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Temperature dependence of the high-frequency resistivity of a type-I superlattice
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A general expression is developed here for the memory function of the linear dynamical conduc-
tivity of a type-1 superlattice with impurity and phonon scatterings, taking account of the electron-
electron Coulomb interaction between different quantum wells as well as within a given quantum
well. The real part of the frequency-dependent resistivity of a CxaAs-Al„Ga& „As quantum-well su-
perlattice due to remote and background impurity scatterings and due to polar-optical-phonon cou-
plings is calculated at several different temperatures, showing significant temperature dependence in
both the bulk plasmon resonance (associated with close packing of the superlattice planes) and in the
phonon resonance.

I. INTRODUCTION

The high-frequency linear conductivity of electrons in
close-packed semiconductor superlattices' has attracted
considerable interest recently. The scattering mechanisms
discussed in the literature on this problem have been pri-
rnarily those due to impurities or spatially separate mobile
charge carriers, and the published studies have been lirnit-
ed to zero temperature. For elastic scattering mechanisms
at T =0 K, we found a strong plasma resonance effect for
the closely packed superlattice in Ref. 2. However, it is
important to include the role of phonon scattering mecha-
nisms in high-frequency transport calculations even at
T =0 K, since the applied high-frequency electromagnet-
ic field of the ac case does excite phonon contributions-
in contrast to the case of linear dc transport, in which
phonon-induced resistivity vanishes at zero temperature.
A study of related high-frequency phonon effects, con-
cerned with a single two-dimensionally confined system,
has been reported in the literature. Of course, our in-
terest is focused on the superlattice with interlayer in-
teractions.

Along with the inclusion of phonon scatterings in su-
perlattice transport, we direct attention here to the role of
finite temperature in the high-frequency resistivity. Since
plasma resonance plays a decisive role in impurity-related
high-frequency transport, and the Fermi level of the
quasi-two-dimensional electron gas of a superlattice is
generally low ( + 100 K for a carrier sheet density
N, =2.5 X 10" cm ), a significant temperature variation
in impurity-induced high-frequency resistivity is antici-
pated. Moreover, one must also expect temperature
dependence arising from the Bose nature of the phonon
distribution.

This paper is concerned with the determination of the
temperature dependence of the dynamical resistivity of a
type-I superlattice due to both impurity and phonon
scatterings. In this, we take full account of electron-
electron Coulomb interactions between different quantum
wells ("interacting planes" ), as well as within a given
quantum well, in order to examine the temperature depen-

dence of the "bulk" plasmon resonance characteristic of a
close-packed type-I superlattice in the linear high-
frequency resistivity. We also determine here the tem-
perature dependence of resonant polar-optical-phonon ex-
citations in the structure of the dynamic resistivity.

II. FORMULATION OF HICxH-FREQUENCY
RESISTIVITY

It is well known that in a three-dimensional (3D) elec-
tron system, in which the electrons can be described by an
effective-mass-approximation Hamiltonian in the absence
of an electric field, the complex frequency-dependent
linear resistivity p(co) can be expressed in terms of a
memory function M(co) (Ref. 4) as

R (co) = i [co+—M(co)] .
e N,

(2)

Moreover, this formula also describes the high-frequency
resistivity R(co) per sheet for a superlattice. Of course,
the memory function M(co), which includes all the infor-
mation on linear high-frequency conductivity, depends on
the system structure and scattering mechanisms, as well
as on both interlayer and intralayer electron-electron in-
teractions of the quantum-well superlattice. A high-
frequency extension of the Lei-Ting description of trans-
port also provides a convenient basis for the derivation
of the memory functions of various systems 3D, 2D, and
superlattices with several scattering mechanisms (impuri-
ties and phonons). The role of superlattice geometrica!
structure has recently been elucidated in steady-state non
linear dc transport. In addition, we have studied super-
lattice structure in M(co) for impurity scatterings, and

p(co) = i [—co+M(co)],. m

e n

where e and m are the charge and effective mass of the
carrier and n is its volume density. This formula is also
valid for a two-dimensional (2D) electron gas if p(co) is
understood as the complex sheet resistivity R (co) and n as
the carrier sheet density N, :
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we now extend this to include phonons, examining the
temperature dependence of the memory function due to
both scattering mechanisms for a superlattice having both
interlayer and intralayer electron-electron interactions.

The system we will discuss in this report is a type-I su-
perlattice, which consists of an infinite number of periodi-
cally arranged quantum wells of width a, and d is the
spatial period or the distance between the two centers of
adjacent layers. An Al Ga& As-GaAs-Al„Ga& „As
multilayer structure, in which the mobile electrons are in
GaAs well regions, can be approximately described by
such a model. We assume that (i) the potential wells are
deep enough that tunneling can be neglected and the elec-
trons confined to just one well, and (ii) the width of the
well is narrow and the electron area density is not too
high so that only the lowest subband is occupied. The
wave function of the electron in the lth well can be writ-
ten as

P(q(r, z) =e'"'g(z —ld), (3)

E=E cos(cot) =E Re(e '"'), (4)

is applied parallel to the plane, the small oscillation ap-
proximation for c.m. motion will be simple harmonic at

with energy ck ——A k /2m, where m is the electron-band
effective mass and r=—(x,y) and k=—(k„,k~} are 2D vec-
tors in coordinate and momentum space, respectively,
k =

~

k
~

. The envelope function g(z) is nonvanishing
only within the region 0 &z & a.

We are interested in the carrier transport parallel to the
layer plane. To facilitate the study we introduce two-
dimensional center-of-mass (c.m. ) momentum P and coor-
dinate R variables and separate them from the relative
variables of the electrons. The system Hamiltonian H in
terms of these c.m. variables and relative electron vari-
ables has been given in Ref. 7 and will not be repeated
here.

When a uniform ac electric field of frequency co,

the driving frequency '

R(t) =R cos(cot +P)=R Re(e ' ' ~) .

On the other hand, the force acting on the center of mass
can be calculated from the statistical average

(P) = i—([PH])IR,
in which H is the Hamiltonian of the system, including
c.m. interaction with the relative electron system through
linearized impurity and phonon interactions, which are
dynamically screened. The calculation involves an aver-
age of randomly distributed, spatially localized impurities,
the evaluation of the phonon Green's function and the
analysis of the electron density-density correlation func-
tion of the superlattice. We consider two different kinds
of impurities: remote impurities and background impuri-
ties. The former are located in thin planar layers at a dis-
tance s from the center of each quantum well with
equivalent charge number Z„and sheet density N„and
the latter are distributed uniformly within the well region
with equivalent charge number Zb and area density Xb
per layer. We assume that there is no interference effect
between different kinds of scatterers, so that the contribu-
tions to the frictional force due to the remote and back-
ground impurity scatterings are additive and averages
over these two kinds of impurities can be done separately.
The lattice vibrations in Al Ga& „As-GaAs superlattices
are considered to be the same as in bulk GaAs. The pho-
non normal modes are thus represented by a wave vector
Q—=(q, q, ) and a branch index A, . QtIq denotes the fre-
quency of the corresponding normal mode and M(Q, X)
represents the corresponding matrix element for electron-
phonon scattering in 3D plane-wave representation. The
contributions by different phonon modes are also additive,
and thus can easily be included in a uniform formulation.
The derivation parallels that of the nonlinear dc Lei-Ting
force balance equation, with the difference that we now
have an exponential factor characteristic of the harmonic
approximation of the form

e'q ( '" " 'l=l+iq R [cos(cut+/) cos(cot +P)]=1+i—q R Re[e ' '+~'(I —e '"" 'I)],

approximately expanded for small oscillations. Following the procedures of Ref. 5, we then obtain the force acting on
the center of mass to the lowest order in R at any time t after the system has reached a steady oscillatory state as

2
2

(P) =NeE cos(cot)+ g (q R )N(q) Re[e " '+~'[11(O,q, O) —II(O, q, co)]I
2EgK q

+ g ~

M(Q, A, )
~ ~

I(iq, ) j q(q R ) ReIe ' '+4'I[A(q„q, A, , O) —A(q„q, l.,co)] I

q, g, A,

(definitions of the quantities appearing here will be given
below). Therefore, the equation of motion of the center of
mass

(P) =N, mR(t)

E=E e

J=X,eR= Jme

For the system discussed, J and E are parallel and the
complex scalar resistivity can be expressed as

determines R and P. It is convenient to write both the
electric field and the current density in a complex form:

E . mR (co) = = i [co+M'(co)+—M~(cu)] .
e X,

(1O)
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Here

M'(co) = e2
N(q) [II(0,q, 0)

mN co 2c q

M~(co)= g ~
M(Q, A, )

~ ~
I(iq, )

~ q
1

mN, co

X [A(q„q, A. , O) —A(q„q, k, co)] (12)

—H(O, q, cu)]

is the impurity contribution to the memory function, and
is the phonon contribution to the memory function. In
Eqs. (8) and (12) the imaginary part of A is

fiAgg
A(q„q, k. ,co) =Hp(q„q, co —Qgg) n

k~T

A'( Ilgg —co )

k~T
%Age+H2(q„q, co+ Agq) n
k~T

A( Agg+ cu )—n
k~T

(13)

Here n (x/T) = I/(e "~ —1) is the Bose function and
H(q„q, co) is the electron density-density correlation func-
tion of the superlattice, which can be expressed in the
random-phase approximation in the form

g(z) = 2

a

1/2

we have ( u =aq)

sin
7jz

for 0&z &a,
a

H(q„q, co) = H(q, co )

1 —V(q, q, )H(q, co)
(14) H(q)=3

2 z + z

exp( —u) u 1 —exp( —u )

u'+4~' u'+4~' (u'+4'')'
where H (q, co ) is the two-dimensional density-density
correlation function for a single sheet of electrons in the
absence of the Coulomb interaction:

&&(u' —4~')+ —1—
Q

1 —exp( —u)
(19)

~V+q-
H(q, co) =2

flQ) +Eg+q —Eg+l 5
(15)

in which f (8)= I/[ exp[(e —p)/k&T]+1I is the Fermi-
Dirac function and p is the chemical potential for elec-
trons in a single quantum well. The effective Coulomb in-
teraction is (neglecting the image charge contribution)

I(q)=4&[1—exp( —u)]/[u(u +4m )],
5n.

K(q) =
(4m. +u )u

1 —exp( —u)

III. RESULTS FOR IMPURITY SCATTERINGS

(20)

(21)

2

V(q, q, ) = [H(q)+S(q, q, )],
2cpKq

(16)

cos(q, d ) —exp( —qd )
S(q, q, ) = exp(qa)I (q)

cosh qd —cos q, d

The effective impurity sheet density is
2

N( )=N Z cosh[q(d/2 —s)]
( )I( )2

sinh(qd /2)
2

+ NbZb
2 exp(qa) —1 I(q) +IC(q)

qa exp(qd —1

(17)

(18)

In the above equations H(q), I(q), and K(q) are form
factors depending on the electron wave function within
the well:

H(q)= f f e ~ ' ' 'g(z) g(z') dzdz',

I(q)= f e ~'g(z) dz,

IC(q)= —f f e q ' ' g(z) dzdz' .
a

Taking the lowest subband envelope function as

where S(q, q, ) comes from interlayer electron-electron in-
teraction, exhibiting the characteristic superlattice struc-
ture factor

We have calculated the imaginary part of the
impurity-induced memory function M2(co) at several dif-
ferent temperatures by using Eqs. (11), (14)—(18), and
(19)—(21) for a GaAs-Al„Ga& „As quantum-well super-

0 0

lattice with a = 100 A, d =200 A, and carrier area densi-
ty N, =2.3)& 10" cm per layer. The scatterings are due
to both remote and background impurities and the former
are located at a distance s =75 A from the center of each
quantum well. We assume equality of the contributions
of remote and background impurity scatterings to zero
temperature dc resistivity. The material parameters used
in the calculation are the electron-band effective mass
m =0.07m, (m, is the free-electron mass) and the GaAs
static dielectric constant K = 12.9. The results at T =0 K,
which have been discussed in detail in Ref. 2, are obtained
using the well-known 2D zero-temperature expression for
H(q, co) given by Stern. For T&0 K, we perform numer-
ical integration using the finite-temperature 2D expression
for H(q, co) examined in Ref. 6. The results for T =0, 15,
40, 77, 150, and 300 K are plotted in Fig. 1. The most in-
teresting feature is that resonance peaks around the bulk
plasma frequency' co~ =(e N, /Eycmd)'~ (associated with
close packing of the superlattice planes) decrease signifi-
cantly with increasing temperature. Nevertheless, the
plasma resonance still shows up saliently in impurity-
induced high-frequency resistivity even at room tempera-
ture.
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FIG. 1. Calculated M2(co, T)/M&(O, T) due to remote and
background impurity scatterings are shown as functions of
Ace/4cF at temperatures T =0, 15, 40, 77, 150, and 300 K for a

0
GaAs-Al„Ga& „As quantum-well superlattice with a =100 A,
d =200 A, and N, =2.3)&10"m . The contributions to dc
resistivity by remote and background impurities are assumed 1:1

0
at T =0 K and the former are located at a distance s =75 A
from the center of each quantum well. The inset shows the tem-
perature variation of Mz(O, T)[Mz(0)—=M, (0,0)]. eF is the Fer-
mi energy at zero temperature.

IV. POLAR-OPTICAL-PHONON CONTRIBUTION

lo-4
0 0.5 I.O 2.0 2.5

FIG. 2. Evaluations of (m/e)M2(cu) due to polar-optical-
phonon scattering are plotted as functions of Ace/4cF at tem-
peratures T =40, 77, 150, and 300 K for the same GaAs-
Al„Gal As superlattice as described in Fig. 1.

In GaAs-Al Ga~ As systems, polar-optical phonons
generally dominate the phonon-induced dc resistivity
when temperature T) 50 K. To examine their contribu-
tion to high-frequency resistivity we have calculated the
imaginary part of the memory function due to polar-
optical-phonon scattering. M~2(co), using Eq. (12) at dif-
ferent temperatures for a GaAs-Al„Ga& As superlattice
with a =100 A, d =200 A, and N, =2.3&&10" cm
Our evaluations of polar-optical-phonon-limited dynami-
cal mobility are shown in Fig. 2, as functions of normal-
ized frequency Ace/4EF at T =40, 77, 150, and 300 K.
For simplicity we assume a flat dispersion relation
A~ ——Qo for polar-optical phonons in the GaAs-
Al„Ga~ As system, and a Frohlich interaction for
electron-polar-optical-phonon coupling with AGO ——3.54
meV and high-frequency dielectric constant ~ = 10.8.
M~2(co) always increases with frequency from co=0 and
reaches a maximum at cu=OO before it decreases, reflect-
ing the resonant excitation of polar-optical phonons by
the high-frequency electric field. The peak of M~&(co) at
m=QO, which is rather sharp at low temperature, becomes
less significant at higher temperatures due to thermal ex-

citation and smearing. Note that (i) effects of temperature
dependence both in the Bose functions and in the electron
density-density correlation functions of Eq. (13) have been
taken into account, and (ii) effects of electron collective
modes of the "interacting plane" superlattice have been
carefully included in our numerical calculation. However,
the latter yield an almost negligible (less than 2%) contri-
bution to M~&(co) for the system discussed. Moreover, for
a weak polar material like GaAs, and at a carrier sheet
density N, =2.3X10" cm such that the bulk plasma
frequency co~=0.55QO, the mixture of electron plasmons
and polar-optical modes, thus the renormalization of pho-
non frequency, is unimportant.
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