (x, 1)e~(x,2)e"(x', 3)e (x', 4))
5Q ~(x, 1,2)5Q r ( x', 3,4)

+p'J (e (x, 1)e (x, 2) )MF( e (x', 3)e (x',4) ) MF . (4.8)

To calculate p, we use the quadratic approximation to L I Q I given in Eq. (4.7). Within the Gaussian approximation to
L I Q } the correlations of Q fields are obtained by solving the integral equation,

6L (5Qr (x', 3,4)5Q "&(y,5, 6) ) =5(x—y)5(1 —5)5(2 —6)5 Ppz5Q ~(x, 1,2)5Q (x', 3,4)
(4.9)

It is instructive to first calculate the stiffness for the SK solution with constant q and 6=0. Naively, one might ex-
pect a k divergence of X (k) also for this theory and one might even hope to find the correct stiffness p, for T suffi-
ciently close to Ts. These expectations are not justified by our calculations, as we now show. We explicitly solve the in-
tegral equation (4.9) for components (aflvp, ) = (2222) and (2212),

6L 6L
(5Q "(x',3,4)5Q' (y, 5, 6) )+, (5Q '(x', 3,4)5Q' (y, 5, 6) ) =0, (4.10)

5Q (x, 1,2)5Q "(x',3,4) 5Q (x, 1,2)5Q '(x', 3,4)
6L (5 "(x' 3 4)5 (,5, 6) )

5Q (x, 1,2)5Q "(x',3,4)

5L+ 2~ 2i (5Q '(x', 3,4)5Q' (y, 5, 6) ) =5(x—y)5(1 —5)5(2—6) . (4.11)
5Q (x, 1,2)5Q '(x', 3,4)

(4.12)

The rotational susceptibility is obtained from Eq. (4.10) if the external times are ordered as ti & t5 & t6 & t2 and the limit
tz —t1~ ao, t6 —t5~ m is taken and t2 is integrated over all times t2) t6. The equation then reads

1 [m Gr]
3T4

[Gr(Gz-+2GL )] X'(k) =
3T3 Gi221(k)
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with

G&2zi(x —y)=
2

lim dt3dt4(QJ. (x, ti, t2)Qk~(y, t3, t4))e«ze, k~ .1 12 21

4T
(4.13)

Here m, Gz, and GL denote the local unaveraged magnetization and transverse and longitudinal response functions of
MF l':

1 Bm
m =v 3 tanh(zW3) —,GL —— , and Gr ——

z 3
' az'

The average refers to the Gaussian static noise z with variance [z ]=2p q In .particular,

2 —z'r2 ' m
[Grm ]=const &( dz z e

0 Z

2 2
2

[Gr(Gr+Gt )]=const)& f dzz e ' ~ t'~ +2
~ a. =3T',

(4.14)

(4.15)

K(k)=A (0)——,
' (k„a) =1— (ka)

2d
(4.17)

which is appropriate to a nearest-neighbor hypercubic lat-
tice in d dimensions. The spin-wave susceptibility X'(k)
diverges in the limit of long wavelength, as we expect.
Whether or not the spin-wave stiffness is finite depends
on the long-wavelength behavior of G&2z&(k). To obtain
the latter function we have to solve Eq. (4.11) for time
separation t2 —t1~00 and t5 and t6 integrated freely. In
this limit the second term does not contribute and we find

T2
G,2z)(k)= [T K '(k) ——,[Gr(Gr+2GL, )]]4

with

const=&a/2(2p q) ~

where the last equality follows by partial integration. In
the limit of long wavelength, Eq. (4.12) yields

[m Gr]2d
X (k) =

& G 22~(k) (4.16)
3T(ka)

To be specific, we have used

culation of X'(k) is rather involved, so we have used a
truncated Lagrangian (quartic approximation), which
gives the correct behavior near Tg The d.etails of the cal-
culation are delegated to Appendix A, the result is

d 2

X'(k) =
2b, q (ka)

(4.20)

V. REPLICA THEORY

A. The replica theory

Therefore the stiffness p, =2J a Aq/d is finite. This re-
sult, that the SG stiffness is finite, also holds for the mar-
ginally stable MF solution, which involves a distribution
of q and 5, as was discussed above. However, the explicit
calculation of p, for the marginally stable phase is diffi-
cult to perform in the dynamic approach. In the follow-
ing section we present a calculation of p, using the replica
formalism, which provides a more elegant method of cal-
culation.

d

2(ka)
(4.18) In the replica formalism, the ensemble averaged free en-

ergy is obtained as the limit

So the divergence of the rotational susceptibility is actual-
ly stronger than k

lm'Gr] d'
(ka)

and p, vanishes for the SK solution. Note that the coeffi-
cient of the k divergence vanishes as

~

T —Tz ~

as the
transition is approached. To see whether the vanishing of
p, is peculiar to the SK solution or a genuine feature of
the SG state, we clearly have to go beyond this simple
theory. Possibly, the existence of a finite stiffness is relat-
ed to the existence of an anomalous response (or replica
symmetry breaking). If so, then Sommers's solution
should provide the simplest MF theory with a finite p, .
For this solution the nonequilibrium X'(k) requires all
time separations to be small as compared to w~. The cal-

Pf =—[lnZ]= —l—im ([Z"]—1) .
1 1

N N n o
(5.1)

pf =—lim —f DQ p—e ~ (~) —1
Nn on

(5.2)

where

The quantity Z" is calculated by analytical continuation
from positive integer n, in which case Z" is just the parti-
tion function of n copies (or replicas) of the system. Us-
ing standard transformations, one traces out the spin de-
grees of freedom in favor of continuous fields Q'~~( )x
where a and P are replica indices a,P = 1, . . . , n, and i,j
are the spin Cartesian coordinates i,j = 1, . . . , m. The re-
sult is
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2J2
PF{Q]= gK '(x —x') gg"p(x)QJ'p(x')

x, x' a, p

PZJ2—ln Tr(s )
exp g ps' (x)

a, P x

X Q'p(x)s'p(x)

structure allows for the parametrization of q p by a single
(monotonically increasing) function q(x), 0&x & 1. This
function is equivalent to the function q(x) in the dynamic
MF theory (Sec. III) if one chooses the "gauge"
da/dx = —x."

Extending the current physical interpretation' ' ' of the
Ising order function to the vector case we consider two
physical copies of the system with the same exchange cou-
plings,

(5.3)

The fields Q p can be restricted to have the symmetry
Q'~p=g~p . The order parameters of the spin-glass phase
are

H = —g J„„[S,(x).S&(y)+S2(x) Sz(y)] .

The overlap between the two systems is defined as

Q(, = —g(S', (x))(SJ(x)) .

(5.9)

(5.10)

( g."p) =—g (S'.(x)SJp(x) ), a~P . (5.4) The probability distribution of Q'(2 equals

P(Q) = g P.Pbo(Q Q.b),— (5.1 1)
The rotational invariance of the system is manifested in

the invariance of the free-energy functional (5.3) under
global rotations of each of the replicated systems separate-
ly, i.e.,

F{Q p(x) ] =F{R Q p(x)R p
'

I .

Here, {R j"
&

is a set of n arbitrary O(m) rotations,
R =R ({0 I ) [recall that o =1, . . . , m (m —I)/2 and
a= 1, . . . , n] Studies . of the replica theory (in the MF
limit) usually assume 8 =0 or R =I. In this case the
order parameter (5.4) takes the form

(Q'~p) =q.pW, a~P. (5.5)

Equation (5.5) is a manifestation of the fact that none of
the pure SG states contain spontaneous or external bulk
anisotropy. In fact, this holds also for a system with ran-
dom anisotropies. In this case, Eq. (5.5) is the only al-
lowed symmetry of the order parameter. On the other
hand, in the case of an isotropic system, Eq. (5.3), the
most general symmetry of the order parameter is

where

a, b

Q," =—g (S'(x)), (SJ(x)), .

—I
Qab =abRaRb (5.12)

Here, P and Pb are the Boltzmann distributions of the
two pure SG states (S), and (S)b. The summation over
the pure states (a) and (b) in Eq. (5.11) includes all the
"rotationally" degenerate states. Thus by applying a glo-
bal rotation to, say, the states (a), one observes that
P(Q) =P(RQ), where R is an arbitrary rotation. Further-
more, the fact that each of the pure states is, on the aver-
age, isotropic, implies that the overlap Q must be of the
form,

(Q p)=q pR Rp', a&P, (5.6)

q-p= X—
ij =]

a@p (5.7)

where R is an arbitrary replica-dependent rotation and

q & is the following invariant quantity
1/2

a& a& a].

Ql Q2 Ql

Q] Q] Qp

Qp

B. Replica symmetry breaking in vector SG

In the MF replica theory, Q p = ( Q p)MF is calculated
by the saddle-point equations

Qp

Cj] Q]

Q] Qp Q] Qp

gg IJ (5.8)

Qp Q] Q]

Q] Qp Q]

The marginally stable solution of Eqs. (5.8) below Tz,
breaks the replica symmetry, i.e., q p [Eq. (5.7)] depends
on the replica indices (a, P). In Parisi's replica symme-
try breaking scheme, the matrix q p consists of a hierar-
chy of blocks, as shown schematically in Fig. 2. This

Q] Q] Qp

FIG. 2. Parisi's replica symmetry breaking scheme for the
matrix q ~.
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Thus P(Q) is a function only of the single invariant q,b,

P (q) =—g P,Pb5(q q—,b )
l

a, b

(5.13)
X (S (x)S (x') )& (S (x)S (x') )b (5 lg)

where
2 1/2m

q, = g —g (S'(x)},(S'(x}) (5.14)
m

is invariant under the rotation of one pure state relative to
the other. The quantity (5.13) is related to the replica or-
der function q(x) via P(q)=dxldq, just as in the Ising
case. In MF theory, P (q) has a 5-function piece at
q,„=q(l), implying that q(1) represents the EA single-
valley order parameter, q(1)=q„. The quantity q(1) is
"self-averaging, " i.e., it does not exhibit sample-to-sample
fluctuations in the N~ ao limit. ' The definition (5.13)
and (5.14) of the overlap distribution in a vector SG is
convenient from a computational point of view. Alterna-
tively, one can eliminate the rotational degrees of freedom
by applying an external field.

C. Single-valley stiffness constant in the replica theory

The calculation of X'(k) [Eq. (2.4)] can be performed in
the replica theory using four-spin correlations with three
different replica indices [which corresponds to the three
thermal averages that appear in (2.4)]. However, we have
found it considerably simpler to evaluate within the repli-
ca theory, the following correlation function,

Gz(k) l3 g rk (x ).x-
g~ zing zkl

X, X

then, the probability distribution of G,'b(k)

P(G'(k)}= g P Pb5(G'(k) —G b(k)}
a, b

dG, (k;x)
dx (5.19)

where G'(k;x) is the x-dependent propagator calculated
in the replica theory. In particular, G'(k;1) corresponds
to the single-valley propagator in which all thermal aver-
ages are restricted to the same pure SG phase. Thus, the
correct definition of the single-valley p, in the replica
theory is

p, =u q (1) lim [k G'(k;1)]
k —+0

(5.20}

where G'(k;1) is the propagator G~tt(k), Eq. (5.17), but
with a and P restricted to belonging to the same smallest
scale block. In order to calculate p„ it suffices to calcu-
late the, infrared divergence of G'(k;1). This is done in
the following subsection by relating this propagator to
spin-wave fluctuations in the fields Q tt(x).

D. Spin-wave fluctuations in the replica theory

We identify spin-wave fluctuations in Q tt as fluctua-
tions which correspond to a long-wavelength modulation
in the replica-dependent rotation angles. We consider a
small perturbation of the state (Q'Jp) =q tt5'J, by space-
dependent rotations around the z axis,

X [C;k(x,x')Cjt(x, x')], (5.15) 5Q ~(x) =q~&(R [58'(x)]R '[M&(x)] I ) (5.21a—)

where
=q p(58' —50p)e, , (5.21b)

p, =UqE~ hm [k'G'(k)]
k~0

(5.16)

As we are interested in the single-valley p„ the thermal
averages of C;k and C~l must be restricted to the same
pure SG phase. This can be done by considering the repli-
ca propagator,

G'p(k) = e„E,k((Q—'
p(.k)Q p( —k) )V (5.17)

Using Parisi's theory, G'~(k) is parametrized by a func-
tion G'(k;x) where 0 & x ( 1, where x represents the scale
of the smallest block to which both a and /3 belong. The
propagator G'(k;x) is a continuous function of x for
0(x (x and is constant G'(k;x) =G'(k, 1) for x &x (1,
just as q (x).

The physical interpretation of G'(k;x) is similar to that
of q(x). Defining the overlap of spatial correlation func-
tions of a pair of pure SG states

Ck(x, x') = (S;(x)Sk(x') ) .

The two quantities G'(k) and 2X'(k) differ by an amount
which remains finite as k~O, see Appendix C.

Thus, in analogy with Eq. (2.3), p, can be defined as

where e, stands for the antisymmetric tensor e„~. There
are 3(n —1) independent fluctuations of this form (in the
Heisenberg case). The reason for the factor n —1 is that a
replica-independent rotation does not induce fluctuations
in (Q tt ). It is useful to construct a basis of orthonormal
eigenvectors for the subspace of fluctuations of the form
(5.21). To do so we consider the following eigenvalue
problem in replica space,

g q 5 p
—q p Up(A, ) =P 'e(k) U (A, ),

(5.22)

Here U (A, ) is the eigenvector associated with the Ath
eigenvalue P 'e(k). The n —1 eigenvectors satisfy the
orthonormality condition,

(5.23)

and the additional constraint,

(5.24)

which excludes the trivial eigenvector U (k) = U. A gen-
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eral angle fluctuation around the z axis can now be writ-
ten as

58'(x)= +582(x}U (k) . (5.25)

Q~p(A, ) =e,q p[U (A. ) —Up(A, )]/[2P 'e(k))' (5.26)

We define the following n —1 orthonormal vectors

[Q p(A, ) I in the space of the matrices g p,

us turn to the SG phase with broken replica symmetry.
We assume that q p has the hierarchical block structure
of Parisi's symmetry breaking scheme, as shown schemat-
ically in Fig. 2. The diagonalization of such a matrix is
presented in detail in Appendix B. They consist of bands
of degenerate modes. The bands can be parametrized by
the scales x of the block sizes. The xth band contains
—ndx/x eigenvectors U~ which vary only on the scale
x. The eigenvalue of Eq. (5.22) associated with the xth
band is,

Equations (5.22) and (5.23) guarantee the normalization,
e(x)=p xq (x) —f q2(y)dy (5.32)

1)J
a, p

A general spin-wave fluctuation, (5.21), can be expressed
as

n —I

This eigenvector structure suggests that the single-
valley response functions are associated with x =1 modes.
Indeed, an explicit eigenmode decomposition of the prop-
agator G'(k;1) shows (see Appendix C) that it has
nonzero projection only on the x = 1 mode, i.e.,

5Q p(x)= g 5q2(x)g p(A, ) . (5.27)

We can use I g p(A, ) ] to project out the spin-wave part of
a general fluctuation. The amplitudes I5qz(x) I associat-
ed with a general fluctuation 5Q p(x) will be

5q2(x) = ——,
' g g 5Q'Jp(x)g'Jp(A, ) . (5.28)

ap ij
The amplitudes of the fluctuating angles I582(x)I of a
general fluctuation will then be

= q (1)(58'(k)58'( —k) ) . (5.33)

Note that Eq. (5.33) represents only the massless part of
6'(k;1). Other contributions to 6'(k;1) come from mas-
siue ("longitudinal" ) modes. From Eqs. (5.20) and (5.33)
we conclude that

582(x) =5q2 (x)/[2P 'e(A)]'

The spin-wave propagators are,

(5.29)
p, = lim u [Pk (58&(k)58&( —k) ) ]k~o

=[2u e(1)P '] lim [k 6)(k)]
k~o

(5.34}

62, (k) = (5q2 (k)5q2 ( —k) )

g "p(&)grs(&)(5Q "p(k)5grs( —k) )

(5.30)

and

(582(k)58q( —k)) =62 (k)/2p 'e(A, ) (5.31)

represent pure spin-wave fluctuations. They diverge as

~

k
~

below Tg.
Equation (5.31) defines n —1 propagators which for

any finite n, diverge as k~0 due to rotational symmetry.
Since the replica free energy must be proportional to n,
there must exist an additional propagator whose mass
vanishes as n~O. In the following subsection we will
make the connection between 62(k) and the physical
correlation function, G '( k; 1 ).

where 6~(k) is the spin-wave propagator defined in Eq.
(5.30) with A, = l. The result (5.34) is quite general. It re-
lies only on the symmetries of the replica free energy

F[Q2p) and on the assumption that the SCi phase is
described by a continuous Parisi order function. To actu-
ally evaluate p, one needs an explicit evaluation of 62 (k)
in the k~O limit. In the following subsection we will

evaluate this propagator using a Gaussian expansion
around MF theory.

F. Expansion around MF theory

Expanding F I Q I in powers of 5Q p
——Q p

—Q p where

Q is the saddle-point value, F[g ) takes the form,
2

5F [ Q I
= g K '(x —y) g 5g~~p(x)5Q'~p(y)

a, p (,J
X)P

(a& p)

E. Eigenvectors of q ~ and their relations to p, —P'/2 g C'Jp's5Q'~p(x)5Q s(x)

Let us first discuss the replica symmetric state given by
q p=q(1 —5 p). In this case all the n —1 eigenvectors of
Eq. (5.22) are degenerate with the eigenvalue p 'e=nq,
indicating clearly that the propagators (582(k)582( —k))
diverge more strongly than k in the n ~0 limit.
Indeed, one finds in this case another mode which be-
comes massless in the n~O limit. Together these give
rise to 6'(k;1)—

~

k ~, i.e., p, =0, see Appendix C. Let

apo, 6 x
|a& p, u &5)

i,j,k, l

+ O(5Q'),

where

C~p~s ——(S~S~gp+s )MF —(S+p)MF(S+I) )MF .

(5.35)
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Restricting ourselves to quadratic order in 5Q, it is easy to
separate out the contribution of the spin-wave (SW) fluc-
tuations. This can be done by substituting the ansatz
(5.2la) in Eq. (5.35) and retaining only quadratic orders in
the angles 5Q. One obtains

oFsw= Pqap[5C(k) —58$( —k)] [K '(k) —K '(0)]
k, a
a, P

T g e(A, )[K '(k) —K '(0)]58g(k)58g( —k)
k, o., A,

=—g 5qg(k)5qg( —k)[K '(k) —K '(0)] . (5.36)
2~,

Here the index o stands for all m(m —1)/2 rotation
"directions. " From Eq. (5.36) we obtain,

T2
58g(k)69g( —k)

e(k)[K '(k) —K '(0)]
and using the expansion of K(k) yields the final result

(5.37)

p g2& 2 —dp( 1 )d

J2 2 —d

dT q (1)—J q (x)dx (5.38)

In terms of the order functions q(x) and b(x), Eq. (5.38)
reads

1

p, =2J a "d ' 5'x q xdx. (5.39)

VI. CONCLUSIONS

0& [(S,(x)S (x') ) (S,(x) ) (S,(x') ) ] .

(6.1)

It was our main concern to give a microscopic basis for
the phenomenological theory of hydrodynamic fluctua-
tions in isotropic spin glasses. We have focused here on
the spin-wave stiffness, which enters the hydrodynamic
theory as an unknown parameter. In a microscopic ap-
proach .the spin-wave stiffness is related to a correlation
function of the microscopic spin variables

p, =UqEA hm [k'X'(k)]
k~0
1

4%T

and therefore

2'"
p = J m

~

e(0)
~

— [1—q (1)]2T
(6.4)

For very small temperatures, we know that
q(1)=1—g(T/J) decreases linearly with T. Further in-
formation is available from computer experiments, which
yield g=0.6 and [E(0)/2)-0. 9 for m =2 (Ref. 32) and
g-0. 7 and [E(0)/3]-0.9 for m =3 (Ref. 33). This im-
plies a strong reduction in the stiffness constant even at
zero temperature

q(1)= 1 — +0 1—T T'
Tg Tg

Substituting these results into Eq. (6.2) we find the MF
value of the exponent p~F ——3.

At the critical point one normally expects that the sym-
metry is restored, i.e., that the singularity of the longitudi-
nal and the transverse SG susceptibility is the same. This
would imply P'(k) —k" for the critical behavior,
whereas the hydrodynamic result is X'(k)-(qE&/p, k ).
If one assumes scaling, then the two behaviors can be
matched at k-g-

~

T —Tz ~

' yielding p, =v(d —2).
This relation should hold as long as normal scaling laws
are obeyed, which means for d (d, . Above d„dangerous
irrelevant variables exist and cause a breakdown of hyper-
scaling laws. In the SG problem, d, =6, which suggests
that p=2 in d =6. On the other hand, one normally ex-
pects that p should take on its' MF value in d =d, .

The reason for this apparent violation of scaling has
been discussed by Fisher and Sompolinsky, ' who showed
that additional dangerously irrelevant variables appear in
the SG state. The stiffness constant vanishes for the re-
plica symmetric solution and has a singular dependence
on one of the additional dangerously irrelevant variables.
This singular dependence is responsible for the discrepan-
cy of the MF value p =3 and the Josephson relation in
d =6. If the singular dependence is taken into account,
then p is found to change [p= —,'(d —2)] already for
6 (d (8, yielding p =2 in d =6.

It is of interest to see how fluctuations in the exchange
reduce the value of the stiffness at zero temperature, as
compared to its bare value p, [Eq. (1.5)], which results
from a rigid twist. For that purpose we express p, in
terms of q(1) and the ground-state energy per spin e(0).
In MFT,

J'm
~

E(0)
~

= 1 —J q'(x)dx

p.= I Tg —T I"
MFT predicts close to Ts:

~

b '(x)
~

=q (x)q'(x) and

(6.3)

This correlation function has been calculated approxi-
mately. Expanding around the marginally stable MF
solution, we find a finite nonequilibriurn stiffness,

1

p, =2J (a /d) f ~

b. '(x)
~

q(x)dx . (6.2)

As the critical point is approached we expect p, to van-
ish in the following way:

lim I
Op,

03 for m =2,
0.2 for m =3 . (6.5)

In the spherical limit ( m = ~ ), the stiffness vanishes
completely, since q = c.= 1. Note that even for infinite
dimension, the true stiffness differs from its bare value.

One of the main results of the above theory is the close
relationship between the finite stiffness constant in the SG
state and the breaking of replica symmetry. Note that Eq.
(5.39) implies the vanishing of p, in a replica symmetric
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phase. At the moment, it is not clear whether this rela-
tion holds only in MF theory or is a more general feature
of SG condensation. Thus an intriguing open question is,
whether short range SG's at low d can have a finite p,
without the features of replica symmetry breaking.

Finally, it should be stressed again that in the present
work we have concentrated on the single-valley stiffness
constant. The calculation of the long-time limit (or true
equilibrium value) of the transverse susceptibility X'(k) is
much more complicated. Approximate MF solutions
(such as Sommers solution, see Appendices A and C) indi-
cate that the equilibrium transverse susceptibility diverges
stronger than k in the SG phase. This would imply the
complete relaxation of p, on the longest time scale. But
this conclusion still has to be confirmed by a more de-
tailed analysis.
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APPENDIX A: STIFFNESS CONSTANT
FOR SOMMERS'S SOLUTION

In this appendix we present the details of the calcula-
tion for Sommers's solution, which leads to the result of
Eq. (4.20). The dynamic definition of Q»(t, , t2) and
Q& (2t, , t 2) implies that these fields have nonzero expecta-
tion values even in the paramagnetic phase. We want to
use a truncated Lagrangian, which correctly describes the
critical behavior of the full model. To achieve a con-
sistent expansion in r=

)
(T —T, )!T,), we first have to

redefine the fields, such that they correspond to order pa-
rameters:
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Ql I (x I 2) =5t, , t,5i, ,i, + Q1 1 (x»2)

Q)2(x, 1,2)=5(t) —t2)5;; +Quip(x, 1,2) .

(A 1)

(A2)

Here we have assumed, that the microscopic dynamics is
infinitely fast on the time scales of interest. The Lagrang-
ian is expanded in the fields up to quartic terms:

L = — g gK„„'Q ~(, 1,2)Qr (x', 1,2)A~r +—I ~r (1,2, 3,4)Q ~(x, 1,2)Qr (,3,4)a S

1, 2 x, x' 2.

+—I ~r "(1,2, 3,4, 5,6)Q ~(x, 1,2)Qr (x, 3,4)Q "(x,5, 6)

+—I ~ ""i"(1,2, 3,4, 5, 6, 7, 8)Q ~(x, 1,2)Q (x, 3,4)Q "(x,5, 6)Qi"(x,7, 8) . (A3)

Here and in the following we put J =1 and denote Q by Q again. I„.(1,2, . . . , n) are the correlations of the local
Lagrangian I o, which are connected with respect to pairs, for example,

(1,2, 3,4)=(@ (1)@~(2)@(3)+ (4)) g' —(@ (1)@~(2)) (+ (3)@ (4)) g'.

We have formally introduced coupling constants w and y
to set up a systematic expansion in ~. Eventually these
parameters wi11 be set equal to unity.

The equation of state is obtained as the solution of the
saddle point equation 5L I Q) /5Q ti ——0. With the ansatz

—g Q ii(x, t2 t, ) =q, —
m

we obtain Sommer's solution

q =r+ r+O(r )
5 3

m +2
and

2+O(r ) .
4

m +2

(A6)

(A7)

(A5)

G =1—q for cu && I/rt, ,
Q p( (x, co) =m; G =1—q+b for co((1/rt, ,

This expansion is exact up to and including terms of
O (r').

The next step is an expansion in fluctuations around the
saddle-point solution up to quadratic order. Using the
truncated Lagrangian of Eq. (A3), the MF local four-spin
correlations of Eq. (4.8) are approximately given by

p (4 ~(l)4 p(2)4 r(3)C's(4) )MF —p (N~(1)@p(2) )MF(&g&r(3)&bs(4) )MF

=I ~r (1,2, 3,4)+ I ~r "(1,2, 3,4, 5, 6)Q „(5,6)+ 1~" "~'(1,2, 3, ,4—56, ,7)8Q„„( 56)Q, ( ,7)8. (A8)
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We are going to use these results to solve Eq. (4.9) for the spin-wave stiffness p, . We first consider Eq. (4.11) for time or-
dering t& &t& &t«t2 with t~ t—

&

h——t fixed and integrate over t& freely and over t6, such that t2 t«—&rq. The first
term gives the following contribution:

e, „e„j.—.g e'"'" "' f dt3dt4dt5 dt6[T K„„'5k5J&5(t&

—t3)5(tz —t&) —(S;(t, )SJ(tz)iSk(t3)iS) (t4) )MF]' " "'x„„,
(kg )2X[(Sk( xt 3) S&( xt~)iS (x', t~)iS„(x',t6))]= T

2d
F)(k,bt),

T2

with
(A9)

ik. (x—x')F, (k, bt) =ekte, „—g e'"'" " '
dt& dt6[(Sk(x, t, )SI(x, tz)iS (x', t, )iS„(x',t6) ) ] .z zmn (A 10)

Here, dt6 denotes an integration range t2 —t6 ~&~~. The first term also gives rise to an inhomogeneous term which
combines with the right-hand side of Eq. (4.11)

dt's

dt6E'z)j'Czmn Si t ] Sj t2 Sm t5 Sn t6 MF =2 T + T2 (Al 1)

The second term contributes

ezqe, ~„ f dt3 f dt4(S;(t( )Si(tq)Sk(t3)tSt(tq) )MF[(tSk(x, t3)St(x, t4)iS~(x', tq)tS„(x', t6) ) ]=~(+O) F2(k),T2

with

(A12)

F2(k)=e,kte,~„—pe'"'" *' f dt, dt, f dt [6(iS ( ktxS3( ttx4)iS (x', t&)iS„(x',t6))]z zmn (A13)

Collecting the various terms together, we obtain

k F, (k, ht) q/T F2(k—)
2d T2

T2
(A14)

Note that this implies that F, (k, ht)=F&(k) is indepen-
dent of At.

To solve for F&(k) and F2(k) we need a second equa-
tion, which is provided by Eq. (4.9) for components
(agvAu, ) =(1222). We integrate this equation freely over t,
and t5, and integrate over a restricted range t2 —t«~~~.
The first term gives rise to an inhomogeneity

dt, dt5 dt6e„&e, „(iS;(t~)SJ(t2)iS (tq)iS„(t6))MF —— qh
5

(A15)

as well as to the following term:

( ik (x —x') 2e„je, „ f dt~dt5 dt6 dt3dt4 —g e'"'" " '[T „K„' 5 k5tj(5t& —t3)5(tq —t4) —(iS;(t~)S&(t2)Sk(t3)iSt(t4) )MF5~ ]

2(ka) b,
X [(tSk(x, t3)St(x)t4)iS~(x', tq)tS„(x', t6) )]= T —

2 F2(k) .
2d T2

The second term gives the following contribution:

(A16)

e„je, „ f dt3dt4dt&dt5 f dt6 —g e'"'" " '(iS;(t& )SJ(tz)iSt, (t3)iSt(t4) )M„N „„
X[(Sk(x,t3)St(x, t&)iS (x', t, )iS„(x',t6))]= —', qhF, (k) . (A17)—
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, qh—F](k)+ T4 p (ka)
2d

Fq(k) = —, T qb, . (A18)

Collecting terms together, we obtain q =qo ~mo
~

+(q' —q ) ~m]
~

+. +(q"—q" ')/m],
f

' "—q /m], +] /

(81)

p (ka)'
2d

2

4 q b, (ka)=—2A
Z.~ ' Z.2

(A19)

This immediately yields

We now have a closed system of equations, which can be
solved for F& and F2. The determinant D is given by

~
m;

~

denotes the m; Xm; matrix having all its entries
equal to l.

~
m],

~
(mo/m], ) is a mo Xmo matrix obtained

by juxtaposing (mo/m], ) blocks
~

m], ~. The matrix
~

m
~

has ( m —1) linearly independent eigenvectorsJ
e [mj ]] having zero eigenvalue, we label them by an
index A. . Notice that g], e], [mz]=0.

The eigenvectors of q ~ can be written as

[A, , (i i, . . . ,i. ), m. ]

F](k)= T
(ka)

(A20)

4TX Fi (k)—=0I (A21)

Note that this result is independent of the parameters of
the quartic theory. This indicates that the result (A20) is
valid beyond the quartic approximation to L, even though
it has been derived only within the truncated model.

The final step in our calculation is the relation of F] to
X (k) via Eq. (4.10). We solve it for time ordering
t& &t5 &t6 &t2 and all time separations «zg and t2 —t6
integrated over:

qT' '=e[m, ]Z
™I

with
k

e[m]]= g (q —q' ')m~ —q"m„+, .
j=I+1

(83)

(84)

Pictorially, this eigenvector is different from zero only in-
side a particular block of size mj, labeled by (i], . . . , ij ).
Inside this block it depends only on the sub-block index

1)+], as e],[(mjlmj+])]. Notice that
~ m, ~

' 'T '

The decomposition (Bl) gives

or

Tdq

2b, (ka)
(A22)

deg( mJ ) = mj

mj mj+]
(85)

The eigenvalues e[m]], only depend on the "band index"
m&. , A(i],iq,, . . . , ij. ) serve as additional labels. The degen-
ercy of the mj band is given by

APPENDIX B: DIACxONALIZATION
OF A HIERARCHICAL MATRIX

IN THE n ~0 LIMIT

In this appendix we diagonalize a matrix Q p having
the Parisi hierarchical structure. The simplest examples
of matrices of this kind are q p, the Parisi order parame-
ter matrix and integer powers thereof Q p

——(q p)]'. To
set the notation we review the Parisi construction. The k
stage of the hierarchical structure is defined by dividing
the moXmo (mo: n) matrix into m] &&—m] blocks; these
blocks are in turn subdivided into m2&(rnid blocks. The
procedure is iterated k times. There are (m] ]/m])
blocks of size m~ inside a block of size mI &. The row in-
dex a can be replaced by the sequence of hierarchical
block numbers a=(i],iq, . . . , i], +])i]——1, . . . , (n/m, ),
i2 ——1, . . . , (m]/m2), . . . , i], +]——I, . . . , (m/, /mJ, ]).+
We define mk+] =—1, and ik+ &

labels replicas in the small-
est block (of size m], ). For simplicity we consider here
the matrix q ~.

The overlap of two replicas, aAP, a=(i], . . . , i], +])
and p=(j], . . . ,j],+]), is the integer l such that
i] ——j], . . . ,i] j] bu——t i]+] j]+].——(Pictorially, m] is the
smallest block size containing a and P). A hierarchical
matrix q p dePends on the rePlica indices a,P only via
their overlap. That is, q p=q; with i =aAP.

The matrix q can be written as

2 2g qaa~ap qap (87)

The first term induces a constant shift of the spectrum,

k
2 2y q = y qj. (mf —mj+]) .

j=0

Replacing q by q in Eq. (86) and combining it with
Eq. (88) we find @2[m/], the eigenvalues of Eq. (87).

Notice that QJ. Odeg(m~) =n —1. This procedure gives
all the eigenvectors obeying g e; =0. Adding the addi-
tional eigenvector (1, . . . , 1) we check that the total num-
ber of eigenvectors equals the dimension of the matrix q.

The continuum limit is taken by letting n ~0,
m; =i /(k + 1), and k~ co,' [m; ] is a partition of
[mo, m], +]]=[0,1]. The continuous variable x replaces
the discrete index m;. In this limit the eigenvalues all are
given by

1

e(x) = —f q (y)dy —q (x)x
X

and the number of modes parametrized by scales between
x and x +dx is given by the continuum version of Eq.
(85), i.e., —(dx/x )n

In Sec. V we have used the eigenvalues of the matrix
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1
2 2ez[nij]= P q& (niq —mz+i)+qi rnid+i .

j=0
(B9)

The continuum limit k~co n ~0m;-x, [Eq. (B9)],
(B10) lead to Eq. (5.32)

ez(x)= q (x)x —J q (y)dy (B10)

APPENDIX C: SPIN-WAVE PROPAGATORS
IN THE SHERRINGTON-KIRKPATRICK

AND IN THE BROKEN REPLICA SYMMETRY
THEORY

In this appendix we explicitly exhibit the relation be-
tween the eigenvectors of hierarchical matrices and the
spin-wave propagators.

Restricting ourselves to fluctuations 5Q'~p ——e';~5Q p,
the quadratic part of 5F (5Q) [see Eq. (5.35)) has the form

and have eigenvalue k . The vectors e (n) were defined
in the preceding appendix. L, is a symmetric
( n —1)n /2 &( n (n —1)/2 matrix and therefore has
n (n —1)/2 eigenvectors.

In addition to (C6) there are ( n —1)(n —2)/2 eigenvec-
tors of the form F p

—(e ep —epe ),
A, , A, '=1, . . . , (n —1); the corresponding eigenvalue is
k +[n

~

r
~

/(2 n—)] to lowest order in q.
The propagators (5Q p5Q&s) are found by inverting

the matrix J with the following Ansatz:

(5Q p5Q p) =6, a~/3,

&5Q.p5Q., ) =X, a~Ply,
and

& 5Q.p5Q„& —=0, a~Ply ~5 .

Alternatively, one combines Dyson equation

5L =r g 5QapLap;rs5Qrs .
a(P

Notice that because of the antisymmetry one can define
5Q p

———5Qp for a)P.
To perform explicit calculations we restrict ourselves to

the vicinity of T, and keep terms up to cubic order in q &
in La~.z~. The resulting J- is given by

L =(r +k )I —6wR +8(2y, +yz)I, (Cl)

G =Go+G06u)RG,

(aP
i Go

~

y5) =
r +k + 8(2y) +y&)q~p

and the equation of state

rq —6q (n —2)w+8(2y)+yz)q =0
to obtain, after some algebra,

(C7)

(C9)

rq p 6w g qpsqs —+(2y, +yz)q p
——0 .3

5=1
(C3)

From symmetry considerations we know that [see Eq.
(5.26)]

(~) [U (A, ) —Up(A. )]Q'p'=q p T e(A, )
X=1, . . . , n —1 (C4)

are normalized eigenvectors [g p(Q p) =1] of L with
eigenvalue A: . In this appendix we will be concerned with
the relation between the eigenvectors (C4) and the propa-
gators (5Q p5Q p).

In the Sherrington-Kirkpatrick solution q ~
——q for

a&P and qp
——0. The equation of state (C3) reduces to

rq —6wq ( n —2) + 8(2y i +yq )q =0 (C5)

and the matrix (aP
~

L
~
y5) is easily diagonalized. The

eigenvectors dictated by symmetry are

q[e (n) —ep(n)]=Q p, A, =l, . . . , n —1, (C6)

where

(aP
~

I
~

a'P')=q'p5 5pp

The association matrix R is defined by

(aP
~

R
~
ay) =qpy, y&a, P,

(aP
~

R
~

ya)= qpr, y&a, —P,
(aP

~

R
~
y5) =0, y~5~a~P .

The order parameter q p is determined from the equation
of state

2 2 1+ 1 ——
nk n k +n ~r~/(2 n)— (C10)

1 1

k +n ~r ~/(2 —n)

The first terms in Eqs. (C10) and (Cl 1) are the spin-wave
contributions to G and P, respectively. That is,

1 1x=-
n Q2

x=
2&4

The fact that 7 diverges faster than (1/k ) indicates that
the spin-wave stiffness vanishes in the absence of replica
symmetry breaking.

Consider now the first stage of replica symmetry break-
ing. The matrix L [see Eq. (Cl)] has now a richer spec-
trum. Using the notation of Appendix 8 we list the
eigenvalues and eigenvectors and their degeneracy in
Table I.

The last two entries in the table are the spin-wave
eigenvectors (C4), that arise from symmetry considera-
tions alone. The eigenvectors listed in the table are not

(~) (~)—=QQ pQr.
n

This contribution combines with the contribution of the
other modes [second term in Eqs. (C10) and (Cl 1)] to give
a finite limit as n~O,

1 /rfa+k
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TABLE I. Eigenvectors, eigenvalues, and degeneracy of the Hessian, at the first stage of replica symmetry breaking. The vector
k'1

) k'l)
C; ' is zero when i =lI and obeys g,. C; '=0. XI=(6w/qI)[(ql —qp)ml+mpqp]. Xz ——6w[nqp+2(ql —qp)ml]. X3 ——61pnqp.

j 4=6w [m pqp+ {qI
—qp)m l ].

Unnormalized eigenvectors Eigenvalue Degeneracy

J2 2 2 J2 ) J)

/=1, . . . , m) —1; iI (A.
~'=1, . . . , m) —1; l) ——1, . . . , (mo/m) )

mo
(m) —1)(m) —2)

2m)

A,'g lg2 1, A, 'g2g)
2 J2 1 J 1 J2 2 I 1

l) ——1, . . . , (mp/m) )

, (mo/m) )

l, & l,
jw. , k'=1, . . . , m) —1,

k'+ A, p

mp

2 m)

mo —1
m)

(m) —1)'

(m) —n)

—e 5 (1 —5; )], l, =1, . . . , mp/ml, j =1, . . . , (mI —1)

k'+ k
mo

(m) —1)
m)

mo mp
(m) —1) —2

k'+ A.
m)

e; —eJ, X=1, . . . , mo/m) —1J) ' k' mo —1

k' mo
(m) —I)

m)

—5'e (1—5 )], A. =l, . . . , ml —1, iI= 1, , mp/m&

+ 8(2y I +j 2)'q I

0= rqp —6w [q p(n —
2m I )+2qpqI (m I

—1)]

+8(2j I+j 2)qp .

(C12)

normalized to unity. The first ones are constructed from
eigenvectors of a hierarchical matrix U belonging to the
first band which varies over the block scale mo. The
second one is built of eigenvectors varying over a scale
m I. The third entry from below indicates the existence of
(n /ml —1)(n /m, —2)/2 modes that become massless in
the limit n ~0. This can be predicted on general grounds
since the free energy has to be proportional to n, and
therefore, the number of massless modes has to be propor-
tional to n. The spin-wave modes only provide (n —1)
massless modes. To evaluate the propagators we use
Dyson equation (C7) and the equation of state (C3) which
gives,

O=rq, —6w [q p(n —m I )+q 1(ml —2)]

Inserting the Ansatz:

(5Qi l, iz,'j'IJ25Qlllz;m I mz) =0, iI&JI&ll~m I

[5QI I 12 I IJ25Q I 2 11jz ) —=g4(

(5Ql I 12 I IJ25QI 112 I I m2 ) =g4(

(5Ql Iqlzql IJ25Ql Il 2~m I mz ) =gg

(5Ql Itlzyjl jz5Ql I tz', m Imz ) =g7( = )

&5Qil, iz;jlj'25Qillz m Im2) =—g7(W)

(5Ql I ~ zij IJ25QI 1 Ized jlmz ) =g6(

~5Qil, iz;JIJ25Qillz;JIm2) =g6(W A)

)n Dyson equations (C7) and (C8) we obtain after some
algebra,
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k +6wm (q1
g (= =)+(mi —2)g (= ~)= 2, g (= =)—2g (= ~)= ~, g5(=)=

k (k +Bi) k +k, nk (k +X, )

k +6w [(n —mi )qp/qi —(n —2m i )]
m i [g?( = ) —g7(a) l =

k (k +A. i)
g?( = )+(mi —1)g7(&)=

(C13a)

6w 2[(q i
—qp)m i+ nqp], X3 ——6wnqo,

q1

kp = 6M [?lq p +2( q i
—qp )m i ],A.4 =6/8 [??qp + (q i

—qp )m i ]
(C13b)

g(= =)=

g'(= &)=

m1

m1

k2+6wm &q1

k2(k~+g )

k +6wm1q1

k (k +hi)

1 1+ 2k +A1 k +A[
(C14)

1

k +k,

The short-time stiffness was defined in terms of the
propagators (5gi;i&i, j25Qi, i&i ij2)—:G ' with
anP=1. [g4(= =), in the present notation. ] Solving
(C13) for g4( = = ), we find

vectors listed in Table I. Qnly eigenvectors with k eigen-
value (i.e., spin waves) contribute to the residue (C15).
From the explicit expressions in Table I, it is immediate
that eigenvectors belonging to the second band which are
constant inside an m1-sized block give zero contribution
to the spectral decomposition of g (= =). Therefore,
only spin waves varying over the shortest scale contribute
to g (= =).

To illustrate this point we calculate the short-time stiff-
A. l

1ness from the eigenvalue decomposition. E are the un-
normalized eigenvectors from the last entry of Table I.

The spin-wave stiffness is defined in terms of the residue
of the pole of g (= =) at k =0. From Eqs. (C14) and
(C13b), we find

A, l

lim kg (= =)=g (C17)

2

lim g (= =)k =4 2 q[2
p qimi+qo(mo —mi)

(C15)
& l? &2?J 1)J2

(C18)

g(= =)—
6'k (C16)

in agreement with the results of the dynamical calcula-
tion. Alternatively, (C15) can be computed using the
spectral decomposition of g ( = = ) in terms of the eigen-

This equation can be examined in the Sommers limit
(mirac, (qi —qo)mi~b, ', mo~0 and qi~q). We
find,

The sums (C17) and (C18) are elementary and we find
2

2 4 2q 1kg(= =)=
2(qi —qo)m, +nqo

(C19)

in agreement with the result of the direct inversion of I,
Eq. (C15). This approach is easily generalized to the k
stage of replica symmetry breaking.

The relevant eigenvectors are

E 1'' ' k' . (
k 8'k g'k k

ti
1 gk)i l, . . . , ig+1~J&, . . . ,Jk+& qual, . . . , &k+&~J&, . . . ,Jk+& ik+1 ~ lk J&+] I

Equations (C18) and (C17) generalize to

(E '1' ' 'k
)2

A,;l, . . . , l

k —1

~~E
' ' '

'~~ = g qj(m~ m?+i)+qkmk . . —
j=0

Equation (C19) generalizes to

lim k g (= =)=2 4 2qk

k2 0 2 2g q. (m —m, +i)+qi, mk
j=0

The continuum limit of Eq. (C20) results in (5.39).
(C20)
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