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Solid-effect rate equations for a spin-1 nucleus
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We derive and solve the rate equations for the solid-effect dynamic nuclear polarization of an

electron and spin-1 nuclear system in the limit where the electron-spin-resonance linewidth is small

compared with the nuclear-resonance frequency. Although the equations are considerably more

complicated than in the case of spin- 2 nuclei, the nuclear polarization and time to polarization are

comparable with the results for the spin- ~ system with similar intrinsic rates.

I. INTRODUCTION

The solid effect was the first mechanism discovered for
dynamic nuclear polarization (DNP). In this effect the
electrons are polarized by brute force in a large dc mag-
netic field and/or low temperatures. The system is irradi-
ated by microwaves at the frequency to induce simultane-
ous electron-spin-resonance (ESR) and nuclear-magnetic-
resonance (NMR) transitions, which occur because of the
weak dipolar interaction between the electron and nuclear
spins. If the nuclear magnetic relaxation is long enough
and the electron spin relaxation is short enough, then one
nuclear state will be filled up preferentially. For the best
results, it is necessary that the ESR linewidth be less than
the NMR frequency. This mechanism' has been
described in detail for nuclear spin I = —, and it is com-
monly inferred that the equations for the case of nuclear
spin I & —, are similar. However, we know of no publica-
tion where the equations for the case of I & —,

' are derived
and/or solved. In this paper we derive and solve the
equations for the solid effect in the case where I = 1.

This work has been motivated by the program to spin-
polarize both nuclei in deuterium-tritium systems in order
to enhance the fusion cross section for laser-driven fusion.
The tritium's radioactive decay heat poses a formidable
problem in cooling to the low temperatures required for
nuclear polarization. For this reason, DNP for spin-1 and
spin- —, systems is of technological as well as intrinsic in-

terest. DNP has been tried on externally irradiated solid
hydrogen deuteride and the observed deuteron polariza-
tion was about 0.1 of the observed proton polarization.
The reason for this difference is unknown and it could
have been caused by many factors. However, it does lead
to one of the questions to be considered here: is there an
inherent difference in polarization efficiency between
I = —, and I =1 nuclear-spin systems?

There are several general articles on the dynamic polari-
zation of I = 1 nuclei, but we know of no derivation of
the solid effect for the case. One reason is that actual
ESR lines are generally broad compared to the NMR fre-
quency of the deuteron. Also, there exists another mecha-

A. Case of I=
2

The polarization equations for S = —,',I = —,
' have been

described by Jeffries, ' by Abragam and Goldman, and by
many others. However, we shall briefly summarize this
case for the purpose of comparing it to the case of I =1.
We shall use Jeffries's terminology in which all rates are
expressed in units of co l, the rate for the Am&
= + 1,hml ——0 transition, or

co i
——1/(2T t, )

where T&, is the longitudinal relaxation rate for the elec-
trons. The transition rates involving the pump (or
electronic-spin) system are shown schematically in Fig. 1.
In particular f3co~ is the externally induced rf pumping
rate, Oco& is the nuclear relaxation rate for Aml ——+1 that
is induced by the electrons, and cree& is the rate for the
Ami ——+1 and Amq ——+1 transitions. It is easily shown
that both 0 and o. must be much less than one. Further,
there is the usual NMR relaxation rate of the nuclear
spins in the absence of the electron spins,

I/T)„——2/co) .

The nuclear polarization P„ is defined as

P„=(n+ n)/n, —

(2)

where n+ is the number of nuclear spins with mi ——+ —,

nism, dynamic cooling, which requires a broad inhomo-
geneous ESR line to work well. ' This mechanism may
be the dominant one in almost all actual deuteron polari-
zation experiments. However, available dc magnetic
fields get larger and the electron spins in the deuterium-
tritium system are in orbital S states which should have a
relatively small amount of inhomogeneous broadening.
Thus, a I = 1 solid effect may soon be seen.

II. RATE EQUATIONS

In what follows we shall let S and I denote the electron
and nuclear spins, respectively.
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FIG. 1. Energy levels (mq, mI) for the electronic and nuclear
spins for the case of I =S=

2 . The rates shown in the diagram

are explained further in the text. The pumping shown will pro-
duce an abundance of nuclei in the state mi ——

2 and a positive

nuclear polarization.

and n is the total number of nuclear spins. The electronic
polarization P, is defined similarly. Note that the equili-
brium electronic polarization Pp is negative and

Pp = —tanh(p, Hp/kT) (4)

dP„
Ti„—— P„[1+, (P/2f)] —(P—/2f)P, ,

—'" dt

where

where Hp is the magnitude of the applied external field
and p, is the electron's magnetic moment. We shall as-
sume that the nuclear moment is small enough so that the
equilibrium nuclear polarization is zero.

The calculation of the rate equations is essentially the
same as Jeffries except we allow for a finite Pp. That is,
it is assumed that the ESR line is narrow compared to the
nuclear-resonance frequency so that only the one transi-
tion shown in Fig. 1 is pumped and it is also assumed that
the nuclear spins stay in equilibrium with each other. The
relative rates 0 and cr are appropriate averages as dis-
cussed by Abragam and Goldman and c is the number of
electrons divided by the number of nuclei ~ Using the fact
that 0 and o. are much less than one, the results can be ex-
pressed in the convenient form

dPe
T), —— P, ( 1+ , P) P—p , PP„, ————

~.=[P+f(2+P) l /TiZ(2+P) .

B. Case of I =1

(10)

The description of the case of I =1 is similar to the
case of I= —, but with some significant differences. The
transition rates involving the pump (electronic-spin) sys-
tem are shown schematically in Fig. 2 and p, cr, and 8 are
the same as in the I = —, case. In addition to these rates
there are two additional rates from other sources (such as
phonons). The rate P&co& is due to b.ml ——+1 transitions
and the rate $2co& is due to b,mi ——+2 transitions.

For the case of I = —, there are two nuclear states and
the sum of the populations of the states is a constant.
Thus, the populations of the individual levels can be
described by one variable, the nuclear polarization P„.
Since there are three nuclear states in the case of I = 1,
one more variable is needed to describe the level popula-
tions. For this extra variable it is convenient to choose
the quadrupole polarization

Q„=(n++n 2np)/—n .

For complete nuclear polarization we are interested in fil-
ling the ml ——+1 state. Thus we define Z„as a measure
of this where

—~ —
I

8~

P„( m) ) = p—Ppl[p+ f(p+2)+2o(1 —Po)],
P, ( oo ) =Po(p+2f +o.)l[p+f (p+2)+2o(1 Po—)] (7)

Further, if one assumes that the electronic spins respond
much faster than the nuclear spins, one can derive equa-
tion for the individual time scales. The assumption can
then be easily verified. Thus, one can show that the elec-
tronic spins respond at a rate k, where

A,, =(2+P)/2T), ,

and that the electronic polarization responds by relaxing
to a value P, (n) that depends on P„:

P, (n) =(2Pp PP„)—l(2+P) .

Further, if we neglect the term o(1 P,Pp) —in Eq. (5),
then the nuclear-spin relaxation rate is k„where

( I /T i„)=2coi[P+cO+co( 1 P,Pp)], —

f =T„/T*,„c .

These equations are slightly different than those of Jef-
fries because of the finite value of Pp. Further, we note
that T&„, the effective nuclear-spin relaxation rate, de-
pends upon P, .

In order to facilitate a comparison with the I =1 case,
we shall solve for the equilibrium values of the nuclear
and electronic polarizations and the relevant time scales.
Equations (6) can be solved in the steady state to yield (for
o && I)

FIG. 2. Energy levels (mz, ml) for the electronic and nuclear
spins for the case of S = —,,I =1. The rates shown in the dia-

gram are explained further in the text. The pumping shown will
produce an abundance of nuclei with ml ——1.
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Z„= , P—„+4 Q„=(3n+ —n)/2n . (12)

Note that Z„=l, P„=l, and Q„=—,
' when all of the nu-

clear spins are in the mr ——+ 1 state and Z„=P„=Q„=O
in a sample with n+ ——n =no.

The method for constructing equations of motion for
P„P„,and Q„ is similar to the case of I = —,'. That is,
equations for n+, n, no, N+, and N are constructed
by taking into account all of the possible spin-flipping
processes. These equations are then converted into equa-
tions for P„P„,and Q„yielding

0.8z
G

0.6
0

& 0.4
U

z
0.2

dP,
dt

dP„
dt

:—Pcot[P ( 3
—

3 Q )+P ]—2(1+cr)coI(P —Pp)

,
'

cPco) [—P„+P,( —', ——,
' Q„)] PIcoI—P„

0
O.OI O. I I IO

ELECTRON PUMPING PARAMETER, l3

—c (o+ 9)coI(P, Pp)P„—,

n

dt
= —

2 cPro I ( Q„+P,P„) $2c—oI Q„

(13) FIG. 3. Calculated steady-state polarization for dynamic nu-

clear polarization of the spin- 2 (P„) and spin-1 (Z„) systems.

—3c ( cr+ 8 )co I (P, Pp )Q„.—

If we neglect the relaxation rates o. and 6I, we obtain the
rather simple set of equations

= —
2 P[P ( 3

—
3 Q )+P 1

—(P —Pp)

(P~4f»[P—.+P.( 3
—

3 Q. )]—P.'" dt

d ~
TI~ ———(3P/4f 2)(Q„+P,P, ) —Q, ,

dt

Q +
0
cn

Oz o
Q 0 5~ o

E
Q
Q

0
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TlME (units of l j'gn&)

l. 5

TI„——I/QIcoI,

f I Tle«Tln ~

fz =T .«T)q .

(14)

FIG. 4. Typical time-dependent behavior for the polarization
of a spin-1 nuclear. In this example P = 10, f, =0.1,
f 2/f ) ——0.6, and P, (0)= 1.

The ratio TI„/TI~ can vary from 0.6 to 3. However, for
the anharmonic Raman process, the most common
nuclear-spin —phonon decay scheme, we expect'

5T lq 3 T1n ~

so that

(15)

=0.6 . (16)

These equations have been solved numerically for the
steady-state values in order to obtain actual nuclear polar-
izations. We have found that the solutions are very in-
sensitive to the ratio of f2IfI and thus we use a ratio of
0.6 in the remainder of this paper. The results are sum-
marized in Fig. 3 where, for purposes of comparison, we
have included the spin- —,

' case with f=fI. Further, we

implicitly assume that the values of P are the same in the
two systems. For f I

——0.01 and 0.1, where good polariza-
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FIG. 5. Comparison of times of various percents polarization
for a spin-1 and a spin- z system.
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tion values are achievable, we find the spin-1 system to be
just slightly less efficient than the spin- —, system in
achieving polarization. For f&

——1.0, where polarization
values are low, the spin- —, system is about twice as effi-
cient as the spin-1 system.

We now analyze the time dependence of the polariza-
tion of the spin-1 system in a manner similar to the spin-

case. We assume that c ((1 and that TIe ((T]p T]q
so that there are again two time scales. The electronic
spins respond quickly at a rate

Fig. 4. Further, we have solved both the spin- —,
' and

spin-1 equations to find 50% and 99% polarization. The
results are given in Fig. 5.

In summary, we find that the spin-1 system is only
slightly slower than the spin- —,

' system for similar param-
eters. Thus, differences in the amount of polarization
presumably depends on the fact that deuterium has a
much smaller magnetic moment than tritium or hydro-
gen. Further, since deuterium has a small quadrupole
moment, the deuterium nucleus could undergo substantial
quadrupole broadening which could inhibit spin diffusion.

A,, =(2P+3)/3T), . (17)
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An example of the approach to equilibrium is given in

We would like to thank Tapio Niinikoski for helpful
discussion. Work was performed under the auspices of
the U.S. Department of Energy by the Lawrence Liver-
more National Laboratory under Contract No. W-7405-
ENG-48. This work was also supported by the National
Science Foundation under Grant No. DMR85-03083.

'Also at Lawrence Livermore National Laboratory, Livermore,
CA 94550.

C. D. Jeffries, Dynamic Nuclear Orientation (Interscience, New
York, 1963).

A. Abragam and M. Goldman, Rep. Frog. Phys. 41, 395
(1978).

3J. C. Solem and Cx. A. Rebka, Jr., Phys. Rev. Lett. 21, 19
(1968).

4J. C. Solem, Nucl. Instrum. Methods 117, 477 (1974).
5M. D. S. Breitbart and W. A. Barker, Nucl. Phys. 52, 641

(1964).
K. L. Bhatia and M. L. Narchal, Appl. Opt. 4, 175 (1965).

7K. L. Bhatia and M. L. Narchal, Appl. Opt. 5, 1075 (1966).
W. de Boer, J. Low Temp. Phys. 22, 185 (1976).

9M. Borghini, in Proceedings of the Second International Confer
ence on Polarized Targets, Berkeley, 1971, edited by G.
Shapiro (National Technical Information Service, Springfield,
VA, 1971).
P. A. Fedders, Phys. Rev. B 10, 4510 (1974).


