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We explore the potential of the Langevin simulation of quantum systems. A generalized quantum
sine-Gordon chain, a generalized Toda chain, and impenetrable bosons on a ring are treated specifi-
cally to estimate low-lying excitation energies from the long-time behavior of the Langevin process.
In the sine-Gordon case, we investigated the dependence of the bound-state frequency on the cou-

pling constant, while in the Toda chain the phonon dispersion curves are obtained for different cou-

pling constants. Finally, for impenetrable bosons the estimated dynamic form factor for density
fluctuations is compared with exact results.

I. INTRODUCTION AND FORMALISM ground-state properties. '

In this work, we present Langevin simulation results for
quantum systems. Specifically, we consider a generalized
sine-Gordon chain, a generalized Toda chain, and free
impenetrable bosons on a ring. The link between a system
evolving according to the Langevin equation and a quan-
tum problem is established via the Fokker-Planck equa-
tion which can be reduced to an imaginary Schrodinger
equation by appropriately choosing the variance of the
random force in the Langevin equation. ' As a result, a
system evolving according to the Langevin equation and
specified by its potential energy W is related to a quantum
model with potential energy V, where V(W), as well as
the ground-state wave function with zero energy, are
known. Consequently, ground-state properties and the en-

ergy spectrum of the quantum system can be investigated
by simulating correlation functions in the stationary
Langevin process. ' This route is adopted by considering
a sine-Gordon and Toda chain with potential energy W
and evolving according to the Langevin equations. Con-
versely, for a given quantum problem with potential ener-

gy V, the drift force resulting from the potential W must
be obtained from an independent solution of the
Schrodinger equation for the ground state. ' The
ground-state energy and the wave function allow the con-
struction of associated Langevin equations, again provid-
ing estimates for the ground-state properties and the ener-

gy spectrum. This route will be illustrated for impenetr-
able bosons on a ring, where the ground-state wave func-
tion is known.

Other interesting aspects of this relationship between
Langevin dynamics and an associated quantum system
are:

(i) The critical dynamics of a d-dimensional time-
dependent Ginzburg-Landau model can be mapped onto
the static critical properties of an associated quantum
model and its ( d + 1)-dimensional static and classical
counterpart. '

(ii) Critical dynamics can be obtained from statics. Ac-
cordingly, the dynamic scaling hypothesis is traced back
to static anisotropic scaling.

(iii) Construction of quantum models with soluble

in the stationary equilibrium state admits the solution

Peq exp (4)

Invoking the transformation

P(x, , . . . , x~, t) =P,
q g(x, , . . . , x~)t),

it reduces to the imaginary-time Schrodinger equation

(5)

with Hamiltonian

0
, +V.

The potentials W [Eq. (1)] and V are related by the
Riccati-type equation:

The paper is organized as follows. Next, we sketch the
formalism to unravel the relationship between the model
evolving according to the Langevin equations and the as-
sociated quantum system and vice versa. In Sec. II, we in-
troduce the model system and derive some ground-state
properties. The numerical results of the Langevin simula-
tion are discussed in Sec. III. For a sketch of the numeri-
cal technique, we refer to the Appendix.

To sketch the formalism, we consider a one-
dimensional N-particle system. The time evolution is as-
sumed to be given by the Langevin equations

dxl
xr —— = — +rjl(t), 1 =1, . . . , Xdt BxI

with the drift forces F~ ———0 W/Bxl and the random
forces qI, with correlations

(rI~(r)) =O, (r)I(&)ql(&')) =o5&~5(t r') . —
The associated Fokker-Planck equation for the probability
density P(x, , . . . , x~ , t), .

aP a alV ~ a'P
P

Bt Bx Bx 2
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2
aW=2 a

)~BW
(IXI

(x(0)x(0))= g [ (0
~

x
~

n )
~

n=0

The associated eigenvalue problem

9'n =~ngn (9)

~0 ~ po eq xp
1/2 (10)

This set of equations forms the framework for the
correspondence between the Langevin process and a quan-
tum problem. In fact, considering the Schrodinger equa-
tion

yields a non-negative energy spectrum, with the ground
state

. 2 (20)
lim (x(t)x(0)) =

~
(0

~

x
~

0)
~

= fypxdxt~ oo

where ( ) denotes an average over the Gaussian-noise en-
semble. The convergence criterium (15) ensures that the
ensemble is ergodic in the sense that time and ensemble
averages are identical,

1
—2

( x (t)x (0) ) = lim x t' x t'+t dt'
t —t ~ t —t —ttt m n m m

. Bg 1. A'

i = —~P, ~= — g z + V(x~, . . . , xv)
Bt A 2m I c)XI and

=g [(0/x fn) /'e (21)

and setting
(x ) = lim f x (t')dt'.

~, —tm ~ tn tm ™ (22)

g-y„e (12)

we obtain an eigenvalue problem identical to the corre-
sponding Fokker-Planck expressions (7) and (9), provided

t~ —lt,
1——=o. —V=V.

m

The general solution of the Fokker-Planck equation (3)
can then be expressed as

P (x, t) = cpp+ gp g C„g„e
n=1

To simplify the notation, we consider here one particle
only. Because the X„are real and non-negative, it follows
that

The long-time behavior of the Langevin process then pro-
vides estimates for the lowest eigenvalue A,„z with
(0

~

x
~

nL )~0 from

(x (t)x (0))~(0
~

x
~

nL )e " as t~ co . (23)

Up to now, we have outlined the relationship between
model W, defined by the Langevin equation (1) and the
associated quantum system [Eq. (7)]. To construct the
Langevin equation for a given quantum system, we can
still use Eq. (15), giving the classical potential W in terms
of a given quantum ground state. Clearly, the ground-
state energy of a given quantum problem will not vanish
in general. This is easily seen by substituting Eq. (15) into
Eq. (6) yielding the modified Riccati-type equation

lim P (x, t) =gp =P,~
-exp1~ oo

(15)
2

1 r3 W

Bx
(24)

By invoking the initial condition

P (x,o) =6(x —x') (16)

Thus, for a given quantum system, the drift force in the
associated Langevin equation is obtained from

and denoting the solution of the Fokker-Planck equation
(3) as P (x, t,

~

x'), we obtain

Bing

ax Bx
(25)

P(x, t
~

x') =yp(x) g g„(x)e
p yp(x')

(17)

two time correlation functions can be expressed as

(x(t)x(0)) = f dx f dx'xx'P, q(x')P(x, t
~

x')

reducing to

n=0
/
(0[x )n) f

e (19)

reducing for t=O to Eq. (16). Assuming then stationarity
of the Langevin process

(x (t +r)x (r) ) = (x (t)x (0) ),

but the eigenvalues A,„ in Eq. (21) must be replaced by
~n ~~n ~0.

For the purpose of numerical simulations, the outlined
relationship between the Langevin equation and the asso-
ciated quantum problem can be used in two ways: (i) the
potential V entering the quantum problem is constructed
from a given W by means of the Riccati equation (8); (ii)
for a given quantum problem, the potential W entering
the Langevin equation must be obtained from an indepen-
dent method providing the ground-state wave function
and energy [Eq. (25)]. The long-time behavior of the
Langevin process then provides information on the
ground-state properties and eigenvalue spectrum of the
quantum problem.
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II. MODEL SYSTEMS
AND GROUND-STATE PROPERTIES

dx1 ' dxNexp~ ~ ~
2W

(26)

Knowledge of the cp0 also allows the expression of
ground-state expectation values in terms of multiple in-
teg rais,

dXi ~ X1~ . . ~XA' +0

Before turning to the specific models, we briefly sketch
the evaluation of ground-state expectation values for
quantum systems resulting from a given Langevin equa-
tion. ' For this purpose, we introduce the norm of the
ground-state wave function,

N= f dx) ' ' ' dx~go(x], . ~, x~)2

a classical system with potential energy W. Thus, the
problem of evaluating ground-state expectation values for
the quantum system resulting from the Langevin equation
(1), is equivalent to the calculation of the partition func-
tion and ensemble averages of the classical model with po-
tential energy W. This equivalence is particularly ap-
pealing in one-dimensional many-particle systems, where
the resulting multiple integrals can be treated with the
transfer-integral technique, originally developed to calcu-
late the partition function and related properties for clas-
sical systems. "

We are now prepared to specify the models and to list
some of their ground-state expectation values.

A. Generalized quantum Toda lattice

The potential energy of the one-dimensional Toda lat-
tice might be written as'

&0
~

a(x, , . . . , x~)
~

0) =
N

Q dx;tpo
i=1

1W= Q Iexp[ —g(x~+& —x~)]+g(x~+& —x~) —1] .

(27)

Next, we note the equivalence of A with the classical par-
tition function of a system with potential energy W at
temperature 2/o. = 1/kz T. Similarly, the ground-state ex-
pectation value (27) is identical to the ensemble average of

I

In the weak coupling limit (g «1), W reduces to the
potential-energy expression of the harmonic chain. Using
Eqs. (7), (8), and (28), a generalized quantum Toda chain
with known ground-state wave function and energy [Eq.
(10)] is now easily constructed. Its Hamiltonian is

' 2
1 2
, I exp[ —g (x(+,—xI ) ]—exp[ —g (xi —xI, ) ] t

—
I exp[ —g (x( ~, —xl ) ]+exp[ —g (xi —xi ) ) ] I

(29)

The potential energy not only involves nearest-neighbor
but also next-nearest-neighbor interactions. Considering a
lattice with one open end, the norm as obtained from Eqs.
(26) and (28) is

2+(p)= fdxodx~exp — p(xx —xo)

where

n(p)=g 'e~/3 ~"+~'I [(1+p)/3]

=g 'e~ f dy exp{ —/3[(e ~+y(p+1))]I .

Here, we have introduced the scaled variables

(35)

N —1

dx, . dxN, exp —— K, +, ,
1=1

P =pg /3=2~kg'. (36)

Ground-state properties are now readily obtained. Exam-
ples are the zero-pressure linear expansion

where

&i+iI=g [exp, [—g (xi+ i
—xq )]+g (xi+ i

—xi ) —1 I

(30
( ) ( ) p ) Bln[n(p)]

Bp

and the zero-pressure mean-square expansion

(37)

and p denotes the pressure. Evaluation of the multiple in-
tegral is completely equivalent to calculation of the parti-
tion function of the classical Toda lattice with potential
energy W [Eq. (28)].' Introducing the variables

2(( z) ( )2) /3
z 8 n[n(p)]

Bp
(38)

In the weak-coupling limit ( g ~~ 1), these expressions
reduce to'

rl —xI +1—xl

and observing that

(32)

(33)
and

2 3 & 4 7(r) lp=o= ~og+ so g —i»oo g

&r') —&r)'~, =o———,'~+ —,~'g'+ —., ~'g .

(39)

(40)
the multiple integral reduces to

&(p) =[n (p)] (34)
Clearly, in the weak-coupling limit the harmonic approxi-
mation becomes valid. The dynamic form factor for the
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displacement fluctuations reduces to that of the harmonic
chain

S„„(q,tU)= g ~
(0~ x(q)

~

n )
~

5(co —k„)

placed by 2/|T. As a consequence, the transfer-integral
technique can be used to calculate properties of interest. '

For

C/A ))1, 1/f3C &)1, P=2/erg (49)

where

6(~ —co(q) ),2'(q)
(41) the resulting Fredholm integral equation can be

transformed into an eigenvalue problem of Mathieu form.
For

x (q) = g xte'~', (42) 128AC/o. g ))1, (50)

co( q) =2[ 1 —cos( qa )],
a = tr+ ( r )

~ () .

(43)

(44)

corresponding to the weak-coupling limit (g « 1), asymp-
totic expansions are well documented, ' ' yielding, for ex-
ample,

The lattice constant is a, the quasiharmonic phonon fre-
quency co(q), and —w/a & q & rt/a denotes the wave num-
ber. The Langevin simulation of this quantum Toda
model will then provide estimates for the imaginary-time
analog

1

2(f3Ek )'

+O(exp( PEk))—,

(cos(gxt)) =1— 2

f3Ek

(51)

S„(q,t)= g ~
(0~x(q)

~

n )
~

e (45)
1 1 3S„(q,O) = + + e ~ ~

PA f3Ek 2'(pE„)'

yielding, from the long-time behavior, estimates for the
phonon frequency. It is important to emphasize that the
simulation is not restricted to the weak coupling limit. In
fact, a crucial question is how the phonon frequency
varies with the strength of the coupling constant g.

B. Generalized sine-Gordon chain

+ 0 (exp( PEk ) )—,

lim q S„„(q)= (/3Ek )
—exp( f3Ek ), —32AP 1

q-o g2 8

where

Ek =8(AC)'

(53)

As a second example, we construct a generalized sine-
Gordon chain with a potential energy of S„(q)=(

~

N ' pe'q'[cos(gxt)] —(cos(gxt))
~
), (54)

1

W =, g [1—cos(gxt)]+ —g (xt+) —xt)
C

I
(46) S „(q)=(

~

X ' 'ge'q'xt
~

)

where g is the coupling constant. For g &&1, this expres-
sion reduces to the potential energy of the harmonic
chain. Invoking then Eqs. (7), (8), and (46) for the Hamil-
tonian of the generalized quantum sine-Gordon chain, we
find

1+ g sin(gxt )
2o 2o.

2

+C(2xI —xl+ &

—xI & )

——, g [A cos(gxt ) +2C],
1

(47)

is again equivalent to the evaluation of the classica1 parti-
tion function of the sine-Gordon chain, with 1/k&T re-

I

with known ground-state wave function and eigenvalue
[Eq. (10)]. The calculation of the norm

X(A, C, o.,g)= f Q dx, e

Ek is the kink-soliton energy of the classical chain. Other
ground-state properties might be obtained from the nu-
merical and analytical transfer-integral results of the clas-
sical sine-Gordon chain. '

Comparison of the weak-coupling results for the gen-
eralized quantum Toda [Eqs. (39) and (40)] and quantum
sine-Gordon [Eqs. (51) and (53)] chains reveals important
differences. In the Toda case, perturbation theory will
work, because in the weak-coupling limit the ground-state
properties are given by a power-law expansion in the cou-
pling constant, which can be collected in terms of deriva-
tives of the I function [Eqs. (37) and (38)]. In the sine-
Gordon case, one has to distinguish between properties
dominated by power laws and those where the exponential
contribution, originating in the classical case from the
kink solitons, enters to leading order. In fact, for proper-
ties dominated by the exponential term, the weak-coupling
limit (g~O) corresponds to an essential singularity, so
that perturbation theory is not applicable. For power-law
dominated properties, however, usual perturbation theory
is again valid.

Here, we consider the dynamic form factor

S„(q,cc)= g (0 —g e'e [cce(gx() —(cce(gx() ) ] c g(ce —) „),1

&N
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co(q =0)=20(0) 1—

where the phonon frequency is given by

where perturbation theory should be applicable. In analogy to the quantum sine-Gordon system, the weak-coupling limit
is expected to be obtained by a two-phonon bound state, followed by the two-phonon continuum. ' A weak-coupling
treatment of the generalized quantum sine-Gordon system yields, for the bound-state frequency, '

2 1/2g'o. (1+og /8/I)
(56)

4(2C/I)' 1+og /2/I

II (q) = [/I +2C(1 —cos(q) )] + ,
'

cr—g /I .

The Langevin simulation will then provide estimates for the imaginary-time analog:
2

S„(qs)= g , (0 —pe'e [sos(gx~) —(cos(gxi))] s eq1 t

N
)

(57)

(58)

yielding, from the long-term behavior, estimates for the
bound-state frequency. This will allow checking of the
range of validity of the weak-coupling prediction [Eq.
(56)]. co( k„,q) =—(q +2k„q) .

2
(64)

I

The excitations correspond to particle-hole pairs with en-
16

C. Free impenetrable bosons on a ring

Free impenetrable bosons on a ring and spinless fer-
mions share many common properties. Girardeau has
shown that the excitation spectrum of the two systems are
identical as all configurational probability distributions.
The ground-state wave function is given by

k„=n, n =+1, . . . , + —,N,n (65}

where n =+N/2 corresponds to the Fourier wave number

For a finite system, the wave number k„can adopt the
values

(N ) )1/21 —N/22N~N — )/2 Q Sill —(X —Xt )1

j&1

(59)

NkF L (66)

at the Fermi 1eve1. The allowed excitations correspond to
particle-hole pairs with energy co(k„,q), bounded by

The structure of this wave function reveals that, if we
vary the position of one particle, keeping all the others
fixed, then the wave function will be positive and smooth-
ly varying everywhere except at the position of the other
particles, where it vanishes and has a cusp as a result of
the singular repulsive interaction, or in the case of fer-
rnions, owing to the Pauli principle. As a consequence,
the classical potential

1 N/2

S~~(q, t) =-
n = [N/2 —gL /2m']+ 1

(n&0)

o.
2 4m

exp ——(q +q n)t
2 L,

I
kF —(kF —q)

I
&co(k„,q) &

I
(kF+q} kF

I

. (67—)

For q & 2kF and taking requirement (67), Eq. (62) reduces
to

8' = —o in@0 (60)

entering the Langevin equation, becomes infinite between
equilibrium positions of the particles. This suggests that
the classical Langevin analog forms a lattice, and the par-
ticles will fluctuate around their equilibrium positions.

Given the wave function (59), the Langevin equations
(1), allowing simulation of this system, read

07T 7T
cot —(xt —x ) +rll(t), l =1, . . . , N .

j (~1)

Here, [x] denotes the largest integer smaller than or equal
to x. For the infinite system, Eq. (68) yields

S~~(q, t) = sinh( , crq t)—
~po.qt

exp( —o.qkF t), (69)

where the sum over n has been replaced by an integral,
and the density of fermions p=cV/L is kept constant.
Similarly, we find for q &2kF,

(61)

Of interest are then the trajectories xt(t) and the long-
time dependence of the correlation function

S (q t}=g I« I
p(q)

I

n & I
'e (62)

Sz (q, t) = exp( —,'oq t)—
mpoqt

sinh(o. qk~t) .

1
N/2 o.

2 4nS (q, t)= — g exp ——
q +q n t

n = —N/2
(n ~0)

reducing for the infinite system to

(70)

(71)

1 Igx1p(q)= ~ ge
N

(63) Replacing t by it yields for the dynamic density form fac-
tor of the quantum problem,
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FIG. 1. Boundaries of the particle-hole continuum for a sys-
tem consisting of N=20 particles in a box of length L=40,
o.=2, and kF ——N/Lvr=n/2. The shaded region shows the al-
lowed excitation frequencies.

0
0 0.2 0.4 0.6 0.8

qred

1

1.0 1.2

Spp(q, ru) =—+5(ru —cu(k„, q) ),1

where

F' (kF q) —
I

&co(k q)+ I(~F+q) kF
I

(72)
FIG. 2. Numerical estimates for the phonon frequencies of

the generalized Toda chain [Eq. (29)] from the Langevin simula-
tion of S „(q,t). For comparison, we include the weak-coupling
prediction [Eq. (75)] (solid curve). Simulations for three dif-
ferent values of the coupling constant g are shown: ~, g=0.5;
L, g=1.5; and ~, g=2.5.

III. NUMERICAL RESULTS

In this section, we present numerical results for the
three models described above, namely, (i) the generalized
Toda chain, (ii) the generalized sine-Gordon chain, and
(iii) the system of free impenetrable bosons or spinless fer-
mions on a ring. In all three cases, correlation functions
have been obtained by numerical simulation to extract in-
formation about the eigenvalue spectrum. For a descrip-
tion of the numerical method used, the reader is referred
to the Appendix.

In the Toda case, the Langevin equation (1) was solved

numerically with periodic boundary conditions, and using
the initial condition x~ ——0, l =1,2, . . . , N. The time in-
crernent in the Euler scheme was set to At=0.01, and the
correlation function was calculated using 4096 time points
with a sampling interval equal to AT=0.2. The lowest
eigenvalue, as probed by the displacement correlation
function, was estimated from the long-time behavior and
by averaging over 30 independent runs. The resulting
dispersion curves A, t(q„d ) =re(q„,d) are shown in Fig. 2 for
a chain of 100 particles subjected to periodic boundary
conditions. For comparison, we included the weak-
coupling prediction [Eq. (43)]:

cu(q„d) =2[1—cos(~q„d)],

where

q,.d = q=q+ —&» & l, =o, —
7T 77

(75)

(»)z o denoting the zero pressure expansion [Eq. (37)).

The particle-hole continuum and its boundaries are shown
in Fig. 1. At the boundaries, S (q, cu) exhibits a discon-
tinuity, giving rise to the nontrivial time dependence of
the imaginary-time density correlation functions [Eqs.
(69) and (71)] for the infinite system.

For g=0.5 and q„,d &0.7, the weak-coupling prediction
[Eq. (74)] agrees well with the numerical estimates. As
the coupling constant is increased, the q„,d range, where
agreement with the weak-coupling result is obtained, is
seen to shrink and move toward smaller q„,d values. In
fact, nonlinear effects can no longer be neglected.

Finally, we note that by rescaling the Langevin equa-
tion (1) in terms of yt(t) =gxt(t), the coupling constant g
can be absorbed in the effective variance o.,ff——g o. of the
random force.

For the sine-Gordon chain, we also used the Euler
scheme with time steps At =0.01. Estimates for the
bound-state frequency A, t(q=O)=co(q=O) [Eq. (56)] were
obtained from the correlation function S„(q,t) [Eq. (58)]
using 4096 time points with a sampling interval AT=0. 1.
Tests were also performed with 16 384 time points, con-
firming the reliability of the shorter runs. The numerical
estimates for the bound-state frequency cu(q=O), averaged
over 20 independent runs, and its coupling-constant
dependence are shown in Fig. 3 for a system of 200 parti-
cles subjected to periodic boundary conditions. The
values of the parameters were chosen as follows:
o.=8.924, 3= I, and C=29.22. Comparison reveals that
the weak-coupling approximation (56) provides reliable es-
timates for g (0.2; it fails for stronger couplings.

In analogy to the Toda chain, the Langevin equation
for the sine-Gordon chain can be scaled by means of
pt(t')=gxt(t) and t'=At. The effective variance of the
quantum f1uctuation then becomes o.,ff——o.g /A. Thus, a
change of the coupling constant g is equivalent to a
change of o.,ff. It is seen, however, that this scaling only
holds for fixed 3 because 3 still appears as a factor in the
harmonic term in the scaled Langevin equation.

In the numerical simulations of the free fermions, we
have considered a system of N=20 particles in a box of
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id(q=o) 20—

15—

4.0—
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3.0—

—20
50

[

51 52
I I

53 54
I

55

2.0 : FIG. 4. Trajectories of N=20 particles evolving according to
the Langevin equation (61) and corresponding to the classical
analog of impenetrable bosons or free fermions on a ring with
L=40 and o =2. The particles form a lattice with lattice con-
stant a=L/N=2.

1.0—

0
0

I I I I I I I I

0.5
g

I I

1.0

FIG. 3. Numerical estimates of the generalized sine-Gordon
equation [Eq. (47)] for the two-phonon bound-state frequency
co(q =0) [Eq. (56)] obtained from Langevin simulation of
S„(q,t) [Eq. (58)] for A= 1, C=29.22, and o =8.924. The solid
curve represents the weak-coupling approximation [Eq. (56)],
the dashed curve the numerical estimate.

length L =40 ( —L /2 & x & L /2). The Langevin equation
(61) was solved using the Euler scheme with cr =2 and us-
ing time steps At=0.005. In Fig. 4, we show the trajec-
tories of the classical particles obtained from the
Langevin equation, initially uniformly distributed, after
the system has relaxed to equilibrium. It is clearly seen
that the system forms a lattice with spacing a =1/p. The
time evolution is governed by oscillations around the
equilibrium positions. This reflects the infinitely high
barriers between particles [Eq. (61)] arising from the zeros
of the ground-state wave function, expressing the impene-
trability of the bosons, or the Pauli principle for spinless
fermions. In the numerical scheme, the repulsive force
between two particles is assumed constant over one time
step. Therefore, if two particles come sufficiently close to
each other, crossing may occur owing to the random
force. To avoid such artificial crossing, we impose a
small separation Ax =0.25~a.ht on two particles, a dis-
tance less than Ax apart. If the particles exceed the box
length I the entire system will be compressed to a size
equal to I. Finally, the mean position of the particles is
subtracted in each time step, to avoid possible artificial
drift of the center of mass.

With the exact expression for Szq(q, t) [Eqs. (68) and

(70)], we are in a position to test the numerical simula-
tions. Figure 5 shows a comparison between the exact ex-
pression for Szq(q, t) and the corresponding simulation re-
sults for q =1.2~. We plotted the analytic result for
In[S~&(q, t)/Sz~(q, 0)] (solid line) and its dominating long-
time term (dashed line) [Eq. (70)] versus time t. The dots
denote the numerical estimates where we have averaged
over 88 independent runs. The correlation functions were
calculated using 65536 points with a sampling interval
AT=0.05. Up to the time t =1.4, the numerical and ana-
lytic results agree well. From Fig. 5, it is seen however,
that much longer times are needed to extract the first
eigenvalue k& from the long-time behavior. It should be
kept in mind however, that for the infinite system, the
long-time behavior is no longer governed by an exponen-
tial decay [Eqs. (69) and (71)].

—2.0

—6.0

—8.0

—10.0
0 1.0 2.0

[

3.0

FIG. 5. Plot of ln[S~~(q, t)/S~~(q, 0)] for a systetn for N=20
impenetrable bosons with p =N/L =

~ and o.=2. The dots are
numerical results, the solid line denotes the analytic prediction
[Eq. (70)) and the dashed line indicates the dominating long-
time behavior.
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APPENDIX: NUMERICAL METHOD

We have solved the Langevin equation (1) by means of
the explicit finite difference scheme

can be constructed using the central limit theorem. Let
UIk be equally distributed random numbers in the interval
[0,1] with expectation value ( Utk ) = —, , and correlation

xt"+'=xt" +Ft(x")At + re At, 1 = 1,2, . . . , N, (A1)
(( Ulk 2 )( t'k' 2 ) ~ 12 5 n'5ll'5kk' .

where x~" is an approximation to the original function
xt(t„) at the time t„=nAt, n =0, 1,2, . . . , and with the
time increment At. ' ' X is the number of particles, and
Ft(x")= —BW(x")/Bxt" is the force acting on particle l in
a potential 8 (x). Here, x denotes the vector
(x&, . . . , xg, ). r)t" is the discretized random force treated
in further detail below.

The above scheme is known as the Euler method.
However, a more precise method for deterministic equa-
tions is the so-called Heun scheme' which is a predictor-
corrector method. First, a solution xl"+' is predicted by
the Euler scheme (Al). Thereafter, a finite sequence of
iterates xl" +",s = 1,2, . . . , S „are constructed by

M
gl" = g Utk ——,M

k=1
(A3)

are Gaussian distributed for large M. For practical pur-
poses, M is chosen to be 12 which leads to very small ab-
solute deviations in the tails of the distribution. From Eq.
(A3), we easily see that (gt") =0, (gt"gt" ) =5«5tt, and
accordingly the Gaussian distributed random numbers gr
are determined by

(A4)

In accordance with the central limit theorem, the vari-
ables g~" defined by

The equally distributed random numbers UIk are obtained
by using a standard pseudorandom number generator. '

After having solved the Langevin equation numerically
for some appropriate initial conditions, time correlation
functions of the form (x (q, t)x ( —q, O)) have to be calcu-
lated. Assuming the system to be ergodic, the canonical
averages may be replaced by time averages, i.e.,

Xt"+"=xt"+ —,
' [Ft(x")+Ft(x"+" ')]At +rit At . (A2)

S„„(q,t) = (x (q, t)x ( —q, O) ) = (x (q, t +t')x ( q, t'))—
1 7 —E= lim x qt+t'x —qt'dt'. A5

~ z—t

Hereby, S„„(q,t) is expressed as a convolution integral'
and can be calculated by taking the Fourier transform
x (q, to) of x (q, t) followed by an inverse Fourier transfor-
mation of

~

x ( q, co )
~

whereby S„(q,t) is obtained. As
the above Fourier transformations can be performed using
the fast Fourier-transform method, time correlation func-
tions are computed very efficiently.

n, S
Here, x~" ——x~

'" is the previously computed point, and
S,„can be set to 2 or 3 for practical purposes. In the
three examples we have studied, namely, the Toda lattice,
the sine-Gordon lattice, and the system of free fermions in
one dimension, the Euler method has proven to give reli-
able results, and using the Heun method was not neces-
sary. One should recall that iterations (A2) cost computer
time and unless high accuracy is needed or considerably
longer time steps can be used in the Heun scheme, the
Euler method will be satisfactory.

The random forces r)t(t) in the Langevin equation (1)
satisfy (, re(t) ) =0 and (rit(t)rit (t') ) =cr5tt 5(t —t') In.
the numerical scheme, the 6 function is approximated by
a square function of width At and height 1!At placed
symmetrically around t'=n'At. Hence, in the discrete
case, r)t"=g (t„t) are Gaussian distributed random num-
bers obeying (gt ) =0 and (rit"rit ) =rrlht 5tt 5„„.The rjt"
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