
PHYSICAL REVIEW B VOLUME 35, NUMBER 6 15 FEBRUARY 1987-II

Influence of the supercell structure on the folded acoustical
Raman line intensities in superlattices
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We compare forward and backward Raman scattering results on folded acoustical phonons in
GaAs-AlAs superlattices with a detailed theoretical analysis of their dispersion properties and light
scattering activity. By forward scattering, which involves phonons with a vanishing wave vector, we
first get evidence of zone-center gaps, in quantitative agreement with the elastic model predictions.
We also check the zone-center selection rules and conclusively prove the assignment of the light
scattering on folded acoustical phonons to a modulated photoelastic (Brillouin) process. In back-
scattering experiments, one creates phonons with a finite wave-vector and the zone-center selection
rules are relaxed. We quantitatively describe this phenomenon, and demonstrate that the back-
scattering intensities directly reflect the coupling between folded branches and the related zone-
boundary gap magnitude. An excellent agreement between measured and calculated intensities is
obtained. Finally we emphasize the great sensitivity of the gaps and intensities, contrary to the
backscattering frequency shifts, to the supercell inner structure. This greatly enhances the interest
of Raman scattering as a tool for characterizing periodic structures.

I. INTRODUCTION

The salient effects of the new periodicity and of the
corresponding Brillouin zone folding on the acoustical
phonons in superlattices are well understood. ' The
acoustical vibrations propagate in both layer compounds
and the dispersion curves are obtained (i) by folding the
acoustical dispersion curve of an average compound and
(ii) by opening small gaps at zone center and zone edge.
These features have been described quantitatively in the
frame of the elastic model. Raman backscattering (BS)
has been used extensively to study these folded
modes. " As emphasized in Ref. 5, a striking feature
appears in the analysis of the BS results in superlattices:
the wave vector of the phonon created by BS is not negli-
gible and can even be of the same order of magnitude as
the Brillouin zone extension. As a consequence, the ex-
perimental results, though clearly demonstrating the fold-
ing of the Brillouin zone, are actually unsensitive to the
gap openings. Another striking feature of the BS spectra
is the selection ru1es: the BS lines are always observed in
the parallel configuration and never in the perpendicular
one. This is in contradiction with the standard Raman
selection rules which predict that some lines must appear
in parallel and the other ones in perpendicular configura-
tion. On the other hand, a Brillouin scattering mecha-
nism can also be invoked for these lines of acoustical ori-
gin. ' The corresponding selection rules then predict that
zone-center phonons are either forbidden or only observ-

able in parallel configuration.
In this paper we shall first revisit the theory of folded

acoustical phonons in superlattices, focusing on zone-
center gaps and on the photoelastic intensity of the Ra-
man lines. Experimental results on forward scattering
(FS) already published in Ref. 13 will be analyzed in more
detail. We thereby get evidence of zone-center gaps whose
magnitude varies with the supercell structure as predicted
by the theory. Furthermore, we present a detailed
analysis of the line intensities out of the Brillouin zone
center. Our results, which are quantitatively different
from those obtained from the Green function calculation
of Ref. 14, show that the dominant contribution comes
from the modulation of the photoelastic response in the
supercell (which was not taken into account in Ref. 14).
We quantitatively account for the softening of the zone-
center selection rules and then demonstrate the effects of
the zone-center gaps on the BS spectra.

The paper is organized as follows. Sections II and III
are devoted to the theoretical considerations. In Sec. II A
we shall focus on the acoustica1 gaps in the frame of the
elastic model, in Sec. IIB we shall present the Fourier
transform analysis of the wave equation, and in Sec. III
we shall calculate the photoelastic activity of the folded
modes. Sections IV—VI are devoted to experiments on
GaAs-AlAs superlattices and discussion. In Sec. IV we
shall present and analyze the forward scattering results
and compare the measured gaps with the theoretical pre-
dictions, in Sec. V a large number of BS results are
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II. DETAILED ANALYSIS OF THE FOLDED
ACOUSTICAL DISPERSION CURVES

The equation of motion for propagation along the
growth axis z of longitudinal elastic waves in a superlat-
tice is

p(z)
Bu

at at
a . a"
az

'
az

=0,

where u, p, and C are, respectively, the longitudinal dis-
placement, the local density, and the elastic constant C».
In what follows we shall only deal with periodic struc-
tures of period d. The natural method to solve (1) is to
use Fourier transform, as will be discussed at length in
Sec. IIB. The principal advantages of this method are
that it can be used for any periodic variation of p and C,
for instance, in a superlattice with broaden interfaces, '

and that we find it easier to understand the scattering effi-
ciency of each mode. On the other hand, in the usual case
where the superlattice is made of a stacking of two layers
of different materials with abrupt interfaces, one has at
one's disposal the exact well-known solution given by
Rytov, which is the elastic version of the electronic
Kronig-Penney model. This model has been extensively
used in the literature to analyze Raman experiments in su-
perlattices and provides an excellent description of the ex-
perimental results. In the following paragraph we shall
focus on its predictions about the gaps amplitude.

A. Gaps and dispersion from Rytov's model

The exact dispersion relation of folded acoustical modes
from the elastic model read as

presented and the intensity of the lines are analyzed ac-
cording to the considerations of Sec. III, Sec. VI will be fi-
nally devoted to some samples with more complex super-
cell structures.

cos(Qd)=cos co
VA UB

i.e., to the exact folding of the one of a bulk compound
with a sound velocity defined through

2U (1 —x)vg
csin mv

d (1 —x)v~+xvz

Here x is the average concentration of compound 8, i.e.,
x =dz/d. We have plotted on Fig. 1 the ratio 9' /II as
a function of x, for v=1 to 4. Note that this ratio does
not depend on the period d and that every zone-center gap
vanishes at a critical concentration value:

UB
x

VA +VB
(is 0.55 for CsaAs-A1As) . (4)

When the wave vector Q increases from zero, the separa-
tion between the two branches originating from
Qz„+Sz„/2 increases, due to the dispersion. For small
values of Q, the splitting S2 (Q) of such a doublet is

9'q„(Q)=[Ãq„(0) +4v Q ]'

The two contributions are of the same order of magnitude

dg +
V Vg UB

This relation simply means that the transit time through a
period is the sum of the transit times through each layer.
We thus find doubly degenerate zone-center (v even) or
zone-edge (v odd) modes at frequencies

7TU
Q =v

d

A straightforward expansion of (2) in first order in e
leads to a gap opening 9', symmetric around 0„,which
amounts to

cos( Qd) =cos co + .12

g2——sin co
2

dg
sin co (2) 0.08

where dz, dB are the thickness of the two constituting
layers, U&, VB the sound velocities in the corresponding
bulk compounds, and Q the superlattice wave vector and
where the coefficient

0.04

e=(Caps —C4pa )/(Capa+Cgpg )

is a measure of the mismatch of the two acoustical im-
pedances. E is usually small and, for the case we study all
along the paper, i.e., GaAs-A1As superlattices, it amounts
to 0.18, as deduced from handbook values of the whole
parameters of the model, except for the A1As acoustical
velocity whose value (5.7)& 10 crn/s) has been fitted on a
large number of folded lines frequencies. Thus at zeroth
order, the dispersion relation reduces to

0 V
.5
X

FIG. 1. Zone-center (v=2,4) and zone-edge (v= 1,3) acousti-
cal gaps S normalized to the corresponding average frequency
Q as a function of the Al average concentration x in CxaAs-
A1As superlattices. This quantity does not depend on the period
of the structure.
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for Qd =e. In the case of GaAs-A1As superlattices
(e—0.18) and in a Raman backscattering experiment
where the typical value of Q is 10 cm ', this leads to
d=18 A, a rather small period. As a consequence, for
larger-period superlattices, the doublet splitting observed
in backscattering will reflect essentially the dispersion.
Such an experiment is thus unable to test the zone-center
gap amplitudes. However, as will be discussed in Sec. IV,
Raman forward scattering experiments create phonons
with a wave vector fulfilling the relation Qd «e. Such
an experiment thus allows a study of the zone-center gaps.
An indirect but experimentally easier way to study these
zone-center gaps is to analyze, in a backscattering experi-
ment, the relative intensities of the folded lines. To
present such an analysis, we consider more suitable to
treat the lattice dynamics, solving Eq. (1) by Fourier
transform. It is the purpose of the next section.

B. Craps and dispersion from a Fourier analysis

As the medium is periodic, the mass density p(z) and
the elastic constant C(z) can be expanded in Fourier
series:

p(z) = g p„e'" ',

C(z)= g C„e'" ',
where G =2~/d. Applying Bloch theorem, the displace-
ment field can also be written as

u „~~ G~2 to lift the degeneracy. A more detailed
analysis in the abrupt interface case shows that to obtain
numerical results close to the exact ones, we need to deal
with coupling through p~ q and C~ 2 which are the largest
off-diagonal nondegenerate perturbations. When account-
ing for these nonresonating corrections, the vanishing of
the first zone-center gap shifts from a concentration
x=0.5 to x =x, as given by (5).

We have plotted on Fig. 2 the Fourier components
0,+1,+2 of two lower-energy folded branches, calculated
as a function of Q ranging on the whole Brillouin zone,
for a GaAs-A1As structure with abrupt interfaces and
x=0.3. Taking advantage of the existence of symmetry
planes located in the middle of each layer, we chose the
coordinates origin on one of these planes to obtain real
Fourier components. As can be seen from the figure, for
a Q value far from zone center and zone edge, each
eigendisplacement mode can be correctly described by its
major Fourier component u~~g [(u~~g ) / g„(u„'~g )

-0.99], a fact which provides a natural labeling of the
folded branches. On the contrary, as Q reaches zone
center or zone boundary, the two degenerate Fourier com-
ponents take equal absolute values. The p+ 1 com-
ponents, although smaller, remain significant on the
whole Brillouin zone. As the composition profile is sym-
metric relative to each midlayer plane, the eigendisplace-
ments at zone center are either symmetric ( u„g

o ) or antisymmetric ( u„g —p = —u g —o ).
Each doublet then consists of a symmetric and an an-
tisymmetric mode, which can be labeled by the corre-
sponding representation B2 (symmetric) or A& (antisym-

ug(z) =e'g'g u„ge'"G',

The task is now to solve the secular equation of this infin-
ite system. In a nonpathological system, the modulus of
the Fourier components p; and C; are rapidly decreasing
functions of i, a fact which justifies the truncation of the
infinite matrix appearing in (5). The most drastic approx-
imation consists in retaining only pp and Cp. This leads
to the dispersion relation

Cp
(Q+pG)'2

CC)p g =
po

where Q is the superlattice wave vector. Substituting in
Eq. (1) and assuming harmonic time behavior, one obtains
the set of following equations:

g I [co (Q)p „—C „(Q+nG)(Q+mG)]u„g}=0 .
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which corresponds to the folding of an average bulk
acoustic dispersion curve with sound velocity
uo ——(Co/po)'~ . Note that this average velocity differs
from the one obtained from Rytov's model [Eq. (3)]. To
get a gap opening at zone center, one needs to couple
u g p with u „& p, i.e., to use degenerate perturbation
theory, as already done in Ref. 6. This coupling involves
p2„and C2„which are rather small for large n. At zone
boundary, one needs to couple u„& G&2 with

l l I I I I

0 O.l 0.2 0.3 0.4 0.5
Q/G

FICx. 2. Major Fourier components u„'~ (n =0, +1,+2) of
the two lowest folded modes ( p = + 1) as a function of the wave
vector Q normalized to the unit reciprocal-lattice parameter G
for a CzaAs-A1As abrupt structure with x=0.3.
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metric) of the superlattice tetragonal point group. In the
following section we shall apply this Fourier analysis to
describe the Raman efficiency.

consist of symmetry and antisymmetric modes. The
zone-center scattering intensity

III. SCATTERING EFFICIENCY
OF FOLDED ACOUSTICAL MODES

I~(co; —cop g ) cc
n (co~ 0) + 1

E; G gnII „u„~o
COP 0 n

Assuming, as justified by experiment, that the light
scattering on folded acoustical phonons originates from
the photoelastic effect, the local transverse Stokes polari-
zation can be written as

P (z) = II(z) [u (z, t)]E; (z, t),
Bz

where II(z) is the local value of the photoelastic tensor
element H~2 (we assume the medium to be locally cubic)
and E; (z, t) is the transverse electric field produced by the
incident beam. Following Colvard et al. , we shall derive
the scattering intensity by expanding H(z) also in Fourier
series, our aim being to obtain numerical predictions to be
compared with experimental results. The Stokes polariza-
tion due to a mode with superlattice vector —Q in branch
p and an electric field with wave vector q; displays spatial

i (q,- —Q)zvariation P(z) =Pq g(z)e ', where Pq g(z) is a
periodic function. The scattering efficiency only depends
on its constant part, i.e., the polarization by unit length,
which is

Poq g gH „u'~'——g(nG —Q) E; .
h

Normalizing the displacement field to unity, i.e.,
g„u„gu „g——1, and thus using the corresponding
thermal factor, the scattering intensity per unit length
takes the form

n (co~ g)+1
I&(co; ci)& g )—~

COp g
2

XE; g II „u„~ g(nG —Q)
n

From this expression we can calculate the line intensities
for any given periodic structure and any sample tempera-
ture, provided we know the photoelastic coefficient pro-
file. The room-temperature intensity of the lines only de-
pends, within a good approximation, on the concentration
x and the product Qd and not explicitly on the energy of
the mode. The thermal factor can be indeed reduced at
high temperature ( k T ~~ h co ) to T /co and I:

2

where we used the approximate relation

co g ——U (pG —Q)

Before considering in more details the case of the CxaAs-
A1As abrupt structure, we already can determine the
zone-center selection rules for symmetric profiles. As ex-
plained in Sec. II 8, for such profiles, zone-center doublets

then vanishes for the symmetric mode and we recover the
Brillouin scattering selection rules.

To analyze the softening of these selection rules for
nonvanishing Q values, we show in Fig. 3 the room-
temperature intensity of the lines +1,+2 for an abrupt
GaAs-A1As structure, as a function of the composition x
and the wave vector Q. We took Hz ——1 (GaAs) and
H~ ——0.1 (A1As) as justified by the experimental results
(see Sec. V). At zero wave vector, one recovers the Bril-
louin selection rules: for x &x, the scattering on the —1

mode is allowed (antisymmetric displacement, symmetric
strain), the scattering on the + 1 mode being forbidden.
At x =x, the gap vanishes which corresponds to the
crossing of the symmetric and antisymmetric modes. At
x &x, the allowed mode becomes the high-energy one in
the doublet (i.e., the + 1 mode). Similar features appear
for the +2 modes with three vanishings of the gap and
three crossings of the symmetric and antisymmetric
modes.

For a Q vector ranging around 0.256, the Fourier
component up g becomes the most important one for
mode p (see Fig. 2). As a consequence, the dependence of
the scattering intensity as a function of x merely reflects
the dependence on x of the Fourier component H p of
the photoelastic profile. In other words, as Q increases
from zone center, the symmetric and antisymmetric com-
ponents of the displacement field mix together, and the
asymmetry of the scattering intensity within a doublet
rapidly decreases from 1 to a small value. Finally, near
zone edge, the component upp& of branch p decreases as

p f Q increases, and the scattering intensity as a func-
tion of x displays oscillations which reflect the oscilla-
tions of the zone-edge gap.

Raman backscattering experiments in superlattices test
phonons whose wave vector typically ranges from 0.06G
to 0.36 (depending on the period). Thus experiment with
small period samples will allow, through the analysis of
the relative line intensities, to obtain evidence of the cou-
pling near zone center between the up & and u '

p ~ com-
ponents. The variation of this relative intensity as a func-
tion of x directly reflects the gap variation. Such a back-
wards experiment, quite easier to perform than a forward
one, will thus provide good information on the zone-
center properties. Furthermore the scattering intensity
[Eq. (6)] can be spit into two terms:

n ( co& g ) + 1
I~(co; —cop g) ~

COp g

X E,' —QHou g'—g

H „u„'~' g(nG+Q)
n (~0)

The first one (n=0) is proportional to Ho, the average of
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the same for the four lines.

the photoelastic coefficient on a period and the second one
( n&0) is proportional to the difference of the photoelastic
constants of both compounds. The presence of a term in
Ho in the intensity of the folded lines is due to the ex-
istence of the nonresonant couplings introduced in Sec.
IIB. As shown later, this term, though not changing the
trends of the effects and though induced by small Fourier
components of the displacement, is essential to reproduce
quantitatively the BS intensities. A quantitative analysis
of the measured line intensities will thus provide an esti-
mate of the ratio of the two bulk photoelastic constants.

where k;, =2~n /A, ;, are the wave vectors inside the sam-
ple of the incident (i) and scattered (s) light. These quan-
tities are nearly equal and one obtains

IV. FORWARD SCATTERING RESULTS
AND THE ZONE CENTER GAPS

To probe the zone-center frequencies and selection rules
in superlattices, we must perform forward scattering (FS)
experiments. In this configuration the wave vector of the
created phonon is much smaller than in the usual BS con-
figuration. We show in Fig. 4 the different experimenta
configurations used in this work. Due to gthe hi h value
of the refractive index of the samples ( n -4.0), the propa-
gation inside the structure is near perpendicular to the
surfaces whatever the light incident angle. The created
phonon wave vector is thus approximated yb

g =k, +k, (BS),

Q =k; —k, (FS),

Y

FIG. 4. Sketch of the sample mounting and of the light
scattering configurations used in the forward scattering (FS) ex-
periment. The front half part has been removed for clarity.
The sample (a) is mounted on a metallic mirror (c) through
wedges {b) so that one passes from the backscattering configura-
tions (1 and 2) to the FS one (3) by only a translation. For each
configuration we show the incident and reflected beams as well
as the angle of signal collection. As FS is concerned, the in-
cident light reaches the superlattice backface after a reflexion on
the mirror.
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Q -4m n /A, ; (BS),

Q —0 (FS) .
0

For usual laser lines (A.; —5000 A) QBs is of the order of
10 cm ', a value which prevents, as explained in Sec.
II A, the observation of the zone-center gaps in our struc-
tures whose period is larger than 30 A. On the contrary,
the FS experiment always probes zone center. The latter
method however is very difficult to use in GaAs-A1As
structures. The samples are indeed opaque to the Ar+-
and Kr+-ion laser lines, essentially because of the thick
GaAs substrate. We therefore removed the substrate on a
small area, using a selective chemical etching procedure.
On this window, we can obtain FS spectra provided the
superlattice layer is sufficiently transparent. We succeed-
ed in performing the experiment on two samples:

0

S1: 8=45 A K =048,
0

S2 d =36 A x =0.72 .

These parameters, and those of all the samples used in
this work, have been determined by simple and double x-
ray diffraction. We chose short period samples in order
to maximize the zone-center gaps which scale on d ' and
also to increase the optical absorption edge energy. In
both samples we obtained the best spectra using an in-
cident energy just below the superlattice absorption edge,
taking advantage of the indirect character of these sam-
ples. ' The luminescence signal which usually prevents
the observation of Raman signals in these conditions is
thereby much reduced in intensity and shifted to lower en-
ergies.

We present in Fig. 5 the spectra in the frequency range

1 I

S2 K=567nm

of the first doublet obtained in parallel configuration on
both samples for the three different configurations shown
in Fig. 4: BS out the window area (l ), BS on the window
area (2), and FS (3). The latter one is dominated by a sin-
gle line located between the two components of BS doub-
let. As no line is observed in perpendicular configuration,
the Brillouin selection rules are fulfilled and the FS line is
attributed to the single allowed zone-center mode (A ~

rep-
resentation). As the other line within the zone-center
doublet is forbidden, we cannot directly obtain from the
FS spectra alone any estimate of the zone-center gap. We
can however extract this quantity from the comparison
between FS and BS spectra, assuming the theoretical re-
sult that the average frequency between modes + 1 and
—l is independent of Q. From the shift between the FS
line and the average frequency of the BS doublet, we
determine the zone-center gap S 2 ——cosz —co& 2 which
compares very well with the theoretical predictions, as
shown in Fig. 6. In this figure the theoretical curve is the
same as in Fig. 1, but with a negative value for x ~ x, to
account for the different symmetry of the modes.

In the spectra obtained on the window, we see also
some smaller contributions due to BS in the FS results
and FS in the BS ones. These contributions appear as
small lines on S1 and shoulders on S2. We assign them to
internal reflections on the surface of superlattice layer. A
similar reflection is negligible in the usual BS spectra be-
cause of the small refractive index mismatch between the
superlattice and the substrate.

We thus obtain the first experimental determination of
the lower-zone-center acoustical gap whose magnitude
agree very well with the elastic model predictions. This
result is a more accurate test of the model than the usual
backscattering frequency measurements. These latter
quantities are indeed essentially sensitive to the period
value and not to the detail of the supercell structure. On
the contrary, the gap is essentially sensitive to the super-

'g2/Q2 j(

L
rg

Q

0.04

-004-

43 35 55
FREQUENCY SHIFT (crn ')

I

44

FIG. 5. Raman spectra of samples S1 and S2 (see text) for
the three different configurations shown in Fig. 4 with the same
labeling.

FICs. 6. Normalized first zone-center gap as a function of the
concentration x. The experimental results (triangles) are com-
pared with the calculation (solid line).
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lattice modulation characteristics. The practical limita-
tions in the FS measurements however make difficult a
systematic study of the gap variations using this method.
We will thus, in what follows, focus on the coupling be-
tween folded modes and analyze the BS intensities which
are directly related to the zone-boundary gaps. One can
get a first feeling of this relation in the previous results.
On both samples, the allowed zone-center mode is shifted
from the BS doublet average frequency towards the higher
intensity BS component. On Sl (x=0.48) this shift is
very small and the BS intensity asymmetry"
(I

& I+&)I—(I &+I+, ) is also very small. On the con-
trary, for $2 (x=0.72) both the shift and the asymmetry
are large.

V. BACKSCATTERING LINE INTENSITIES

We analyzed in Sec. III the variation as a function of x
and Qd of the successive folded lines. These lines are ob-
served on all the sample and usually two or three doublets
are detected. We present in Fig. 7 two typical Raman
spectra obtained at room temperature in this frequency
range and in nonresonant conditions. As already shown
in Ref. 6 large variations of the folded lines intensities ap-
pear near resonance with electronic transitions and the
photoelastic description is no longer valid. The relative
intensities of the various lines shown in Fig. 7 clearly
display rich and complex variations. Each doublet can
display a negative or positive asymmetry, the ratio be-
tween the average intensity of doublet 2 and doublet 1

fluctuating with a value smaller than 1. To analyze these

two spectra, we use the curves shown in Fig. 7 which
display the two corresponding values of Qd for the varia-
tion of the intensity of the four lower folded lines as a
function of x. These diagrams are sections of the surfaces
shown on Fig. 3 at Q/G=0. 06 and 0.17, respectively.
The vertical line on each diagram corresponds to the actu-
al composition x of the related sample. The agreement
between experiment and theory is good as concerns the
average intensity and the asymmetry. These diagrams
shapes are dominated by the following two parameters.

(i) The value of the corresponding dominant Fourier
component H+z of the photoelastic coefficient which
drives the oscillating variation of the average doublet in-
tensity as a function of x and which is independent of Qd.

(ii) The value of the corresponding zone-center gap
which drives the doublet asymmetry oscillating variation.
This contribution decreases with increasing Qd. It in-
duces the crossing of the intensities of lines +p and —p
around each gap vanishing concentration.

Up to now, we only referred to the dominant Fourier
components and the resonant couplings. The effect of the
nonresonant couplings and namely of the coupling with
the 0 component of the + 1 modes is small for small
values of Qd (sample S3). For intermediate values of Qd,
the coupling with the n=0 Fourier component through
Ho becomes however significant. As it appears with a dif-
ferent coefficient in the intensities I+& and I &, it gives
an extra contribution to the doublet asymmetry. This ef-
fect can be felt on the diagrams of Fig. 7 through the in-
tensity decrease of line + 1 relative to line —1 from S3 to
S4. As already outlined in Eq. (6), the presence of this IIo

S3

T= 300K
z(x, x)z

85 45 35 0 0.5
X

55 35 25
FREQUENCY SHIFT (cm ')

5 0 0.5

FIG. 7. Rarnan spectra of samples S3 (d=40 A, x=0.29) and S4 (d= 115 A, x=0.74j compared with the corresponding sections
of the surfaces shown on Fig. 3.
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contribution will allow an estimate of the relative value
II&/Hz of the two bulk photoelastic coefficients.

We studied the asymmetry of the first doublet on two
series of samples with various x but fixed period (d-40
and 100 A). On each sample we measured the asymmetry
for various laser lines looking for an energy range for
which the asymmetry remains constant, thus getting rid
of any electronic resonance effect. The measured asym-
metries are shown in Figs. 8(a) and 8(b) as a function of x
and compared with the theory. The calculated variation
with x of the asymmetry is shown on each figure for vari-
ous values of Hz/II&. The first clear result is the very
good agreement in the amplitude of the oscillation. This
quantity depends only slightly on the unknown ratio (pro-
vided it is not too close from 1) and the agreement thus
obtained without any fit. The amplitude of the oscillation
decreases with increasing Qd (0.85 for the 40-A series;
0.35 for the 100-A one), which clearly illustrate the pro-
gressive softening of the zone-center selection rules.
Furthermore, for a given value of Qd, the average over x
of the intensity asymmetry varies as a function of Hz/II&
and the variation is more pronounced for larger values of
Qd. From the whole experimental values, we demonstrate
that HA~As is lower than H~,As. From the values on the
100 A series, we can roughly estimate that
+A1As/ +vaAS 0.1. We thus find a much smaller photo-
elastic coefficient for A1As than for GaAs, a result in
good agreement with the theoretical result' quoted in
Ref. 6 and with an extrapolation of experimental values in
CxaA1As. ' One must emphasize that the photoelastic
modulation in GaAs-A1As superlattices is very large
which induces intense folded lines and favors their obser-
vation. This feature also limits the influence of the n=0
terms on the asymmetry of the first folded doublet and
thus the precision of the above estimation. But even in
this case, a detailed analysis as presented here is needed to

reproduce quantitatively the experimental results. In the
calculation of Babiker et al. ,

' the local photoelastic coef-
ficient is assumed constant along the superlattice axis and
the predicted folded intensities are extremely small, in
contrast with the experimental results on GaAs-A1As
structures. In their treatment, these intensities originate
only from the n=O component of the folded modes,
which remains very small unless the two bulk constituents
have very different acoustical properties. On the other
hand, the linewidths are dominated in our experiment by
the instrumental response function. We thus did not con-
sider any line-broadening effects in our calculation.
Furthermore, the line shape predicted in Ref. 14 comes
from interference effects between the wings of the strong
n=O line and the weak folded ones. In our case, where
the folded modes scattering activity is much larger, these
effects are negligible.

Another application of our model can be found in the
analysis of periodic structures with more complex super-
cells, where an exact solution is not currently available.
Moreover, as already outlined before, the folded BS inten-
sities, contrary to their frequencies are sensitive to the de-
tail of the structure. An analysis of them is thus needed
to characterize the shape of the periodic variation, as
shortly illustrated in the following section.

VI. INFLUENCE OF THE SUPERCELL STRUCTURE

We present in Fig. 9 a Raman BS spectra obtained in
nonresonant conditions, in parallel configuration on
a sample whose supercell is made of four different layers:
30 A of GaAs, 85 A of AlAs, 30 A of GaAs, and 190 A
of A1As. In this sample, the BS wave vector amounts to
around 0.5G, i.e., we probe the zone-edge vibrations. The
lines labeled 1—6 are thus assigned to unresolved zone-
edge doublets, which are equidistant. Line n corresponds
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FIG. 9. Raman spectra on the four-layer sample described in the text. The calculated relative intensities of the folded lines (1 to 6)
are given in the top of the figure, for a two-layer model (upper line) and a four-layer one (lower line). The asterisk labels a yet uniden-
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to the + n and —n —1 modes and the frequencies can be
perfectly reproduced by the usual elastic model, assuming
two layers in a period (60 A for GaAs, 275 A for AlAs).
However the measured intensities of the lines do not
display at all the usual trends. Similar observations have
been recently published on some GaAs-A1As three layers
structures (8). These intensities can be however fully un-
derstood taking in account the correct geometry of the su-
percell. We give in Fig. 9 the calculated intensities, nor-
malized to the one of line 1, for both simplified and real
profile. The results are qualitatively different and the
measured intensities only fit the four layers supercell pre-
dictions.

Let us now consider a usual GaAs-AlAs superlattice
but with broaden interfaces. We previously published'
Raman BS results on this type of samples and analyzed
the frequencies of the confined optical modes and the in-
tensities of the folded acoustical lines in terms of interface
broadening. The average intensity of a given acoustic
doublet was assumed to scale on the square of the corre-
sponding Fourier component of the concentration profile.
We then obtained a correct description of the decrease of
this intensity as a function of interface broadening. With
our more sophisticated model we recover similar results
and we also predict a decrease of the doublet asymmetry
with increasing interface broadening. This effect was not
clearly seen previously and further experiments are
currently in progress.

VII. CONCLUSION

In this paper we reviewed the theory of both the disper-
sion and light scattering activity of folded acoustical

modes in superlattices. In a first approximation, the fre-
quencies depend only on the superlattice period d, except
at the zone center and zone edge where the gaps depend
on the inner structure of the supercell. Forward Raman
scattering experiments test the zone-center modes and al-
low to measure the corresponding gaps which, for a two
abrupt monolayers superlattice, depend only on the aver-
age concentration x.

An easier experiment is to perform backward scattering
which probes modes with finite wave vector Q. The rela-
tive intensities of a given acoustical doublet, contrary to
the frequencies, drastically depend on the geometry of the
supercell. They quantitatively reflect the softening of the
zone-center photoelastic selection rules, which depends on
Qd and on the zone-center gap magnitude. The analysis
of both forward and backwards scattering experiments on
a large set of GaAs-A1As superlattices leads to an excel-
lent quantitative agreement with the theoretical predic-
tions.

Finally we would like to point out that a careful study
of the intensities of the whole set of backscattering lines
should allow the determination of the inner structure of
the supercell of any sample.
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