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Polaron in N dimensions
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The self-energy of a polaron in general n dimensions is calculated with the use of a dispersion-
theory approach. Our result agrees with the result of Peeters et al. up to order a, the Frohlich cou-
pling constant. We also obtain the general expression for the effective mass in n dimensions. As ex-
pected, the polaronic effects become negligible as the dimensions of the space increase.

I. INTRODUCTION

For the last 40 years there has been considerable in-
terest' in theoretical and experimental studies of pola-
ronic properties. It was the first problem in solid-state
physics to be treated using field-theoretic methods. The
basic concept of the polaron as a composite particle con-
sisting of a bare electron and the accompanying polariza-
tion of the lattice was introduced by Frohlich. ' Much of
the work on the polaron theory is based on the Frohlich
model. The earlier work is mainly devoted to polaronic
properties in three-dimensional crystals, but more recent
work deals with polarons in two dimensions. This new
development is attributed to technological progress in the
production of systems in which electronic motion is re-
stricted to two dimensions. In a recent paper Peeters,
Xiaoguang, and Devreese have developed a polaronic
model for an arbitrary space of n dimensions. The treat-
ment is consistent with the results of two- and three-
dimensional polaronic results when the appropriate limit
is considered. The present paper deals with the polaron in
n dimensions but the approach followed in this paper is
considerably different from the approach followed by
Peeters et al. While Peeters and collaborators derive
their result by extending the Frohlich Hamiltonian to n

dimensions, in this paper we follow the dispersion-energy
formalism appropriate to the n-dimensional polaron.
Apart from the difference between our approach and that
of the earlier authors, specifically we calculate the
ground-state energy as well as the energy of a slow mov-
ing polaron within the linear approximation in the
electron-lattice coupling, while Peeters et al. calculate
only the ground-state energy —up to second-order terms in
the electron-lattice coupling. Where comparison is possi-
ble, our results agree with the results of Peeters et al.

To generalize the Frolich Hamiltonian, Peeters et al.
make use of the idea that it is possible to obtain the pola-
ron Hamiltonian in lower dimensions from the Hamiltoni-
an in higher dimensions by integrating out one or more
dimensions. Furthermore, these authors assume that the
electron interaction which causes the polarization is the
same as in three dimensions, but that the electron motion
is assumed to be in n-dimensional space. Thus, if we de-
fine by x„ the nth position coordinate and by k„ the nth

wave number of the electron, then the position vector r
and the wave vector k are, respectively, given by

' 1/2

/r/= g (x„) (1)
n=1

/k/ = g (k„)'
n=1

1/2

and

kr=g k„x„.
n=1

(3)

Making use of Eqs. (1)—(3), Peeters et al. are able to
generalize the Frohlich Hamiltonian to n-dimensional
space. By combining the generalized Frohlich Hamiltoni-
an and Feynman path integral method these authors have
calculated the ground-state energy (i.e., an electron at the
bottom of the conduction band) for the polaron up to
quadratic terms in a, the Frohlich coupling constant.

Our approach is different from that of the earlier au-
thors. Most importantly it is not based on the Frohlich
Hamiltonian. We follow the dispersion-theory formalism
and using Eqs. (1)—(3) generalize this approach to the n

dimensional space. The basic idea in our formalism is
that the polaron energy is given by the difference in the
zero-point energy of the radiation field of the electron-
lattice system when the interaction energy between the
electron and the lattice is present and when it is absent.
We believe that this approach is simple and physically
transparent. Moreover, it provides a valid alternative ap-
proach to the polaron in n-dimensional space. The appli-
cation of this approach to the polaron theory in three di-
mensions was proposed by Hawton and Paranjape and by
Mahanty and Paranjape. The generalization of this to n

dimensions is proposed in this paper. Using this approach
we have obtained the polaron energy in n-dimensional
space for a slow moving electron. Our calculations are re-
stricted to linear terms in a—the Frohlich coupling con-
stant. Our results agree with the results of Peeters et al.
for the ground-state energy up to linear terms in the cou-
pling constant.

The sketch of the dispersion theory is given in the fol-
lowing section since the details of the theory can be found
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in the earlier papers. ' The generalization procedure of
the dispersion theory to n dimensions is also provided in
this section. The comparison of our work with that of
Peeters et al. is given in the concluding section. D (co) =

~
15k k

—Fp(k, k', cg)
~

=0 . (9)

neglected, then the frequencies of the system are deter
mined by the roots of the secular determinant

II. DISPERSION THEORY

In the dispersion theory the interaction energy between
a' particle and a given medium can be obtained if the
dielectric response of the medium is given. For a polar
crystal the frequency-dependent dielectric constant can be
expressed by

e(co ) =e( oo ) + e(0) —e( oo }

1 —QP /Q)T
(4)

2
67p

2
COT

e(0)
e(oo)

Consider a frequency-dependent field E(r', co) at point
r' in the crystal. The field causes polarization of the
electron-lattice system, producing a polarization-induced
field E(r, co) at point r. If the generating and generated
fields are the same, then a self-consistent equation for the
fields at r and r' is given by

where e( oo ) and e(0) are the dielectric constants for infin-
ite and zero frequency, respectively, and co T is the
transverse-optical-mode frequency of the polar lattice.
The 1ongitudinal-optical-mode frequency cop is related to
coT by the well-known Lyddane-Sachs-Teller relation

The self-energy of the electron, in the dispersion theory,
is given by the difference in the zero-point energies with
and without the interaction according to

bE, = — de Trln D (co)
4m.i D (co)

where the contour encloses the real positive axis of the
complex co plane. Expanding the ln term in (10) and re-
stricting ourselves to the first term in the expansion which
corresponds to the linear effect of the electron-lattice cou-
pling, we get

hE, = — den Tr F k, k', co —Fp k, k', co . 11
4vri

We now obtain F(k, k', co} for our system as follows.
Consider a frequency-dependent potential P(r, co). Using
the time-dependent perturbation theory it is possible to
calculate the effect of the potential on the state

~
kp).

We may then write the expectation value of any physical
quantity 0 for the perturbed state. It is given by

(kp
~

0
~

k'&(k'
~

—eP(r, co)
~
kp)50

k' Ek —Eg —Ace
0

E(r,co)= I F(r, r', co) E(r', co) d r', (k,
~

—ey(r, ~)
~

k') (k
~

o
~
k, )+

EI, —EI, +%co
0

(12)

where F(r, r', co), the nonlocal tensor, is determined by the
polarizing properties of the electron and the medium.

Thus F(r, r', co) depends on the electronic state and the

state of the lattice. In an extreme case F(r, r', co) is equal
to 5(r —r') if the electron lattice is replaced by an empty
space. In this calculation we consider the electron state to
be a plane-wave state

~
kp ) and the lattice whose dielec-

tric response, given by (4), is assumed to be at temperature
T =0. The form of F(r, r', co) for a three-dimensional
crystal is given earher by Hawton and Paranjape. Its
generalization to n dimensions is required. Assuming for
the time being that F(r, r, co) is known, it is possible to
rewrite Eq. (6) in terms of its Fourier components accord-
ing to

E(k,co)=g F(k,k', co) E(k', ~) .
k'

Clearly the eigenvalues of the frequencies for the sys-
tem are given by the roots of the secular determinant,
D(co), given by

where 0 is the operator corresponding to the physical
quantity 0 and Ek is the energy of the particle in plane-
wave state

~

k ). The self-consistent equation for the elec-
tric field E in the form given by Eq. (7) is obtained as fol-
lows. Let

eO=V, (13)

ik E(k, co)=k P(k, co) .

Substituting (13) and (14) in (12) and writing 1/
~

r —r'
~

in n-dimensional space as

1 r((~ —1)/2)
2~(n+&)/& f kn —I

d"k for n )2,

where 0 is the electric field at r' due to a charge e at r
and the screening due to the lattice polarization is con-
sidered in (13) through e(co). We also express P(k, co) in
terms of E(k,co) using Poisson's equation, as

D(~) =
l

1&k,k' F(k k ~)
~

=0.
If the interaction between the electron and the lattice is

then by comparison between the resultant Eqs. (12) and
(7), we obtain
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(2m. )"e I {(n —1)/2) + kk'

l. "A'e(co) 2~'"+" k (k')"
(ko

f
e '"'

/

k" ) (k"
/

e'" "[ko)

COk k —Cc)
Q

(ko( e' '"
(
k") (k"

/

e '"'
i
ko)+

COk" k +67
Q

(16)

( =(E(,- —E(, )/R. The expression for

Fo(k, k, co) follows from Eq. (16) by substituting e(co)=1.
This substitution is equivalent to neglecting the interac-
tion between the electron and lattice. Straightforward
evaluations of the matrix elements in (16) lead to

(2m)"e I ((n —1)/2) kk
Lnge(~) 2~(n+()/2 kn +(

~k+k, kQ ~ ~k+kQ, kQ+ ~ (17)

e 1 1
Es CO p2 Ep E

I {(n —1)/2)
(, n + 1)/2

where L" is the periodic volume in n-dimensional space.
To obtain the polaron energy we now substitute

F(k, k, co) and Fo(k, k, co) into (11). The result is

III. CONCLUDING REMARKS

In this paper the polaron energy in n-dimensional space
is obtained using the dispersion theory. The energy given
by (20) agrees with the result of the ground-state energy of
the polaron as calculated by Peeters et al. if we consider
only the linear term of their result. Our result gives ener-

gy of the slow moving polaron while the work of the ear-
lier authors is restricted to the ground state (i.e., ko ——0).
The polaron effective mass m~, ( in n-dimensional space
can be obtained from our Eq. (20) as

m pol

1 I {(n —1)/2} (/~ 1

m I (n/2) Sicko 4n
(22)

space is given by (20) and represents the main result of
this paper.

dk dA„
(18)

Ak
cop+ +

2m

dekko cos(8„()

where d Q„ is the solid angle in n dimensions and 0„& is
the angle between k and kp in n-dimensional space. The
volume element in n-dimensional k space is taken to be
k" 'dk dSl„. Following Hooft and Veltman the solid
angle dO„ is given by

d 0„=sin" (8„()d0„(sin" (0„2)d8„2 d 8, ,

where

0&0; &m for all i except i =1, 0&t9& &2m .

For slow electron Rko/2m &coo, so that the denominator
can be expanded in powers of kp. Retaining terms up to
ko and integrating Eq. (18), we obtain

I ((n —1)/2) vm &ko

I (n /2) 2 4m coon

where a is the Frohlich coupling constant given by
1/2

1 1 1 2
2m cop 1

ep ACOp
a ——

2 6'

(20)

(21)

The interaction energy of the electron in n-dimensional

I ((n —1)/2} vm.
(23)
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For n =3, m~, (
——m [1+(a/6)], and n =2; m~(

=m [1+(am/8)]. Both these results are consistent with
the result of three-dimensional theory and with the result
of Das Sarma' for a two-dimensional polaron.

The dispersion-theory approach does not depend on the
use of the Frohlich Hamiltonian. On the other hand,
Peeters et al. derived a recurrence relation between the
Frohlich Hamiltonian in n and ( n —1)--dimensional
spaces. Using this relation and with the known form of
the Frohlich Hamiltonian in three dimensions they were
able to derive results for any arbitrary dimensions. In
contrast to this procedure, our method gives the polaronic
energy more easily and directly in the n-dimensional
space.

The variation of the effective mass for the polaron in n

dimensions is given by Eq. (23). It shows that the polaron
mass decreases with increasing dimensions. This result,
we believe, is not available in the literature.
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