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We introduce a new parametric form for the scaling equation of state of the n-vector model of
magnetism correct to first order in @=4—d. It is based on the equation of state of Schafer and
Horner in a general parametric form proposed earlier by Schofield, Litster, and Ho. We integrate it
to obtain the scaling part of the free energy F(T,H) of the n-vector model, correct to order e, for
general n. We use it to discuss the behavior of polymer solutions and equilibrium polymerization.
This equation of state of the n & 1 vector model shows no evidence of nonanalyticities in the H- T
plane except at the critical point and on the coexistence curve, in disagreement with Gujrati's claim
for a singularity at H & 0, T & T, which he interprets as signaling a "collapsed" phase for polymers
in the limit n ~0. We address several of the specific arguments of Cxujrati which he uses to support
his claim for this singularity. We also discuss the effect of the order of the limits n ~0, H ~0, and
V~ oo on the nature of the polymerized state in equilibrium polymerization.

I. INTRODUCTION

The O(n) vector model of magnetism for n & 1, and in
particular in the limit n ~0, has been used extensively to
study the properties of polymers and polymer solutions,
providing a model for the study of a single polymer in a
good solvent, ' of polymer solutions and their scaling
properties from the dilute to the semidilute limit and of
equilibrium polymerization " of chains from mono-
mers, both neat and in solution. ' It has provided a start-
ing point for more general treatments of polymer solu-
tions in which the degree of polydispersity ' and good-
ness of solvent' are adjustable parameters. An extensive
lore has resulted concerning the crossover from dilute to
semidilute limits including the concepts of swelling in the
dilute limit, ' screening in the semidilute limit and the
"blob" model' of polymers in the semidilute 1imit.

Recently, these results have been called into question by
Csujrati, ' ' who has argued that results for the O(n) vec-
tor model in the thermodynamic limit cannot be analyti-
cally continued below n =1, the smallest value of n for
which it can be realized as a magnet. He maintains that
the equation of state of the O(n) vector model for n & 1

contains a singularity along a locus in the H-T plane that
passes through the magnetic critical point and that this
singularity corresponds to a physical transition in the
polymer system to a "collapsed" state that precludes the
usual picture of the semidilute limit as a collection of in-
terpenetrating polymers. This conclusion would be of
considerable importance, if true, in view of the extensive
use noted above of the n ~0 vector model as a model of
polymer solutions and equilibrium polymerization. It is
even more interesting because the O(n) vector model for

positive integer n can be interpreted as a model of equi-
librium polymerization in which polymeric rings' as
well as chains are in thermal and chemical equilibrium
with monomers. Moreover, for positive, noninteger n, it
can be interpreted as a polymer solution of polymeric
chains and polymeric rings in which a particular relation
between activities and statistical weights of various poly-
mer species is satisfied. Thus, Gujrati s claim that the
O(n) vector model leads to qualitatively different results
for the ordered (polymerized) phase in the corresponding
polymer solution according to whether n & 1 or n & 1 im-
plies that the behavior of an equilibrium polymerization
system changes radically when rings can form. This
seems counterintuitive given that such systems in the po-
lymerized phase contain many chains" as we11 as rings.
In addition, it implies that an infinitesimal change in the
activity of rings drastically changes the behavior of the
polymer solution for noninteger n near n =1, again a
counterintuitive result. However, we do not agree with
the analysis of this author, and believe that no such quali-
tative difference has been demonstrated.

Gujrati's arguments concerning the equation of state of
the n-vector model fall into two distinct categories. In
Secs. II—IV he gives a variety of arguments that a direct
statistical mechanical calculation of the partition function
as a functional integral encounters difficulties when n & 1.
In Sec. V he argues that published equations of state for
the n-vector model cannot be continued to n & 1. While
we do not agree with the details of the arguments in Secs.
II—IV, we will not comment on them here except for two
observations. First, the difficulties encountered by Cxujra-
ti depend essentially on the lack of thermodynamic stabili-
ty of states of the O(n & 1) model interpreted as a mag-
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net. It is known that the O(n &1) vector model has
negative susceptibility in the ordered phase for sufficiently
small field, and this is not consistent with thermodynamic
stability. However, there is no inconsistency with the
thermodynamic stability of the corresponding polymer
system, and, in fact, the negative susceptibility can be un-
derstood physically as a "correlation hole" effect in the
polymer interpretation. Given the negative susceptibility
of the n & 1 vector model, it should not be surprising that
other magnetic quantities that are expected to be positive
are not, or that there are difficulties in interpreting the
partition sum directly as a functional integral. We discuss
this further in Sec. V. Secondly, however, we emphasize
that such difficulties in no way imply that there will be
difficulties in continuing the equation of state for the n-
vector model, obtained for n ) 1, to n & l.

We disagree with Gujrati's conclusion in Sec. V that the
equations of state of Lawrie and of Schafer and
Horner cannot be continued to n & 1. We will show that
the equation of state of Schafer and Horner (SH) can be
put into a particularly transparent parametric form first
suggested by Schofield, Litster, and Ho (SLH). When
this is done it becomes clear that there is no difficulty in
continuing the equation of state to n & 1 throughout the
H-T plane excepting only the coexistence curve itself, and
that no nonanalyticity arises. Gujrati's conclusion that
Lawrie's equation of state does not possess a solution for
n &1 and sufficiently small field when T & T„depends
upon his argument below his Eq. (32) that the susceptibili-
ty must be positive for H ~0 and T & T, sufficiently
close to T, . We show below that this is neither logically
required nor in fact the case. The parametric equation of
state given below satisfies the conditions of Gujrati s argu-
ment but not its conclusions, thus serving as a counterex-
ample to his argument. Other simpler counterexamples
are also given. This eliminates the contradiction claimed
by Gujrati in Lawrie's equation of state.

An outline of the rest of this paper is as follows. We
first give the SLH parametric form of the equation of
state of SH and discuss its properties. We then integrate
to obtain the scaling part of the free energy to first order
in e. This demonstrates that the free energy of the n & 1

vector model exists, and is analytic except at h =0,
T & T„at least to first order in e. We then consider the
consequences of our equation of state for polymer solu-
tions and equilibrium polymerization of chains (n =0).
Section V contains a critical examination of several of the
arguments adduced by Gujrati to argue that the equation
of state for the O(n) vector model is not analytic for
n &1. In Sec. VI we address arguments by Gujrati in his
Sec. VI concerning the interchange of the limits H~O
and V~ &a and n~0 in the O(n) vector model.

II. PARAMETRIC EQUATION OF STATE
FOR THE n-VECTOR MODEL

m=mpr 0,I3

h =ar~ 0(1 —0 ),

r=r (2—30 )

I

+e(1 —0 ) 1+ G(0 ) +O(e )
n —1

n+8,

mp ——1,
. (3)

a =2 I+(e/2) ln3 —ln2 —1 +O(e ) & .n+8

The scaling variables

x= r// m —
[

")',
y=h/[m

f

(4)

satisfy Eqs. (8.6)—(8.9) of Ref. 25 to first order in e,
where we make the identification m =1—0 . Higher-
order terms in Eqs. (8.6) of Ref. 25 simply contribute
terms of higher order in e to r in Eq. (1) and to a in Eq.
(3). It is straightforward to incorporate these higher-order
terms into our equation of state. We have not done so
here for simplicity, but consider the effects of one such
term following Eq. (8) below. The parametric form in Eq.
(I) is thus equivalent to the equation of state of Schafer
and Horner (SH). It is of a form similar to that first sug-
gested by Schofield, Litster, and Ho, and is somewhat
more convenient than that of SH in that it is immediately
apparent that the only singularities in the equation of
state occur for r =0 (the critical point) and 0 =1 (the
coexistence curve). The scaling curve

~

h
~

—( —r)
along which Gujrati asserts that there are anomalies in the
equation of state corresponds to 0 & 0 =B& & 1, where B& is
a constant. The variables r, B are alternative independent
variables to ~,h in terms of which the equation of state
m (r, h) is expressed. One easily verifies that the Jacobian
of the transformation, B(r,h)/B(r, 0) is nonvanishing for
r ~ 0 to order e for all values of e, n, B, of interest:

B(r,h) s 2 n —1=ar~ . 2+@(l—0 ) 1+ G(0 )
B(r,0) n +8

where m is the magnetization per spin, h =H /k& T is the
magnetic field divided by Boltzmann's constant times the
absolute temperature, and r = 1 —(

—T, /T) measures the de-
viation of the temperature from its critical value and is
positive for T ~ T, . The singular function

02 —e /2
G(0 )= = —ln(1 —0 )+O(e) (2)

e/2

arises from Goldstone mode contributions. The critical
exponents P and 5 are the usual critical exponents, as in
Ref. 25. With the choice of units for m and h such that

+O(e') . . (5)

The equation of state for the n-vector model contained
in Eqs. (8.6)—(8.8) of Ref. 25 can be expressed in the ex-
panded parametric form, correct to first order in a =4—d,

Here and below, we require the e expansion of the critical
exponents to first order. These are well known
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e(4 —n) e n —1

2(n +8) 6 n +8 +O(e ),

h =~m +m (7)

1 3 2

2 2(n +8) e+O(E ),

p5= —+3 e(n —1) +O(e ) .
2 2(n +8)

The nonvanishing of the Jacobian in Eq. (5) guarantees
that ~ and h uniquely determine r and O. For a scaling
equation of state such as Eq. (1) it implies, in particular,
that r/

~

h
~

' ~ is a monotone function of 6 which can
therefore be solved for 6(r, h). Then Eq. (1) can be solved
uniquely for r(r, h) and thereby for m (r, h). In fact, it is
also easy to show that if Eq. (1) is truncated to order e us-
ing the first of Eq. (2) for G(6 ) and the exponents and
coefficients f3, P5, a, mo are evaluated to order e for any
fixed e and n with 0 & e ( 1 and n )0, then the exact (not
e expanded) Jacobian B(r,h)/B(r, 6) is strictly positive for
all r ~ 0 and 0& 0 & 1. This means that such a truncated
equation can be used as a model equation of state, with
@=1 and n =0 for example, and ~ and h still uniquely
determine r and O. We note in passing that, to lowest
(zeroth) order in e, and with classical values for the ex-
ponents (p = —, , 5 =3 ), Eq. (1) reduces to the mean-field
equation of state

E' n 303 =1+ 1S+——
n+8 2 n+8 (9)

and in Eq. (8) by the factor

2P(1 —e/2)A =1+ 8—e 30
n+8 n+8 (10)

[Eq. (9) follows from inspection of Eq. (8.7) of Ref. 25 for
b, and Eq. (10) may be obtained either by differentiation
or by inspection of Eqs. (8.4) and (8.5) of Ref. 25.] One
then finds

0~1, however, it should be viewed as expressing the first
term in an e expansion for the coefficient of the singular
function G(6 ) that describes the divergence of X on the
coexistence curve for n&1. When the term proportional
to G (6 ) in Eq. (8) is comparable to the first, care must be
exercised in comparing them. For example, if one wishes
to use Eq. (8) to find 6O, the value of 6 at which X van-
ishes, and thereby to find xp, the value of the scaling vari-
able in x in Eq. (4) at 6o, one discovers that xo+1 and
1 —Op are determined only to within unknown constant
factors. They can be determined to within factors of
1+0 (e) only if terms of order e G (6 ) in X and
e (1 —6 )G(6 ) in the equation of state are accounted for.
These are available from Ref. 25 and easily incorporated.
G(6 ) in Eq. (1) must be multiplied by the factor

The susceptibility, X=(Bm/Bh)„can be evaluated by
the method of Jacobians and is readily found to be, to
first order in e,

xo =—x(6o) = —1 —E (1—6O) ( & —1)n+8

mo 1
r ~ 1+—e

2
6 G(6 )+O(e ), (8)n+8

to within corrections of order e (1—6O), (1—6O), etc.,
where

where y=P(6 —1) is the usual susceptibility exponent.
According to Eq. (8), X is nonnegative, to first order in e,
for 0(6&1 when n ) 1. It diverges as 6 ~1 for n&l
because of the divergence of the Croldstone mode term
G (6 ). For n & 1, however, this term guarantees that
X(r, 6) diverges to —oo as 6 ~1 and is negative for all
0 Q OQ —const & 1 . Thus, contrary to Gujrati's assertion,
m (r, h) is a decreasing function of h for all r (0, for suf-
ficiently small h, even though m(r, h) &0 for all h &0
and r sufficiently small. This implies that x in Eq. (4) de-

creases from —1 on the coexistence curve and is more
negative than —1 in the immediate vicinity of coexistence
curve. This is dealt with in more detail in Sec. V below.
While the susceptibility of the magnet is negative for
n & 1, there is no corresponding violation of thermo-
dynamic stability for the corresponding polymer
solution —the physically relevant system. The relevant
stability requirement is that (h X+hm) &0, which is
readily verified to be satisfied for all r, h. The susceptibil-
ity in Eq. (8) is identical, to order e, with that obtained
from the correlation functions of Ref. 2S by setting the
wave vector q equal to zero, as is to be expected.

A comment is in order concerning the status of an
equation like Eq. (8). As an expansion in powers of e it is
obviously highly nonuniform in O. For 0&1 it can be
viewed as an expansion in the small parameter e. As

1 —Op —— 1 —n
;, 2/e

2
exp —8—

9
30 +O(e)n+8

Note that xo in Eq. (11) does not depend upon the value
of 3, but only upon keeping terms of 0 (e) in 2P(1 —e/2),
whereas 1 —6O in Eq. (12) requires O(e) terms in A even
to order e . It should not be surprising that terms of
O(e ) in the coefficient of G(6 ) are required at 6o since
eG(6 ) is itself of order unity there. This is not a patholo-
gy of n & 1; rather, it is a feature of the crossover between
two kinds of singular behavior encountered in the n-
vector model whenever n&1. This was noted earlier by
Wallace and Zia in connection with the n & 1 vector
model. In particular, our Eq. (12) is equivalent to Eq.
(3.71) of Ref. 29(b) for the value of yo at which the two
dominant terms in X become equal when n ~ 1. For
0 & Op, the susceptibility is negative and x & —1. For
0 & Op, the susceptibility is positive.

Similar care must be exercised in using Lawrie's equa-
tion of state to evaluate yp, the value of y at which 5=0
or y at which x returns to —1. Because Lawrie's equa-
tion of state is correct only to order e', the value of yp and
y* obtained from it are reliable only to within unknown
constant factors. This applies to the value of y* quoted
in Ref. 16 in the equation following Eq. (32). The value
of y* can be obtained to within a factor 1+0 (e) by using
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Eq. (9) with Eq. (1) and is found to be y
'

=yo exp[ I+O(e)] )yo, where yo ——2( 1 —0o) with (1—0o)
given by Eq. (12).

It should be noted that if the logarithmic form of
G (0 ) in Eq. (2) were used in the e expansion, then terms
of order e" ln"(1 —0 ) would appear in the e expansion of

and there would be no hope of making a sensible
analysis for 0~1. If these terms are summed into the ex-
ponentiated form of G(0 ) given first in Eq. (2) then the
higher-order terms in e in Eq. (8) take the form of an e
expansion for the coefficient of G(0 ) and for the con-
stant term plus less singular functions of 0 that, for small
e, vanish as 0 ~1. A systematic treatment is then possi-
ble even for 0 approaching unity. The equation of state of
Schafer and Horner incorporates the behavior near the
coexistence curve pointed out by Wallace and Zia into a
convenient functional form that holds throughout the h-T
plane near the critical point. The relationship between the
X=0 locus found here and that found at large field in the
mean-field equation of state and by exact arguments is
discussed in Sec. VII.

and H(0)=0(1 —0 ), and where primes denote the first
derivative with respect to 0. We have made use of the ex-
ponent scaling law P(5+ 1)=2—a and of the known lim-
iting behavior of the exponents with e given in Eq. (6).
Equation (16) has the general solution

Fo(0)=0 (1——,0 )+ —,ao(2 —30 ) (18)

The coefficient ao is arbitrary in the solution of Eq. (16),
but is determined by the requirement that F, (0) be non-
singular at 0 = —,'. It is found to be

ao ——n/(4 —n) . (19)

Thus, for n ~0 the scaling part of the free energy
Fo(0)—:0 (1——,0 ) vanishes identically for H~0,
T ) T, (i.e., for 0~0), as does the total free energy, in ac-
cord with the requirement that the osmotic pressure of the
corresponding polymer solution vanish with vanishing ac-
tivity of polymers.

Using Eq. (6), the solution of Eq. (17) for F, (0) is
found to be

III. FREE ENERGY

The parametric equation of state in Eq. (1) can be in-
tegrated to yield a thermodynamic potential

18 +8
4(4 —n)(n +8)

5n + 104n +80 4

16(4—n)(n +8)
f (r, h) = , am r~—o' + "[Fo(0)+eF,(0)+O(e )]

from which the magnetization m and the energy

(13)
(n —1)(n +4)+ 1—
2(4—n)(n + 8)

n+8
n+4

ss, X(I—0')G(0') . (20)

can be obtained by differentiation:

(14)

a

I2J

(15)

ToFo(0) —2To(0)Fo(0) =40,

ToF 'i(0) —2T o(0)F i(0)

(16)

Combining Eqs. (1), (13), and (14) and using Jacobians to
express the derivatives in terms of r and 0, one obtains the
following differential equations for Fo(0) and F, (0)

Cg =

B7

Be

1= —,amor (Eo+eE, ),

1= —,amor (Co+eC, ),

(21)

(22)

To determine the arbitrary coefficient a
&

would require
knowing the equation of state of Eq. (1) to second order in

e. Then the requirement that Fq(0), the second order inE'
contribution to F(0), be nonsingular at 0 = —, would

determine a]. We discuss this further below.
The energy e and constant-field heat capacity c~ corre-

sponding to (20) can be obtained by differentiation using
Jacobians and are found to be

Q=Fo — T o+2T & where

+ 0H —2T o(0)
E'

3T$
Eo —— (1——,'0 ) —0 /2,

4 —n
(23)

+ T, [20H'(0) —Fo], (17)

g 1
3 02 n (n +20) 3n +68n +64 0q

4(4 n)(n +8) —8(n +8)(4—n)

where Tp ——2 —30,
+ (1 —0')G (0')

(n +8)(4—n)
(24)

Ti ——(1 —0 ) 1+ G(0 )n+8 &o= + —0'
2(4—n)

(25)
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C = —a1 2 1

n (n +44)
8(4—n)(n +8)

g2
n+8

and where we have used the scaling relation
P(6+ 1)=2—a. Alternatively, they may be found
through the generalized Euler relations implied by the
homogeneity of f:

(2 —a)f =re+P5mh, (27)

(3fll
(1 —a)e =rcb+P5 (28)

where we have made use of the Maxwell relation

Be Bm

Bh B~
(29)

It is relatively easy to verify that (18)—(26) satisfy
(27)—(29) to order e as identities in r and g.

By examining the requirement of analyticity of Fz(H) at
0 3 it is possible to show that a ] must be of the form
a't(n)l(4 n), w—here a~(n =4)=16. This much can be
deduced without detailed knowledge of the second-order-
in-e contribution to the equation of state. The full depen-
dence of a& upon n can be determined from the heat-
capacity amplitude ratio 3+/2 calculated by Brezin,
LeGuillou, and Zinn-Justin. ' This requires a

&
to be

n (208 n)—
4(4 —n) (n+8)

(30)

IV. THE n ~0 LIMIT, EQUILIBRIUM
POLYMERIZATION, AND POLYMER SOLUTIONS

As noted above, there is an exact correspondence be-
tween the n ~0 limit of the 0 (n) vector model on a lat-
tice and a model for equilibrium polymerization ' of
chains from monomers. The partition function for this
model of polymerization can be written as

N Nb N I

With this value of a] we also reproduce Aharony and
Hohenberg's scaled amplitude

A = —,
' am 0 [To(0) ) a[ CD(0) +eC] (0)]

This independent check on a
&

gives us considerable confi-
dence in both a] itself and our thermodynamic potential
as a whole.

We remark that the factors (4 —n) in the denominators
of ao and F&(0) are essentially the critical exponent a to
lowest order in e [cf. Eq. (6)] and arise because the free
energy has logarithmic singularities when a =0. One
could perhaps improve the equation of state by replacing
4 —n by 2(n +8)ale in Eqs. (19), (20), and (30) and ap-
propriately modifying higher-order terms, but as this is
not a problem for n ( 1 we have not done so here.

Ep ——~=J=J/kgT,

H =f=N 'lnZ,
k~T

(32)

= —e,

I= —hm2

where H is the osmotic pressure of the polymer solution,
Uo the volume of a lattice cell, Z the partition function
for the lattice magnet, J the coupling constant between
spins, p, b the volume fraction for monomers in polymers
(i.e., the fraction of cells in which the monomers are in a
polymer), and xz is the number concentration of polymers
multiplied by Uo (i.e., the number of polymers divided by
the number of cells). The quantities $1 and Pz are analo-
gous variables in Gujrati's correspondence to P,b and xz.
The mean number of monomers in a polymer is given by
N=p, blxz. Taking the limit n~0 in our equation of
state above, we obtain for equilibrium polymerization and
polymer solutions,

where K& is the equilibrium constant for activation of a
monomer (statistical weight of an activated monomer rel-
ative to normal, unactivated monomer), Kz is the equi-
librium constant for a chain polymer of length m in a
given configuration of cells to propagate to a chain of
length m +1 by adding an unactivated monomer in a
specified cell adjacent to either end, Nz is the total num-
ber of polymers (including "one-cell polymers, " i.e., ac-
tivated monomers), Nb is the total number of bonds be-
tween monomers, N] is the number of "one-cell poly-
mers, " and I (N~, Nb N, ;N) is the number of ways of ar-
ranging N& polymers containing Nb bonds, N& of which
are "one-cell polymers" on a lattice of N sites such that
no cell is visited by more than one polymer (excluded
volume). We have shown that this partition function is
identical to that of the n ~0 vector model with the identi-
fication of variables given below, and moreover, that in
the mean-field approximation to the n ~0 vector model it
becomes identical to the well-known Tobolsky-Eisenberg
theory of equilibrium polymerization. A somewhat dif-
ferent mapping between polymer solutions and the lattice
n~0 vector model has been given by Gujrati in which
the activity of a polymer end is denoted by q and that for
a bond by a and only polymers with at least one bond (two
monomers in our description) are allowed. While these
mappings are quite different in some regions of the pa-
rameter space (for example, our mapping is 1-1
throughout the positive H half of the 0-T plane for the
magnet while Gujrati s is not), they become identical in
the scaling limit H~O, T~T„where the number con-
centration and volume fraction of polymers both vanish,
and the mean molecular weight diverges. In this limit,
neglecting corrections to scaling, both models can be
described by the identifications,

(2X) )'~ =g =h,
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h =ar~ 0(1 —0 ),
r=rI2 —30 +E(1—0 )[1——,G(0 ))+O(e )I,

= —'am r 0 (1——'0 )+ [0 ——0

—(1—20 )(1—0 )G(0 )]+O(e )

Iluo/k~T and P,q and noting that the corresponding
functions of 0 remain positive as 0~1.

The radius of gyration of the polymer chains is con-
veniently measured by their end-end correlation length R,
which is, in turn, given by the transverse correlation
length of the O(n) vector model in the limit n ~0. This
is found to be (with R measured in lattice spacings)

—v( I g2) —l/2 (36)

xz ——, am—or 0 (1—0 ),
(33)

4,~ = —.amor' 0' ——[0'——.(1 —0')G(0')]+O(~')

[2(1 g2)])1E11(10)G(0)
4 g2

+O(e )

Our results for the osmotic pressure H above is in agree-
ment with that of Knoll, Schafer, and Witten. Combin-
ing their Eqs. (1.1) and (4.15) with the identification that
their w is equal to 1 —0 in our notation and that their cz
is our x~ divided by vp, leads to our Hvp/k&T. The
first order in e term in N above is well behaved for
0 & 0 & 1 since G (0 )-0 near 0=0.

In the dilute (0~0) limit x~, P,i„and II all vanish pro-
portionally to 0 (that is, to K

& ), as expected, and
N ~ r '. These results are all in accord with the
Tobolsky-Eisenberg (TE) theory of polymerization. In
the semidilute (0~1) limit, x& vanishes proportionally to
K I while N diverges proportionally to K

&
and $,1,

remains nonzero and finite and varies as r' —( —r)'
These are again consistent with the TE theory except for
the prediction that a~0, a nonclassical critical effect.
The Des Cloizeaux scaling law, that Hvp/k&Tx& is a
function of the single variable x~N amounts to the ob-
servation that, with the scaling law dv=2 —a, each of
these quantities is a function only of 0, not of r, and
therefore each is a function of only the other, not of any
additional variables. In the dilute limit we obtain the re-
sult

This has an interesting physical interpretation in terms of
the "blob" picture of the semidilute limit. First note that
for 0 & 1, and r ~0, this is consistent with swollen poly-
mers in the dilute limit where R -N . However, as 0~1
these formulas become inconsistent. Instead, for fixed r
and 0~1, we have R -N ', the random walk result, but
with a coefficient that varies as r ' ' '. A crude scal-
ing argument due to De Gennes' sheds light on this re-
sult. If we take r as thedistance scale on which a poly-
mer chain remains swollen before losing correlations with
itself due to encounters with monomers on other chains,
then there should be M-r ' monomers from this poly-
mer in this "blob" and B =NM such blobs, each of ra-
dius M, and these blobs will execute a random walk with
final end to end distance

(37)

We remark that r" is essentially the momentum cutoff ~
of Ref. 4 [cf. Eq. (2.33)] and essentially the mass m of
Sec. 10 of Ref. 25. The identification of r as the dis-
tance scale on which a polymer is swollen is in accord
with the behavior of the energy-energy correlation func-
tion of the O(n) vector model, which corresponds to the
monomer-in-a-polymer, monomer-in-a-polymer correla-
tion function for the polymer solution. This correlation
function drops off more rapidly for distance x greater
than r than for x & r (although not necessarily ex-
ponentially ), so that r can be identified as the dis-
tance scale (in units of the lattice spacing) on which a po-
lymer ceases to distinguish itself from other polymers.

Although the concentration of chains, xz, vanishes as
h ~0 in the polymerized phase (semidilute limit) it should
not be thought that the system consists of few polymers
or a single polymer. Indeed the number of other polymers
which are expected to be found within the radius of gyra-
tion of any single polymer is given by

Hvp
=1+bxpN" +. . .

k~ Txp
(34)

1

—,am pO
R x

( 1 02)d/2 —1
(38)

HUp
=A/, I",

' ' " (dv=2 —a),
kgT

(35)

where A is a constant, by examining the powers of r in

where 6 is a numerical constant. This has the physical
content that the effective excluded volume between the
polymers is given by their radius of gyration, N . In the
semidilute limit we recover the famous Des Cloizeaux
limiting law

independently of r. This number vanishes as t9~0 as is to
be expected when the separation between polymers is
much greater than their size. In the semidilute (0~1)
limit, however, this diverges proportionally to h
Thus every polymer chain is penetrated by an infinite
number of other chains in the limit h ~0 whenever d ~ 2.
This conclusion is in complete accord with the conven-
tional picture of strongly interpenetrating polymers which
screen each other according to the De Gennes "blob" pic-
ture, but is in stark contrast to Gujrati's assertion' that
the state as h ~0 for T & T, consists of a single polymer
chain.
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As remarked above, the negative magnetic susceptibility of the (nonexistent) n =0 magnet does not imply any thermo-
dynamic instability for the corresponding polymer solution. The criteria for thermodynamic stability of the polymer sys-
tem are

axe
&0,

a lnK,
&0,

axe axe
&0 ~al~, K al~, K, al~, K, al~, K

In terms of the magnetic variables, these become (neglecting correction-to-scaling terms)

—,
'

(hm + h 'Y) & 0, c„&0,

(hm+h X)ch —h h )0.
4 a7-

(40)

It is straightforward to verify that these inequalities are satisfied, to first order in e, for 0 & e & 1, 0 & n &4, 0 & L9 & 1. For
n =0 they become, in the scaling variables,

16
—,'amor 8 (1—8 ) 2 —8 — 8 (1 —8 )G(8 )+O(e ) )0,
—,amor I8 —e[ —,'8 + —,', (1 —8 ) G(8 )]+O(e )) &0,

„(am—or' ) 8 (1 —8 )[8 —e[ —,8 +—„(1—8 )(2 —8 )G(8 )]+O(e )I)0.
(41)

Thus, the polymer system is thermodynamically stable
against all possible Auctuations in number and length of
polymers near the critical point for all accessible values of
its parameters.

The negative susceptibility of the magnet has a physical
interpretation in the polymer language as "correlation
hole" effect. The second derivative of f =N 'lnZ with
respect to ln(h) (the chemical potential of a polymer end)
gives hm +h X. According to very general statistical-
mechanical arguments, this can be written as the in-
tegral over all space of the (cumulant) average of the den-

sity of polymer ends at position x times that density at
the origin. The term hm may be identified as the integral
over a Dirac 6 function giving the correlation of an end
with itself, while the term h 7 may be identified as the in-

tegral over the correlation function of one end at the ori-
gin with other ends at position x. In the dilute limit
(8~0), when polymers are widely separated compared to
their spatial extent, the presence of a polymer end at the
origin guarantees the presence of another polymer end
(the other end of the same polymer) nearby, and therefore
an enhancement over the mean of the density of other
ends, so that h X)0. In the semidilute limit (8~1),
however, the presence of a polymer end at the origin
guarantees the presence of a (long) polymer near the ori-
gin and the excluded volume of that polymer implies a de-
crease (below the mean) of the density of other ends near-

by, thus leading to a negative value of h X. Thus it is to
be expected that X is positive for small 0 and becomes
negative as 0~1.

This difference between the behavior near 8=0 (pairs
of ends moving together) and near 8=1 ("dissociated"
ends moving more or less independently) is also the source
of the fundamental difference in the dependence of con-

centration of chain polymers, xz ———,hrn, in the limit
n~0 upon the activity for a polymer end, h. As 0~0
the polymers move as distinct units so that the ends are
tied together and x& -h . As 0~1, the polymer ends are
effectively "dissociated" and x~ —(h )

' —h, a result
characteristic of a dissociation equilibrium. This point
has been discussed in more detail in Ref. 11 in the context
of simple equilibrium theories of polymerization. The
divergent, negative susceptibility implies that xz deviates
from its asymptotic 0 = 1 behavior as
xz ——,

' mo(T)h —I o(T)h, where mo(T) is the spontane-
ous magnetization and I 0(T) is a positive function of T.
This is the result of the "correlation hole" effect. Note
that while xz exhibits "negative deviations" from its lim-
iting behavior, these are not strong enough to violate the
required monotonicity of xz in h (stability).

Two additional remarks are warranted. First, the ratio
(h L)/(hm) tends to zero as 8~1 for 2& d (4. Since
hm is the (unbiased) probability density for an end to be
at the origin, this ratio is the difference between the total
number of (other) polymer ends anywhere in the space
given that a polymer end is fixed and the total number of
other polymer ends independent of whether there is a
polymer at the origin or not. That this quantity vanishes
as 0~ 1 shows that the correlation hole effect, while
present, is really a rather weak effect involving subtle can-
cellations. Second, in the compressibility relation for
fluids,

=p k~ T&T —p+p dxh x, 42
a(~lr, T)

the first term plays a role analogous to hm, above, while
the second plays a role analogous to h X. In liquids it is
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virtually always the case that the second term is negative,
and moreover comparable in magnitude to the first. Thus
the negative value for h 7 for n =0, i.e., in polymer solu-
tions, is not to be thought of as unusual, and the fact that
it vanishes compared to hm indicates that even in the
semidilute limit where the polymers are strongly inter-
penetrating they are nevertheless (relatively) weakly in-
teracting when compared with normal molecules in a
liquid.

Equation (33), to lowest order in e, is very similar to the
equation of state we proposed earlier on an ad hoc basis
to describe equilibrium polymerization using the n ~0
vector model. Equation (33) with e=O differs in one im-
portant respect from Eq. (7) of Ref. 7. To lowest order in
e, Eq. (33) implies that the parameter b of Ref. 7 is —',
rather than 2, the value deduced there. The value b =2
would be correct if the simple (e=O) scaling form pro-
posed there held for nonclassical (e&0) values of the ex-
ponents. If, however, r and P, contain corrections of or-
der e [which they do according to Eq. (33)], then the value
of b deduced from the Maxwell relation in Eq. (29)
above depends upon these corrections as well as upon the
e dependence of a and 6—3, and the resulting value of b
is —, rather than 2.

V. RELATION TO GUJRATI'8 %'ORK

In this section we address several specific arguments
used by Gujrati to argue that the O(n) vector model is
not analytic for h ~ 0 when n & 1. First we show that
there is no difficulty with finding solutions to Lawrie's
equation of state as x can in fact be less than —1. Next
we show that the divergence of various renormalized mag-
netic coupling constants is expected when Y=O and that
this is not an intrinsic problem with the equation of state
as a function of h. Finally we discuss the equivalence of
polymers to two different n-component magnetic models,
one of which has O(n) symmetry, and the other of which
has n-hypercubical symmetry.

Gujrati's contention that Lawrie's equation of state is
inconsistent with a real solution for m (H, T) when n & 1

is based on his (erroneous) conclusion that m (H, T) must
be an increasing function of H at H =0 for T sufficiently
close to T, . Unfortunately Gujrati's Eq. (32) contains two
typographical errors that make the argument after it diffi-
cult to follow. Lawrie's equation of state in Gujrati s
form should read

3e/(n +8)

(a) m (7,h) )0 for h )0,
(b) m (r, h ~0+ ) )0 for r & 0,
(c) m (r, h =0)=0 for r &0,
(d) m (~,h) smooth,

then m (r, h) must be an increasing function of h for
h =0 and ~ sufficiently small. This would then imply
that x & —1. However, inspection of Eqs. (1), (3), and (4)
shows that they satisfy conditions (a)—(d) above and that

(2 —39')+e(1 —0') 1+ G(8 )n+8

= —1+e ( 1+8')G (8')+0 ( I —0'), (44)n+8
and is therefore less than —1 for 0 sufficiently close to 1

whenever n & 1. Thus these equations constitute a coun-
terexample to Gujrati's argument, which is therefore in er-
ror, and thus the left-hand side of Eq. (43) as well as the
right-hand side may become negative for h sufficiently
small and ~ & 0, so that no contradiction occurs.

The fatal error in Gujrati's argument following his Eq.
(32) is his conclusion that because m (h, T) must be posi-
tive for positive h, and because the spontaneous magneti-
zation approaches zero as T~T„ therefore the initial
slope of m versus h must be positive. In fact, it can be in-
finitely negative and is so for the equation of state in Eqs.
(1)—(4). The magnetization m decreases with increasing
h, passing through a minimum at h =ho(r) where
ho(r) —( —r)~ . Thus the distance to the minimum and
the consequent depth of the minimum decrease as T~ T,
in such a way that the minimum value of m remains posi-
tive. It is relatively easy to construct simple model func-
tions m (h, r) which illustrate this possibility and therefore
also serve as counterexamples to Gujrati's conclusion.
For example, the function (defined for h )0, r & 0)

m(h, r)=
~

r
~

' ' —h' '~
~

' '+h' ' (45)

satisfies conditions (a)—(c) above and has the properties
(i) m (O, r) =

~

r
~

' 0 as ~~0
(ii) (Bm/Bh), ~—~ as h 0 for all ~&0. This sim-

ple example does not, of course, satisfy condition (d) for
~=0, h &0 or for ~&0. The slightly more complicated
example

(3+x)'i 1+x 2

3+x
I

(h +2)' —7.

h

' 1/2

=9y 1+ n —1

9
3+x

(n +8) (43)
2 ~ 1/2(h +~2)

1/4

(46)

with x and y given by Eq. (4). As H~O, with T & T„x~ —1, and y~0. If, as contended by Gujrati, x must
be greater than —1 for n & 1, then the left-hand side of
Eq. (43) would indeed remain positive and the right-hand
side become negative sufficiently close to 0 =0. Howev-
er, this is neither required, nor in fact the case. Gujrati
argues, following his Eq. (32), that, given that

satisfies (a)—(d) and has the properties
(1) m(h, r) analytic for all real h, except on h =0,

~&0,
(2) m (0+,r) =2

~

r
~

' (r &0),
(3) m(hr)-hr ', r&0, h
(4) lim(Bm/Bh), = —oo for all r &0.h~o
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It also satisfies scaling with the (unphysical) exponents
a =f3= y =5 ' = —'. For more realistic exponents it is
easiest to turn to a parametric equation of state such as
the one we have employed. We have given these simple
examples to emphasize the point that, although plausible
sounding, Gujrati's conclusion is demonstrably false.

In his Secs. III, IV, and VII Gujrati argues that the
divergence of a (renormalized) coupling constant in his
field theoretic calculation precludes analytic continuation
of the equation of state beyond this divergence. This is a
legitimate concern if the equation of state is expressed as a
perturbation series in this coupling constant. Schafer and
Horner do not do this. The (zero momentum) coupling
constants are derivatives of a free energy, I (t, m) viewed
as a function of m, with respect to components of the
magnetization [cf. Eq. (25) of Ref. 25 and Eq. (5) of Ref.
16]. The vanishing of g implies that I passes through an
extremum as a function of h, which in turn implies that I
and its derivatives wi11, in general, be double-va1ued func-
tions of m with singularities at the locus 7=0 as fun--
tions of m. This does not imply, however, that the free
energy f(t, h)=Xh m —I (t, m) as a function of the field
or any of its derivatives is singular as a function of h on
the locus 7=0, and in fact they are not for the n-vector
model with n &1. Schafer and Horner express the cou-
pling constants (which are indeed divergent for n & 1 at
&=0) in terms of smoothly varying nondivergent quanti-
ties [cf. their Eqs. (8.1) and (8.2)] which, in turn, deter-
mine the equation of state in a manner which is nonsingu-
lar even when 7=0.

A particularly simple and relevant example illustrates
the possibility of analytic continuation through the locus
of diverging coupling constants. In the limit J~O the
n ~0 vector model on a lattice with fixed length spins is
exactly soluble, with partition function

From this we readily deduce that

m ~~~ —P I~~(1+—'
/g ~) —i

(48)

I 'i „'(0,0,0) =(mX) ' —hm

I „,, (0,0,0,0)= —hm +m
(49)

These formulas are quite general and can be derived using
only the rotational invariance of I, but are easily checked
directly in this simple case. It is clear that these coup1ing
constants (and many others) will diverge when X =0, both
for the exactly solved 0 (n) vector model at J =0, and for
the e expansion of the equation of state given above. This

Note that 7~0 when h ~2 or ~ and that h is a
double-va1ued function of m with a singular point at
m = —,', but that I is analytic in h for all real h. The
coupling constants are readily calculated as derivatives of
h with respect to components of m. One obtains, for ex-
ample, in the notation of Schafer and Horner, the Ward
identities

is a simple consequence of 7=0 and is to be expected
everywhere along the locus +=0. For the J=0 limit it is
simple to show that Gujrati's coupling constants have the
behavior near g =0,

(50)

and this is to be expected quite generally along the locus
+=0 provided only that (8 m/Bh ) does not vanish
there. [We note in passing that the coupling constants in
Eq. (17) of Ref. 16 do not satisfy the Ward identity for
A, &, nor do they exhibit the required divergence of k~, the
expected divergence of A, z-L, or the expected form for the
divergence of AL.] Given this simple example, the general
expectation of divergent coupling constants when +=0,
and the smooth behavior of the equation of state obtained
by Schafer and Horner, it appears that divergent (renor-
malized) coupling constants do not constitute compelling
evidence for any essential nonanalyticity of the equation
of state.

The divergences at the coexistence curve quoted in this
paper are a result of the long-range fluctuations of the
Goldstone modes, which are in turn a consequence of the
breaking of the continuous symmetry of the O(n) vector
model. It has been shown by Hilhorst that a model
which appears to have only hypercubical symmetry is
equivalent to polymers in the limit n~0. Gujrati ar-
gues, ' based on this fact, that Goldstone modes cannot
affect the behavior of polymers bemuse they are not ex-
pected in this hypercubical model and that therefore some
transition for H ~0, T & T, is a logical necessity. This
argument, however, is fallacious for two reasons. First,
the Hilhorst model in fact has O(n) symmetry in this
limit. To see this, note that the Hamiltonian of the
Hilhorst model is itself 0 (n) symmetric whereas, for
n&0, 1, the directions in which the spins can point (along
the axes) is not. However, the results for the angular,
which the spins can point (along the axes), is not. Howev-
er, the results for the angular average of products of spins
at a site are equal in the limit n~0 for O(n) and n
hypercubic symmetries.

The second reason is that for n&0, 1 the hypercubical
model does not possess a simple interpretation as a poly-
mer solution consisting of polymers made up of a single
monomer species. For general positive integer n the O(n)
model has a consistent interpretation as a model of n
species of ring polymers (corresponding to the n-spin
components, a = 1, . . . , n) and one species of chain poly-
mer (corresponding to a = 1, the direction of the field), all
in chemical equilibrium, and such that the interaction en-
ergy or excluded volume is the same when unlike polymer
species (corresponding to different spin-components a)
meet at a site as when like species do. Thus the n-ring
species can consistently be thought of as a single species
with activity n. As a consequence the n-vector model can
be thought of, even for noninteger n, as a multicomponent
solution of chains and rings, made up of a single species
of monomer, with a specified activity and statistical



PARAMETRIC EQUATION OF STATE FOR THE n-VECTOR. . .

VI. PGLYMERS AND THE GRDER OF LIMITS

In the above we have implicitly taken the thermo-
dynamic ( V~ oo ) limit before the limits n ~0 or h ~0.
In Sec. VI of Ref. 16, it is argued that for n =0 the limits
H~O and V~ ao can be interchanged. This conclusion
is technically in error, although the example adduced by
Gujrati is interesting in that it illustrates the rather com-
plex dependence of results in the n~O vector model on
the order of the limits V~oo, n~O, and H~O. If one
takes the limit n ~0 before the limit V~ ao, then
lim& olimv & limz limH o, in agreement with

the assertion by Parisi and Sourlas. The reason is that
for the one-dimensional n-vector model considered by
Gujrati, the multiplicity of the eigenvalue A.z is n so that
the partition function is

Z k( +nA2 + (51)

where N ~ V is the number of lattice sites. If the limits
are taken in the order (working from right to left)
limv limH o lim„o or limv lim„o limH 0 then
the second term in Eq. (51) contributes nothing and A, ~

tends to unity before X~~ so that Z=1 and no phase
transition results. However, if the limits are taken in the
order limH 0 lim z lim„o we and others have
shown earlier that a phase transition occurs at K = 1 to a
polymerized state consisting of an infinite number of po-
lymer chains. The thermodynamic potential in the limit
Ho~0 is given by [Gujrati s K is identical to J in Eq.
(32)]

lim lim lim N 'lnZ= .
k~ T HQ~ON oo n~o 0 (K &1).

(52)

It is possible to obtain a phase transition to a polymerized
state with Ho ——0 before V~~ provided the limit n~O
is taken after the thermodynamic limit. With the order of

weight for each size of ring and chain. In the limit n ~0
the activity of rings vanishes and only chains survive. It
is therefore reasonable to hope to continue the 0 (n )

model in n through n =1 to obtain sensible results at
n =0. In contrast, the hypercubical model of Hilhorst for
integer n &1 corresponds to a model of chains and n

species or rings in which polymers of different species
completely exclude each other from the same site, while
polymers of the same species only partially exclude each
other from the same site. In the condensed phase where
chains are present, the chains will favor one species of
ring over the others, and this will lead to behavior charac-
teristic of n =1 rather than n & 1. Moreover, there is no
natural way to extend the interpretation of this polymer
model, in which the n-ring species distinguish each other
from themselves, to noninteger n. It thus seems clear,
therefore, that while the Hilhorst model may be a useful
computational device in the limit n~O, its hypercubical
nature for n & 0 should not be used to argue about the ex-
pected behavior of polymers.

limits lim„olimz limz o, the second term in Eq.
Q
~

(51) dominates for K & 1, and Z —nlz for all n ~0. The
thermodynamic limit then gives the free energy per spin F

F. . . ) lnK (K) 1)= lim lim lim X ' lnZ = ~

ksT n-ow ~ H, -o 0 (K ~ 1).
(53)

Although this free energy is the same as that in Eq. (52),
the resulting polymerized state is quite different from that
obtained with the order of limits in Eq. (52). There the
polymeric state consists of an infinite number of open
chains, whereas here it consists of a single closed ring
comprising the entire lattice. [We have assumed periodic
boundary conditions. If free boundary conditions are used
then no phase transition occurs even for the order of lim-
its in Eq. (53).]

This sensitive dependence of the thermodynamic state
upon the order of limits is expected to be more general
than the one-dimensional example considered in Ref. 16.
We have argued elsewhere ' that the equilibrium poly-
merization of chains and rings together has aspects of bi-
criticality; that it is a crossover point between the poly-
merization transition to chains described by the n =0 vec-
tor model and a polymerization to an infinite ring conden-
sate described by the n =1 vector model in the limit that
H~O before V~ oc. We expect in general, for d & 2, '

that the order of limits lim„olimz limH o will pro-
duce a polymerized state consisting of infinite rings (rings
of size bounded only by the requirement that their radius
of gyration cannot exceed the size of the vessel), whereas
the orders of limits lim„o limH o lim ~ „or
limH o lim„o lim z or lim& o lim z lim„o will
all produce a state completely dominated by chain poly-
mers. While the zero-field free energy may be the same
for these states, they can be distinguished by different
values of the derivative with respect to an anisotropy
field ' in the limit of zero anisotropy field and zero
magnetic field, corresponding to the distinction between
the fraction of monomers in polymer rings and in poly-
mer chains. Finally, no polymers are present if the limit
V~ oc is taken after the limits n ~0 and H~0.

It is worth emphasizing that with lim~ o taken after
Q

+

limv „ the polymerized state consists of an infinite num-
ber of polymerized chains even though the concentration
of chains x& vanishes as Ho~0, whereas with limz
after limH o there are no chains present even for

Q

K & K, . As noted above, moreover, with lim z first,
the number of other polymers that visit the volume occu-
pied by a single polymer diverges for HO~0 with K & J|,.
While it may be possible by coupling the limits V~~
and Ho~0 to obtain a state with only a single polymer
chain occupying a nonzero fraction of the lattice sites as
discussed recently, ' this should be viewed as a highly
unusual crossover between the two conventional limits. It
appears that for most practical considerations the order of
limits V~ ~ before HO~0 is the limit of interest. For
example, in the case of sulfur we have estimated that the
infinite-vessel limit is approached for containers larger
than a few hundred angstroms.
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VII. DISCUSSION

We have shown that the equation of state for the n-
vector model given by Schafer and Horner can be put in a
parametric form proposed by Schofield, Litster, and Ho
that is manifestly analytic to order e'' even for n &1
throughout the H-T plane in the neighborhood of the
critical point except for the critical point itself and the
coexistence curve. This is at variance with the claim by
G-ujrati that a singularity occurs for H & 0, T & T, signal-
ing the appearance of a new "collapsed" phase. We have
also shown that the equation of state of Lawrie is not
manifestly inconsistent with this analyticity, as claimed
by Gujrati. These findings, of course, neither prove the
analyticity of the free energy nor disprove the possibi1ity
of a collapsed phase, any more than e expansion results
"prove" the existence of power laws or scaling for n ) 1.
We do conclude, however, that there is no evidence for the
nonanalyticity claimed by Gujrati nor for the collapsed
state proposed by him in any of the published equations
of state of Schafer and Horner, Lawrie, or Knoll,
Schafer and Witten. Rather, the evidence suggests that
the equation of state for equilibrium polymerization of
chain polymers, as determined by the n ~0 vector model
is well behaved except in the limit K& ———,

'
h ~0 for

Kz ) (K~)' ( T( T, for the magnet). In particular, the
conditions for thermodynamic stability of the polymer
system are satisfied everywhere in the vicinity of the criti-
cal point. The order of the limits n~O, H~O, V~~ is
subtle, but as long as H~0 is taken after V~ ~ it is ex-
pected that the results are independent of other orderings
of the limits for physical systems with d & 2.

It is instructive to compare the results obtained here
with those for the exact solution of the n ~0 vector
model in the mean-field approximation obtained earlier.
These differ in two respects. The results here contain
terms proportional to e not contained in the mean-field re-
sults, whereas the exact mean-field solution contains
correction to scaling terms not included here. However,
setting @=0 in our scaling equation and retaining only the
scaling terms in the mean-field solution, one obtains com-
plete agreement. In particular, one finds from Eqs. (1),
(8), and (19)—(24) that C =(Be/Br) =0(e), in agree-
ment with the mean field result C =0. Similarly, one
finds from Eq. (8) with @=0 that Y = ,

' r ', in e—xact

agreement with the scaling limit of the exact mean-field
solution. (It is necessary to recognize that in Ref. 8 a dif-
ferent scaling of m and h is used requiring mp =2 a =4,
but this does not affect the result for X.) Thus, near the
critical point 7 ~ 0 in the mean-field approximation. Far-
ther from the critical point one finds in the mean-field ap-
proximation a locus where 7=0. That locus divides the
h, ~ plane into a region of negative susceptibility at large
values of

~

h
~

and low temperatures, and a region of pos-
itive g for small h and high temperature. In the notation
used here that locus is given by

~

h
~

=2 ' (1+r). In
Fig. 1 we show this locus as well as the scaling curves
8 =On along which 7=0 from Eq. (8). Negative suscepti-
bility at large h is expected to be quite general, not just a
feature of mean-field theory. It arises from the physical
requirement that x~= —,hm is bounded as h~~, requir-

1.0

h o

- I.O 0 I.O
T

FIG. 1. Locus of +=0 in the n~0 vector model. The
straight lines

~

h
~

=2 '~2(1+r) give the locus +=0 in the
mean-field approximation. The solid curves indicate the locus
according to our scaling equation of state. The dashed curves
indicate qualitatively a plausible conjecture for the locus +=0
when both fluctuations and corrections to scaling are taken into
account. The shaded region is the region of positive g corre-
sponding to this conjecture.

ing that m decrease with increasing h for large h. This
leads naturally to the conjecture that the actual shape of
the locus (Bm/Bh), =0 when correction to scaling contri-
butions are included will be given qualitatively by the
dashed curves in Fig. 1. This is different from the shape
proposed in Fig. 3 of Ref. 8, where the correct scaling na-
ture of the curves was deduced but they were incorrectly
supposed to leave the critical point immediately toward
higher temperature rather than first descending to lower
temperature. The region where 7 is expected to be posi-
tive is shaded in Fig. 1.

Consider, then, what is known from the mean field and
e-expansion results together with the exact correspon-
dence between polymers for n ~0. First, there is an exact
formal correspondence between the partition functions of
the n ~0 vector model and equilibrium polymerization of
chains. Second, within the mean-field approximation for
the O(n) vector model the susceptibility is negative for
large h and low T and positive for small h and high T,
but thermodynamic stability is satisfied for the corre-
sponding polymer solution through the entire h-T plane
and the corresponding polymer solution is described ex-
actly by the physically sensible Tobolsky-Eisenberg theory
of equilibrium polymerization throughout the entire h-T
plane. In particular, no physical singularity arises in the
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polymer language upon crossing the locus 7=0. Our re-
sults here are completely consistent with the picture that
critical fluctuations change the situation only by changing
the shape of the region of negative g so that it includes a
wedge-shaped portion extending to the critical point along
the coexistence curve, as in Fig. 1, and by allowing for
X~—oo along the coexistence curve. It remains the case
that no physical singularity arises in the polymer language
at the locus 7=0 and that stability is satisfied in the poly-
mer language throughout the h-T plane, at least in the vi-
cinity of the critical point, which is all that a scaling
equation of state can investigate.

Apart from its utility in addressing the behavior of
polymers, we believe that the strategy employed in the
parametric form of the equation of state proposed in Eqs.
(I)—(3) may be more generally useful. The Schofield-
Ho-Litster form has the advantage that the analyticity of

the equation of state is easily seen and that thermodynam-
ic derivatives are easy to calculate using Jacobians. In ad-
dition, it provides a convenient parametrization of the
many different ways of expressing scaling in polymer
solutions.

ACKNOW'LED GMENTS

This research was supported by the National Science
Foundation through Ctyrants Nos. CHE 81-10247, INT
82-12577, and DMR-8417875 and by the Centre de la Re-
cherche Scientifique. One of us (J.F.S.) acknowledges a
travel grant by CAPES (Brazil). Helpful conversations
with M. E. Fisher and correspondence with L. Schafer are
gratefully acknowledged. The Laboratoire de Physique
des Solides is a "Laboratoire Associe au Centre National
de la Recherche Scientifique. "

'Permanent address: Instituto de Fisica, Universidade de Sao
Paulo, C.P. 20516, 01498, Sao Paulo, SP, Brazil.

P. G. De Gennes, Phys. Lett. 38A, 349 (1972).
2J. Des Cloizeaux, J. Phys. 36, 281 (1972).
G. Sarma, in La Mati ere Mal Condensee —IiY Condensed

Matter, Les Houches, 1978, edited by R. Balian and G.
Toulouse (North-Holland, Amsterdam, 1979).

4A. Knoll, L. Schafer, and T. A. Witten, J. Phys. (Paris) 42, 767
(1981).

5P. D. Gujrati, Phys. Rev. B 24, 2854 (1981).
A. Knoll, Z. Phys. B 22, 207 (1981).
J. C. Wheeler, J. S. Kennedy, and P. Pfeuty, Phys. Rev. Lett,

45, 1748 (1980).
8J. C. Wheeler and P. Pfeuty, Phys. Rev. A 24, 1050 (1981).
S. J. Kennedy and J. C. Wheeler, J. Chem. Phys. 78, 953

(1983).
J. C. Wheeler and S. J. Kennedy, J. Chem. Phys. 78, 1523
(1983).
S. J. Kennedy, J. C. Wheeler, C. Osuch, and E. Wasserman, J.
Phys. Chem. 87, 3961 (1983).
J. C. Wheeler, Phys. Rev. Lett. 53, 174 (1984); J. C. Wheeler,
J. Chem. Phys. 81, 3635 (1984).

' L. Schafer and T. A. Witten, Jr. , J. Phys. (Paris) 41, 459
(1980).

' L. Schafer, Macromolecules 17, 135? (1984).
~~P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell

University Press, Ithaca, New York, 1979).
' P. D. Gujrati, Phys. Rev. B 31, 4375 (1985).

P. Gujrati, Phys. Rev. Lett. 55, 1161 (1985).
t W. Helfrich and W. Miiller, in Continuous Models of Discrete

Systems, edited by E. Kroner and K. H. Anthony (University
of Waterloo Press, Waterloo, Ontario, 1980), p. 753.
R. Cordery, Phys. Rev. Lett. 47, 457 (1981).
B. Duplantier and P. Pfeuty, J. Phys. A 15, L127 (1982).
J. C. Wheeler, R. G. Petschek, and P. Pfeuty, Phys. Rev. Lett.
50, 1633 (1983).
R. G. Petschek, P. Pfeuty, and J. C. Wheeler, Phys. Rev. A
34, 2391 (1986).
M. A. Moore and C. A. Wilson, J. Phys. A 13, 3501 (1980);
see also J. C. Wheeler, and P. Pfeuty, Phys. Rev. A 23, 1531
(1981).

I. D. Lawrie, J. Phys. A 14, 2489 (1981).
L. Schafer and H. Horner, Z. Phys. B 29, 251 {1978).
P. Schofield, J. D. Litster, and J. T. Ho, Phys. Rev. Lett. 23,
1098 (1969).

27P. Pfeuty and G. Toulouse, Introduction to the Renormaliza-
tion Group and to Critical Phenomena (Wiley, New York,
1977).

H. B. Callen, Thermodynamics (Wiley, New York, 1965), p.
128.

~9(a) D. J. Wallace and R. K. P. Zia, Phys. Rev. B 7, 232 (1973);
(b) D. J. Wallace, in Phase Transitions and Critical Phenome-
na, edited by C. Domb and M. S. Green (Academic, New
York, 1976), Vol. 6, pp. 343—345.

3oHere and in p, t, below we omit factors of ( T/T, ) since they
contribute only to eorreetions to sealing.

3'E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phys. Lett.
47A, 285 (1974).

2A. Aharony and P. C. Hohenberg, Phys. Rev. B 13, 3081
(1976).

330ur results may be compared with those of Knoll, Schafer,
and Witten (Ref. 4) for general n. When we make this corn-
parison we find that their equation of state corresponds to
ours, but with the choice a

&

——n (n +20) /4(4 —n)(n +8).
This implies that the equation of state of Knoll, Schafer, and
Witten does not correctly reproduce the heat-capacity ampli-
tude ratio for n & 0, a conclusion that can be verified directly.
Combining their Eqs. (4.2)—(4.4), (4.6), and (4.9) one obtains
HM —I (t, rn)=(ag) '[r/h(w)]' [w(1 —w) —(P/dv)g(w)],
where h(m) is the term in square brackets in their Eq. (4.4).
The heat-capacity amplitude ratio then becomes

3+/3 =[tt(l)/P(0)] ih(0)/h(1) i' =(n/4)2 [I+0(e')]
rather than ( n /4)2 (1+e), the result of Ref. 31. This
discrepancy must be the result of an error in their integration
to obtain the free energy because the presence of the factor
(4—n) in a& is independent of the detailed form of the
second-order term in the equation of state. This has been
confirmed by Professor L. Schafer [private communication].
Since they were primarily concerned with the limit n ~0 it is
not surprising that they failed to notice this inconsistency,
which occurs only for n &0.



WHEELER, STILCK, PETSCHEK, AND PFEUTY 35

34A. V. Tobolsky and A. Eisenberg, J. Am. Chem. Soc. 81, 780
(1959).

35R. G. Petschek (unpublished).
H. L. Friedman, 2 Course in Statistical Mechanics (Prentice
Hall, Englewood Cliffs, New Jersey, 1985), p. 89.

H. J. Hilhorst, Phys. Rev. B 16, 1256 (1977).
3~Cr. Parisi and N. Sourlas, J. Phys. (Paris) Lett. 41, L403

(1980).
P. M. Pfeuty and J. C. Wheeler, Phys. Rev. A 27, 2178 (1983).

~R. Balian and Ci. Toulouse, Ann. Phys. (N.Y.) 83, 28 (1974).
"'The case 1 ~ d &2 is somewhat more complicated. The case

d =2 will be discussed elsewhere [R. G. Petschek and P.
Pfeuty (unpublished)].


