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An empirical potential for silicon recently introduced by Tersoff has been found to be unusable
for global structural calculations since the bee structure has lower energy than the diamond struc-
ture, by roughly 1 eV/atom, with this potential. Simulated annealing optimization studies of the fit-
ting parameters to the quantum-mechanical data base for silicon reveal that serious structural
pathologies (relative to the behavior of silicon) cannot be avoided. We introduce a modification of
the Tersoff potential which retains the accurate treatment of surface and defect properties exhibited
by that potential but which yields a reasonable fit to the bulk and high-density structural properties
of silicon. The resulting potential can be used for global structural calculations.

INTRODUCTION

There has been considerable recent interest in atomistic
simulation of the structural properties of tetrahedral semi-
conductors. This interest is fueled by the various surface
reconstructions observed in silicon and by the need to
understand nonequilibrium structures and processing
techniques which are finding application in semiconduc-
tor devices. Because of the open tetrahedral structure of
bulk silicon, simple pairwise potentials are inadequate.
Further, since the interest is generally in studying rather
large, nonperiodic structures, calculation of the structural
energies using quantum mechanics is not practical.
Therefore, recent emphasis has been on developing classi-
cal empirical three-body potentials. Such potentials can
stabilize the diamond structure while remaining tractable
on the problems of interest.

The oldest empirical three-body potential for diamond-
phase semiconductors is the valence-force potential.! The
essence of this approach, which has been used with con-
siderable success for study of phonon and small-
deformation elastic properties, is to expand the potential
energy in terms of atomic displacements around some
reference structure. In the case of silicon, this reference
structure is the diamond phase. Such potentials are per-
turbative in nature, and cannot properly be applied to sys-
tems with nonideal topology, such as defect structures,
surfaces, and melting.

To properly treat these more general structures, poten-
tials which accurately span the entire available configura-
tion space are needed. This need has been addressed in
several forms in the last couple of years. The first at-
tempt was that of Pearson, Takai, Halicioglu, and Tiller
(PTHT).2 They treated the pairwise interaction by a
Lennard-Jones term and the three-body term by the
Axilrod-Teller potential for van der Waals interactions of
three bodies.? There is no physical reason to choose these
terms to represent the behavior of silicon, and the poten-
tial is used simply as a fitting function. The PTHT po-
tential does not predict reasonable elastic properties for
bulk silicon or its high-pressure polymorphs, but fits
small clusters fairly well.

Another attempt, which met with considerably more
success, was made by Stillinger and Weber (SW),* who
designed an empirical three-body potential to model the
melting of silicon. They used an Lennard-Jones pairwise
potential and included a term in the three-body potential
which discriminates in favor of the ideal tetrahedral struc-
ture. This has some of the flavor of the valence-force-
field approach, but is formulated so that the possibility of
nonideal topologies is not excluded, but is only
discouraged by the potential. Studies of the SW potential
have indicated that it replicates the elastic properties of
bulk silicon, but that it does not handle some surface
structures, low-coordination-number geometries, or high-
pressure polymorphs properly.’ This potential has been
used to study the melting of silicon,* faceting at the (100)
crystal-melt interface,® and the stability of coherently
strained SiGe layers on an Si(111) substrate.” All of these
studies compared well with the corresponding experiments
and/or overlapping continuum theory, lending credence to
the applicability of the SW potential.

An improved class of empirical potentials for silicon
and other covalently bonded semiconductors is based
loosely on ideas from quantum chemistry and observa-
tions concerning the universality of mechanical behavior
of solids.®® The essential idea here, introduced first by
Abell,° is that the bonding can be properly described by
pairwise interactions (for which a Morse-type potential is
a reasonable approximation), but the strength of the pair-
wise interaction is influenced by the local environment,
e.g., by many-body interference terms. This picture of co-
valent binding was, apparently independently, developed
and implemented by Biswas and Hamann for silicon.'!
They express the environment near the pair bond by ex-
pansion in Legendre polynomials which are then used to
modify a generalized Morse-type pairwise potential. The
(still empirical) three-body potential is then fit to the
density-functional theory (DFT) structural data base for
silicon.!? The resulting potential works well on bulk elas-
tic properties and the high-density polymorphs which
make up the data base. However, the potential fails badly
for very small clusters, and in addition is too time con-
suming for most large-scale calculations. Accordingly,

2795 ©1987 The American Physical Society



2796

this potential has not been widely tested despite its ap-
parent promise.

Another approach closer to that outlined by Abell has
recently been implemented for silicon by Tersoff.!> This
potential will be considered in greater detail, as it is the
basis for the work described in this paper. The system en-
ergy is the sum over the asymmetric potential ®;;

iJ
The pairwise potential ®;; has the Morse form
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where f; is a smooth cutoff term centered around 3.0 A.
The six parameters A4, By, A,, b, ¢, and d were chosen by
fitting to the lattice constant and bulk modulus of
diamond-phase silicon and the cohesive energies of dia-
mond, simple cubic, and face-centered cubic silicon and
the silicon dimer, based on experimental values and DFT
calculations by Yin and Cohen. '?

The Tersoff potential does a good job of describing elas-
tic properties of bulk silicon and a reasonable job of deter-
mining the energies of many defect structures and surface
reconstructions, as well as low coordination number
geometries. !> Unfortunately, we have determined that the
crystal structure with lowest energy is not the diamond
phase. Among simple crystal structures, the lowest ener-
gy, by more than 1 eV/atom (see Fig. 1), is associated
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FIG. 1. Cohesive energies in eV/atom for various simple sil-
icon lattices as generated by density-functional theory (DFT),
the Tersoff potential, and the present work (Dodson).
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with the bec phase. This is a serious limitation to the ap-
plicability of this potential. For example, if one melts and
then cools a model base on the Tersoff potential, it will
not recrystallize in the tetrahedral phase. It can be used
in the original form for calculation of some defect struc-
tures, but clearly cannot be used in growth simulations or
general stability calculations. It will always be difficult to
determine if it can be applied to a new problem, because
the tetrahedral phase is not stable. In the remainder of
this paper, we describe a technique to perform global op-
timization of the Tersoff potential using simulated an-
nealing of the parameter set. This technique is then used
to demonstrate that the Tersoff potential is intrinsically
pathological in its description of the global structural en-
ergetics of silicon. We then introduce a modification of
the Tersoff potential form which is satisfactory for global
structural calculations while retaining accurate treatment
of surface configurations.

GLOBAL OPTIMIZATION
VIA SIMULATED ANNEALING

The problem of global optimization of multivariate
functions has essentially no general theory or techniques
for solution.'* The object of optimization theory is to
minimize an error function describing the deviation of a
trial-fitting function from an ideal fit. This error func-
tion is often called the cost function. There are two gen-
eral heuristic approaches in common use. These consist
of iterative improvement of solutions based on searching
parameter space for rearrangements which reduce the cost
function and of procedures to determine the local stability
of a given fit. These techniques usually get trapped in lo-
cal minima, and their use for locating global minima is
speculative at best. To partially overcome this tendency,
it is customary to carry out the optimization process
several times, starting from different initial parameters,
and then accepting the best result. However, this tech-
nique is nearly useless in problems containing many low-
lying local minima.

A new class of techniques designed to address the prob-
lem of global optimization was recently introduced by
Kirkpatrick, Gelatt, and Vecchi (KGV).!> These new
techniques are collectively known as simulated annealing,
and are based on an analogy between stochastic dynamics
on thermodynamic phase space and the dynamics of op-
timization procedures on parameter space. In particular,
consider recrystallization of a liquid. At high tempera-
tures, the system is liquid, and the particles move freely.
If the liquid is cooled slowly, order gradually begins to ap-
pear, first as a polycrystalline solid with defects and grain
boundaries. As annealing (slow cooling) proceeds, the
quality of the crystal improves until a single crystal is
formed. The crystal is the lowest energy state of the sys-
tem, and is the result of the slow-cooling process. If the
cooling proceeds more rapidly, the final state will be poly-
crystalline, but will predominantly exhibit the bonding
seen in the crystal. In the analogy to simulated annealing
optimization, the cost function is the counterpart of the
system energy. The temperature of the system is related
to the permissible fluctuations of the cost function under
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perturbations of the parameter set. The liquid state
represents the condition where the fluctuations of the cost
function are large enough that the parameters may vary
quite freely. As the “temperature” falls, the range of vari-
ation of the parameters reduces, and the correlations be-
tween the values of different parameters increases. The
analog of the crystalline final state is the parameter set
which results in the best fit based on the cost function
chosen for optimization. The advantage of simulated an-
nealing is that, in principle, the system can search over
the complete configuration space to choose the global
minimum, just as a thermodynamic system will (general-
ly) visit all accessible regions of phase space.

One can simulate the annealing process by using one of
several techniques to determine the path of the system
through the parameter space as a function of temperature.
These techniques include molecular dynamics, Monte
Carlo methods, and Langevin dynamics. Although these
techniques describe different paths through phase space,
they all give the same thermodynamic averages, and thus
can all be used for modeling the annealing process. We
will concentrate on the Monte Carlo method. In this pro-
cedure, an atomic system is subjected to random changes
in its configuration. The change is accepted if, as a result,
the system energy decreases. If the energy increases, the
change is accepted with probability exp( —AE /kzT), this
being the Boltzmann probability distribution. This is
known as the Metropolis Monte Carlo algorithm.!® The
essential point here is that a thermodynamic system can-
not become trapped in a local-energy minimum when un-
dergoing slow cooling, since changes in configuration
which increase the energy are sometimes accepted. Thus,
the system tends to climb out of local minima. The tem-
perature determines the likely size of such upward
motion, which becomes less important as the temperature
decreases. Thus, sufficently slow cooling will result in a
unique, or at worst a set of nearly degenerate, global mini-
ma.

To apply such an annealing procedure to nonthermo-
dynamic problems requires the following features (the
thermodynamic analog is listed in parenthesis).

(i) A parameter set description of the system (particle
locations).

(i) A procedure to randomly change the parameters
(attempted random particle moves).

(iii) A cost function whose minimization is the goal of
the optimization (system energy).

(iv) An annealing parameter T (temperature) and a
schedule for annealing.

We are interested in optimizing the fit of an empirical
potential function to various structures in the quantum
mechanical data base, primarily as given by Yin and
Cohen.'?> When we begin with the Tersoff potential [Egs.
(1)—(4)], the six parameters 4, By, A,, b, c, and d form
the parameter set analogous to particle locations. A pro-
cedure to randomly vary the parameter set is straightfor-
ward, as is the annealing parameter. The main difficulty
is to develop an appropriate cost function. It is clear that
one must develop some criterion for the quality of the fit
to the quantum mechanical data base. It is also clear that
such a criterion for fit will be, to some extent, arbitrary

2797

and inclusive of qualitative ideas concerning how the
empirical potential should behave. We have chosen, for
the sake of simplicity, a generalized difference-squared
function as the energy function for the cost function:

E =3 a[Bifit)—B;])*, )
k

where the sum is over the chosen points from the quan-
tum mechanical data base. f3; is the desired value for the
test structure i (from the data base), and pB;(fit) is the
value for the test structure resulting from the current po-
tential parameter set. (S can be system energy, interatom-
ic distance, bulk modulus, etc.) The a; are a measure of
how important the fit for test structure i is felt to be.
[This is where the arbitrariness of the energy analog
enters; fortunately, the results are qualitatively quite in-
sensitive to the details of the energy analog (for the Ters-
off potential).]

The object of the simulated annealing optimization pro-
cedure is to find the parameter set for the Tersoff poten-
tial which optimizes the fit to the DFT data as described
by the energy analog. The fitting goals are the cohesive
energy, lattice parameter, and bulk modulus of tetragonal
silicon, and the cohesive energy and lattice parameter of
the silicon dimer and the graphitic, simple cubic, bec, fec,
and hcp crystal phases of silicon, or subsets of the above.
(Note that we have included more structural information
than was used by Tersoff. This did not substantially im-
prove the situation.) Fits are performed via Monte Carlo
procedures as described earlier. Over a wide range of «;
values, we found that the diamond structure could not be
made the global minimum among simple crystal struc-
tures without producing unacceptable errors in the ener-
gies and lattice constants of other important phases. The
conclusion is that the Tersoff potential, as expressed in
Egs. (1)—(4), is not suitable for treatment of global
structural energetics in silicon or, by extension, in other
tetragonal semiconductors.

A MODIFIED TERSOFF-TYPE POTENTIAL
FOR SILICON

We have been successful in developing a modified form
for the potential based on the Tersoff potential. This
modified potential retains the accurate treatment of sur-
face structures but also yields the proper global limits as
well as predicting reasonable properties for the high-
density polymorphs. The formulation is essentially as ex-
pressed in Eq. (1)—(4), but the restriction that A, =2A, is
removed, and Eq. (3) becomes

Bij=Bexp[ —(z;)"/b] . (3"

This modification seems to give us two extra parameters
to adjust, but we will find that free adjustment actually
gives A;=2A, very nearly, so that the added freedom is
not used.

Upon performing simulated annealing optimization of
the parameter set for the modified potential described
above, using as the data set the DFT calculations of Yin
and Cohen'? for lattice constant and cohesive energy for
the diamond, simple cubic, bee, fec, and hep phases, the
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bulk modulus of diamond phase silicon, and the atomic
separation and binding energy of the Si, dimer, we find
the parameters set as follows: A =1614.6, b =3.4785,
By=155.08, ¢=0.8543, A;=2.7793, d =3.9588,
A;=1.3969, n=0.6207. It is noteworthy that 7, the new
exponent in Eq. (3a), which equaled 1 in the Tersoff po-
tential, is now 0.6207. The size of the change of 7 indi-
cates that our new potential is qualitatively different from
that of Tersoff rather than representing a small quantita-
tive change.

One can compare the performance of the new potential
with that of Tersoff by examining Figs. 1 and 2, where we
schematically plot the cohesive energy and equilibrium
volume for a collection of high-density polymorphs.
From Fig. 1, it is clear that the Tersoff bce and hep ener-
gies are respectively much too large and too small, and the
corresponding interatomic distances (shown in Fig. 2) are
also considerably in error. The tremendous improvement
in the energies and equilibrium spacings of these phases
resulting from use of the new potential is not due simply
to their being included in the fitting routine for the new
potential, but, as discussed earlier, is due to a qualitative
change in the nature of the potential. Among the struc-
tures analyzed in Figs. 1 and 2, the graphitic and [-tin
structures were included in neither fitting routine. The
energy of the B-tin structure is much better modeled by
the new potential, which gives an energy of 0.35 eV/atom
above the diamond phase, compared with only 0.12
eV/atom for the Tersoff potential (the theoretical value is
0.27 eV). Neither potential works particularly well for the
graphitic phase, predicting cohesive energies in the range
of —4.24—4.30 eV/atom, compared to the theoretical
value of —3.92 eV.!7 This difference is due to the 7-
bonding of the planar graphitic structure, which
represents a difficult task for empirical potentials not
specifically designed to treat 7 bonds.

The treatment of surface geometries by the new poten-
tial is rather similar to that provided by the Tersoff poten-
tial. To mention only two examples, we find that the
(111) silicon surface relaxes inward by 30% of the first-
layer separation, reducing the system energy by 0.12
eV/surface atom, compared to DFT results of (29—37)%
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FIG. 2. Interatomic spacing in A generated by the empirical
potentials of Tersoff and Dodson relative to those predicted by
density functional theory (DFT).

and 0.15-0.17 eV/surface atom.'® Also, the 21 (111)
silicon reconstruction yields a reduction of energy of 0.12
eV/surface atom, compared to 0.35 eV/surface atom
predicted by DFT.!° Again, the effect of 7 bonding is
seen, since this reconstruction depends fundamentally on
such bonds. Most empirical potential models do not even
predict this reconstruction.!* These results for surface
configurations are essentially indistinguishible from those
of the Tersoff potential. Thus, the new potential seems to
retain the many good features of the Tersoff potential
while avoiding the obstructing pathologies.

Note added. Tersoff has now developed a modified ver-
sion of his original potential, which is currently undergo-
ing evaluation by several groups.2’
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