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We consider a novel type of disorder relevant to the electronic structure of certain conjugated po-
lymers: disorder induced by conformational changes in the chain geometry. A prototypical system
in which strong disorder of this variety can be present is a substituted polydiacetylene. Both in the
solid phase and in solution, these polymers undergo conformational transitions accompanied by
color changes as one raises the temperature. We first present a simplified model for this transition
which defines a probability distribution for conformational disorder. Real-space renormalization-
group methods are then used to calculate the density of states and localization length for the model ~

Our results indicate that conformational disorder can cause qualitative changes in electronic struc-
ture in a fashion consistent with experiments. We also conclude that since such disorder is correlat-
ed, more than one length scale is needed to characterize an electronic state. In particular, "conjuga-
tion length" does not suffice.

I. INTRODUCTION

The electronic structure of conjugated polymers contin-
ues to be of interest, not least because of the possibility af-
forded for strong coupling to changes in the geometry of
polymer chain backbones. However, it is the low effective
dimensionality of such polymers that makes this coupling
most efficient in producing unusual phenomena. In one
dimension, the coupling of the electronic structure to
longitudinal distortions can lead to a Peierls transition, '

which opens a gap in the electronic density of states at the
Fermi surface. As a consequence, updoped conjugated
polymers behave as semiconductors with optical gaps of
the order of few electron volts. Moreover, on doping,
compounds such as polyacetylene and polyparaphenylene
support new types of elementary excitations such as soli-

tons and bipolarons.
In other classes of conjugated polymers, in particular,

substituted polydiacetylenes, the coupling of the electron-
ic structure to conformational changes in chain geometry
is especially important. Specifically, energy scales for ro-
tations around the carbon-carbon single bonds (Fig. I) are
comparable to thermal energies, so that one expects a con-
siderable number of such rotations to be present, even at
room temperature. Since the value of the overlap integral
corresponding to a particular single bond goes as a cosine
of the angle of rotation, the electronic structure is consid-
erably perturbed by this type of conformational change
and is therefore likely to be correspondingly sensitive to
variations in the condensed phase environment.

Polydiacetylenes themselves have been the subject of
quite a number of experimental studies. ' The methods
used have spanned the gamut of solid- and liquid-state
probes, including ultraviolet and visible absorp-
tion, ' ' '" ' light scattering, ' ' resonance Raman
spectroscopy, ' '" x-ray crystallography, ' and NMR
studies. "' ' What motivated most of these investiga-

tions was the observation that an abrupt color change
occurs as one varies the temperature, both when polydi-
acetylene is crystalline ' and when it is in solution. ' A
similar color change is observed in solution when the frac-
tion of the polar solvent is varied. ' Inasmuch as the
solution behavior is largely independent of the polymer
concentration (over several orders of magnitude)' and
since the same phenomenon seems to be characteristic of
the solid, the color change itself may be viewed as largely
a single-chain phenomenon (though aggregation of chains
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FICx. 1. (a) Structure of a substituted polydiacetylene. The
letter R represents side chains and the arrows represent the low
energy rotations around single bonds capable of creating disor-
der in the electronic structure. (b) An enlargement of single-
bond —triple-bond —single-bond region of the polymer showing
how the relative orientations of the p orbitals change when a ro-
tation is performed.
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probably does occur ). The one-chain picture gets addi-
tional support from recent birefringence studies. ' These
and light scattering experiments in solution' ' demon-
strate that the color change is associated with a consider-
able change in the radius of gyration, suggesting in turn
that the color change is caused by some conformational
transformation, such as a rod-to-coil transition. Infrared
studies on polydiacetylenes with hydrogen-bonding side
chains have been able to show that the number of broken
hydrogen bonds increases as the transition is crossed, con-
firming the presence of conformational defects in the
chain.

More generally, detailed optical-absorption measure-
ments ' ' '" ' indicate that the color change is caused by
a shift of the absorption edge to higher energies as the
temperature or the fraction of polar solvent is increased.
How this shift happens is not clear, but resonance Raman
experiments ' " imply that the disordered form of the
polymer is associated with different electronic absorp-
tions, which seem to be affiliated with higher double- and
triple-bond stretching frequencies than are present in the
ordered form. More recent experiments' have even dis-
closed hysteresis phenomena, which suggests that the con-
formational structures leading to the new absorptions
have extremely long relaxation times.

We should note that, historically, the first attempts to
understand the observed color change did not consider a
conformational origin to the transition. Instead they
focused on the changes in dimerization —the pattern of al-
ternating single and multiple bonds. The idea was that
the chain could make transitions from the ene-yne
(double-single-triple-single) structure pictured to a buta-
triene (three consecutive double-bond) structure. Howev-
er, both x-ray' and NMR" ' ' experiments and theoreti-
cal considerations ' demonstrated that only the ene-yne
structure is present to a significant extent. Hence the
longitudinal distortions that give rise to changes in dimer-
ization cannot be playing an important role here. Of
course, in polyacetylene, it was precisely these distortions
that proved vital for understanding the possibility of soli-
ton excitations.

To try to understand the somewhat different effects of
conformational changes, consider a simplified picture
where only rotations of +m. /2 are allowed. These rota-
tions totally break the conjugation, separating the polymer
chain into electronically independent "submolecules. " Ex-
perimental studies on finite-length conjugated chains have
shown that the effects of having a finite conjugation
length is to increase the values both of the optical gap and
the appropriate vibrational frequencies. The same con-
clusions can be obtained from simple theoretical con-
siderations of finite-length chains. Alternatively, as
shown in Sec. II, another type of conformational change,
uniform rotations by the same angle on each monomer
(leading to a "wormlike chain" in the language of Ref. 11)
produces similar effects. From either point of view, we
can conclude that the existence of conformational defects
is consistent with a general shift in optical and vibrational
frequencies to higher values.

These pictures thus suggest a scenario in which the
color change is induced by the chain undergoing a rod-to-

coil transition. The preponderence of conformational de-
fects in the coiled form would certainly account for the
dramatic change in the character of the electronic struc-
ture that one sees in changing the temperature or the sol-
vent. Within this framework, the immediate question be-
comes one of what the driving force for the rod-to-coil
transition is, a question on which there is no unanimity,
though several authors ' have considered possible
physical mechanisms.

Quite generally, the entropic effects associated with
both backbone and side-chain motion tend to favor the
disordered (coiled) state. However, to account for the rel-
atively sharp transition (or even, possibly, a true phase
transition) some cooperatiue mechanism stabilizing the ex-
tended (rodlike) state is needed. Stratt and Smithline
considered cooperativity induced by the energetics of a
conjugated n. system. Such a model, though, cannot ac-
count for the existence of a sharp transition. Berlinsky
et al. used a phenomenological statistical mechanical
model inspired by the classical Zimm-Bragg description
of the helix-coil transition. The microscopic origin of
the needed cooperativity here was the presence of the
"loop entropy" such as is found in DNA, although it
remains unclear as to precisely how these ideas might ap-
ply to polydiacetylene. Goldenfeld and Halley even pro-
posed an entirely new mechanism for general rod-to-coil
transitions in polymers based on vibrational entropy. Still
another picture, more specific to conjugated polymers,
was put forward by Schweizer, who invoked the higher
polarizability of extended sections of the conjugated poly-
mer chains as a driving force for the transition. In a care-
ful study he was able to show that polarizability con-
siderations can lead to a genuine phase transition for some
values of his parameters. There are yet other notions as to
the mechanism, but perhaps at this stage it would be best
to note that a final consensus has not been reached.
Nevertheless, the fact that there is a conformational tran-
sition from an ordered to a disordered state seems almost
certain.

What is clearly the next step, then, is to focus on how
the electronic structure itself is realistically affected by
changes in conformation. None of the work we have been
discussing explicitly considered rotations other than
+~/2, except Ref. 11. Moreover, in what has been done
to date, drastic simplifications have been made to make
the electronic structure problem exactly solvable, missing
in the process a great deal of interesting physics: what we
will call the effects of the conformationally induced disor
der. Accordingly, the main theme of this paper will be to
examine the consequences of this disorder (and not the
specific mechanism that causes it). One can appreciate
the particular importance of disorder in polydiacetylene
by noting that conformational motion is very slow on the
time scale for electronic motion. Therefore, the disorder
introduced by such a motion can be considered to be static
or quenched when the electronic structure is examined-
and quenched disorder is what makes it possible to have
the quantum coherence necessary for Anderson localiza-
tion and all the nontrivial effects associated with it.

The special significance of disorder has been evident
ever since Anderson's pioneering work in 1958. In par-
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ticular, it is known that the simple presence of disorder
can have profound effects on the nature of the electronic
wave functions: Localization can occur. In the last
several years the interest in disordered systems in general
has significantly increased with the development of new
ideas and powerful methods, such as the scaling theory '

and the renormalization-group techniques. It is now
well established that all states are localized in one and two
dimensions, whereas in three-dimensional systems some
states can remain extended. In one dimension, the effects
of disorder are sufficiently strong that disorder can have
nontrivial effects not only on the nature of the electronic
wave functions, but also on the structure of the density of
states. (It is also interesting to mention that, in one di-
mension, the density of states itself contains information
on localization, unlike the situation in higher dimen-
sions where the density of states is smooth and is not as
dramatically influenced by disorder. ) In the presence of
disorder, the density of states can develop complicated,
highly structured forms, which, in some energy intervals,
can even have a fractal (self-similar) nature. Such com-
plicated behavior of the density of states is difficult, if not
impossible, to describe in the framework of any perturba-
tion or effective medium (mean-field) theory. However,
renormalization-group methods which include coherent
scatterings on all length scales have been recently dev-.
ised. These methods, although approximate, have been
able to reproduce much of the complicated structure in
the density of states and to calculate the corresponding lo-
calization lengths in good agreement with numerical re-
sults. Consequently, we will be able to make use of such
calculational schemes in investigating the details of the
electronic structure of even as strongly disordered a
quasi-one-dimensional system as polydiacetylene.

To summarize the scope of this paper, then, in Sec. II
we perform model calculations for the energetics of dif-
ferent conformational defects. Using these calculations as
a guide, a simplistic model for the conformational transi-
tion is then presented in order to define a detailed proba-
bility distribution for disorder. The statistical mechanics
of this model can be solved exactly. In Sec. III we define
the framework in which we calculate the electronic struc-
ture and we study the effects of the disorder using
renormalization-group methods. The density of states
and corresponding localization lengths are calculated and
the results presented for different amounts of disorder.
Finally, Sec. IV discusses our results and points out some
implications of our work. Limitations of our treatment
are also discussed, as well as possible future extensions.
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defect types, and of the forms of the corresponding rota-
tional potentials, by performing model calculations on
long chains with specified geometries. Consider, as a
starting point, a simple tight-binding model with the
backbone p orbitals taken as a basis and the bond lengths
kept fixed at their planar values. It is worth mentioning
that, even at this level, polydiacetylene, unlike polyace-
tylene, has p~ orbitals perpendicular to the plane of the p„
orbitals which create the conjugation [Fig. 1(b)]—a fact
which turns out to be energetically very important.

One cannot expect the numerical values obtained in this
fashion to be quantitatively accurate. Still, the qualitative
features of the results and relative energy costs for dif-
ferent defect types are probably correctly predicted. Nu-
merical values for the hopping elements have been es-
timated from x-ray data' for bond lengths by using the
empirical formula

V(r)=67.28exp[ rl—(0 424 .A)] eV,

with V the hopping element and r the bond length. The
values obtained for single, double, and triple bonds,
respectively, are V~ ——2.20 eV, V2 ——2.66 eV, V3 ——4.06
eV. The resulting band structure and density of states for
the perfect polydiacetylene (PDA) chain are presented in
Fig. 2 with the energy measured from the middle of the
optical gap separating the occupied from empty states.
The value obtained for this optical-gap energy is 2.12 eV,
in reasonable agreement with experiments. ' ' '" ' We
also note the isolated 5 function peaks at E =+ V3, corre-
sponding to the off-plane p~ orbitals which are not conju-
gated in the perfect chain.

With this result defining our reference, we can consider
the energy cost of a single rotation performed around a
particular single bond (Fig. 1). (The detailed dependence
of the transfer integrals on rotational angles is given in
Sec. IIIB.) It has been suggested that n/2 rotatio.ns
should have a low energy cost, since although a p„-p„

II. A MODEL FOR CONFORMATIONAL DISORDER

A. The energetics of conformational defects

Before specifying a model for our rod-to-coil transition,
we first take up the question of what types of conforma-
tional defects are present in the disordered (coiled) phase.
As we have noted, most of the authors have considered
only m. /2 rotations, ' ' whereas Wenz, Miiller,
Schmidt, and Wegner" have suggested "wormlike" chains
with continuous twists by a small angle on each monomer.
We can get an idea of the energy scales of these different
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FICx. 2. Band structure and density of states for a perfect po-
lydiacetylene chain. The wave vector k is expressed in units of
m. /a, where a is the monomer length. The peaks in the density
of states are, in fact, Van Hove singularities which we have
truncated for clarity. Note that the delta-function peaks at
+4.06 eV correspond to the out-of-plane (unconjugated) p„orbi-
tals.
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bond is broken, another p -p~ bond is formed. Naively,
one would then expect that this should be a local
minimum of the rotational potential. Our results for the
rotational potential presented in Fig. 3, show, however,
that ~/2 is actually the energy maximum and that the
minima are at 0 and n.. The energy cost nonetheless is
small, as expected: E(~/2) E(0—) —=0.07 eV. (This fig-
ure is probably an overestimate for the energy; the real en-

ergy is expected to be very small, in agreement with Ref.
35.) We are forced to conclude that m/2 defects are, in

fact, the most unlikely ones, so that pictures which in-
clude only such defects are unrealistic for purposes other
than estimating general trends in the electronic behavior.
Still, the basic physics is captured by any model which
permits low-energy conformational defects. Rotations
around single bonds do not explicitly break any local
bonds and therefore cost very little energy. What they do
accomplish is an interruption of conjugation along the
chain backbone. It is precisely this fact that makes it pos-
sible to have strong thermally induced disorder at room
temperature.

The next question, presumably, is whether these confor-
mational defects are significantly correlated. In order to
analyze this, we calculated the interaction energy for two
defects (defined to be rotations by an angle P on single
bonds) which were separated by N monomers. This in-
teraction turns out to be attractive, but regardless of the
value of P chosen, it was always very weak

[ V(X =-0)—:—2X 10 eV] and exponentially dependent
on the separation, N. Certainly to within the accuracy we
will need in this paper, such interactions can be neglected.
Thus, given our result that the energy scales for single
bond rotations are of the order, or even possibly smaller,
than the thermal energies at room temperature, we expect
there to be a more-or-less random distribution of rotation-
al defects in the coiled phase.

but we do so because a definite model is necessary in order
to define a precise form for the probability distribution of
disorder as a function of temperature. Our general con-
clusions are largely independent of the model.

This model itself focuses on the role of hydrogen-
bonded side chains as a driving force for the transition.
To perform rotations around some single bond, the ap-
propriate hydrogen bonds have to be broken at cost of
some energy EI,. However, it is necessary to break two
consecutive hydrogen bonds to set the corresponding side
chain free to move (Fig. 4). Since these side chains can be
quite long and flexible [in compounds such as poly-
3BCMU and -4BCMU (Ref. 12)], allowing them to move
liberates a large amount of entropy S,h. The hydrogen-
bond-breaking dynamics can then be mapped into a one-
dimensional lattice gas model with E~ playing a role of
the chemical potential and S,hT the role of the coupling
parameter. The effective Hamiltonian (or free-energy
functional) is

H = g [ (~ hT—)i P +&+Ebi ] (2.1)

where T is the temperature and p; =0, 1 is the variable as-
sociated with the hydrogen bond being unbroken or bro-
ken, respectively. For simplicity, we assume the 8 bonds
break simultaneously on both sides of the backbone. It is
easy to see that this assumption does not change our con-
clusions in any important way. Once the appropriate hy-
drogen bonds are broken, we will assume that there is free
rotation around single bonds. This idealization allows us
to immediately write down the probability distribution for
having different conformations of the chain:

P [I/( ], [ij; I ]=Z ' g exp[[(S,h/k)p;p, ;+~

B. Defining the model

As we have stressed in the Introduction, the main
thrust of this paper is to consider the effects of disorder,
not the specific origin of the rod-to-coil transition. We do
present a simple model for the conformational transition,
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FICi. 3. Effective rotational potential U(P) for an isolated
rotation by an angle P about a single bond.

FIG. 4. Hydrogen-bond breaking dynamics. The heavy line
represents the polymer backbone and the jagged lines parallel to
the backbone represent the hydrogen bonds connecting the side
chains. For a rotation to be performed (arrow), hydrogen bonds
on both sides have to be broken. However, only when two con-
secutive hydrogen bonds are broken is a side chain released from
the requirement of coplanarity (and the conformational entropy
associated with the side chain made available to the system).
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where

Z= g Q f dP;P[[P;), [p;I] (2.3)

and

n=1

'exp y [(Sch/k)pip +i «b/k—»p ]

(2.4)

with

Z= g P[[p; I] .

In other words, this choice of a leaves Eb unchanged after
the integration is performed. Note that the average in P is
performed only from 0 to ~/2 since the electronic struc-
ture depends only on

~

cos P ~

.
This model is actually isomorphic to a one-dimensional

Ising model obtained by setting p= —,(s + 1) with s =+1.
In this language the coupling parameter is J= —4S,hT
and the effective field is h =(Eb S,hT)/4. It is—well
known that one-dimensional statistical mechanical models
with short-ranged interactions cannot have a true phase
transition. ' However, at T, =Eb/S, h the effective
field changes sign, causing a reasonably abrupt transfor-
mation (for large J) from the state with (p)=0 (rodlike)
to the state (p)=1 (coiled). The width of the coexistence
region is inversely proportional to J, i.e., to S,h. In fact
in the limit S,h~ ao, one obtains a first-order phase tran-
sition. Therefore, in the framework of this model, it is
the entropy gain on allowing the side chains to be free to
move that introduces cooperativity and makes possible a
relatively sharp phase transformation. The statistical
mechanics of this model can, of course, be solved exactly,
so we can calculate the fraction of broken bonds as a
function of temperature.

Another quantity that will be of interest later is the
average length of clusters of unbroken bonds (rodlike seg-
ments of the chain), (1). At the transition temperature,
this length is of the order of the correlation length (where,
in the equivalent Ising model language, the effective field
is zero), but elsewhere it has to be independently calculat-
ed as follows: The probability of having a cluster of ex-
actly n consecutive unbroken bonds is

(2.5)

P. =&p (1 —p+I) . . (1 p+. )p+.+1&—
and the probability that a given unbroken bond belongs to
such a cluster is P„=nPn. As any unbroken bond must
belong to some cluster we have

and IP;I are the rotational (dihedral) angles on single
bonds. The parameter a measures the relative statistical
weight of configurations with and without the appropriate
hydrogen bonds being broken (with and without single
bond rotations). Different choices of a, though, are
equivalent to shifting the effective value of Eb after the
integration over angles is performed. Since S,h and Eb
are empirical parameters which we can fit to the required
values, we can choose for convenience u =~/2. This
choice gives

P[jp;I]—= Q f,

(I)= g nE„= g n'P„.
n=1 n=1

To calculate the probabilities P„we note that

P„=r„,—2r„,+r„,
where

(2.6)

I „—= ((1—p; ) (1 —p; „)),
and that the fraction of broken bonds is (p) =1—I i.
The quantities I „can be readily calculated using standard
transfer-matrix techniques, giving the results

with

(1—p) =(A. ,„—x)[y +(X,„—x) ]
(&)=(1—p)(& .„+1)/(&,„—1)

(2.7)

A, ,„=—,
' I(1+x)+[(1—x) +4y ]'~

] (2.g)

and

x:—exp[(S,b/k) —(Eb /kT)],
y:—exp[ Eb/2kT] —. (2.9)

The results from these calculations are plotted in Fig. 5
for different values of S,h (effectively for different side-
chain lengths).

Before proceeding to the next section and detailed cal-
culations of the resulting electronic structure, it is worth
noting the high- and low-temperature limiting predictions
of this model. At low temperatures, where most of the
hydrogen bonds are unbroken, rotations are forbidden, so
the electronic structure and the size of the gap are approx-
imately equal to those of the perfect chain. Well above
the transition, however, most of the hydrogen bonds are
broken and the chain undergoes random rotations about
single bonds. In this limit, the simplest approximation to
the electronic structure possible (the so-called virtual-
crystal approximation ' ) would come from replacing
the random values for the hopping integrals,
Vi($)= Vicosg, by their average value:

vr/2

Vi cos P = V& (2/vr) f cosP d P = (2/vr) Vi .

This approximation is equivalent to postulating a chain
with a periodic rotation of P,rr=arccos(2/m. ) on every
monomer. [Note that P,r~P=n/4 since cos(P)&cosP. ]
We see that the "wormlike chain" of Ref. 11 represents, in
this sense, a zeroth-order approximation to a more realis-
tic, disordered system because all fluctuations in the dis-
tribution of rotations have been neglected.

(p)+&1—p&=1,
where (p) is the fraction of broken and (1—p) of un-
broken bonds. Thus the probabilities Pn are correctly
normalized (rather than the P„) and we can define the
average cluster length as
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FIG. 5. Conformational statistical mechanics of substituted

polydiacetylenes. The top graph shows the fraction of broken

hydrogen bonds, (p, ), and the bottom graph the average length,

(1), of rodlike segments of the polymer, both vs temperature.

In both graphs the solid curve is calculated for a side-chain en-

tropy of S,h/k =6.6(=21n3 ), corresponding to two side chains,

each with three dihedral angles restricted to being in one of
three rotational isomeric states. The dashed curves are for

S,h/k =4, corresponding to weaker short-range order. The

value of the hydrogen bond energy, Fb, is chosen so that the

transition temperature is T, =330 K.

III. ELECTRONIC STRUCTURE IN THE PRESENCE
OF DISORDER

A. general considerations

Before embarking on the detailed electronic structure
calculations, it is perhaps worthwhile to make a few com-
ments on the nature of disorder as introduced by the con-
formational motion. Quite generally, since rotations
around carbon-carbon single bonds affect the hopping ele-

The electronic structure in this approximate limit is
trivially solved, since we again have a periodic system.
The resulting density of states, Fig. 6, shows that the ab-
sorption edge is indeed shifted to higher energy at high
temperatures —in accord with experimental results. The
gap has been increased due to a narrowing of the bands as
the hopping is reduced. One can also see the mixing of
the two higher energy bands as the off-plane p~ orbitals
couple to the conjugated p„system. However, the struc-
ture of the lower-energy band involved in optical process-
es remains unchanged since all but the lowest-order ef-
fects of disorder have been completely ignored. In the
next section we illustrate how a more realistic view of dis-
order can lead to changes in the band structure as well.

I

0 1 2 3 4 5 6
Energy (eV)

FIG. 6. Density of states in the virtual crystal approxima-
tion, assuming random rotations on all monomers ( T g~T, ).
The lowest energy band remains largely unchanged from its ap-
pearance in the perfect chain, although its bandwidth is reduced
(see Fig. 2). The two higher energy bands are mixed, however.
The plot was done at finite energy resolution [rl =0.01 eV in Eq.
(3.17)] in order to facilitate comparison with later calculations.
For g =0, the dip at 4.6 eV becomes a genuine gap. In this and
subsequent figures we show only the results for positive energies
since the density of states is symmetric with respect to E =0.

ments, rotations induce off-diagonal disorder. We can be
more specific, however. At temperatures we11 above the
transition, where the chain is in the coiled state, an un-
correlated, continuous distribution of disorder is present
due to the random rotations on every monomer. In the
intermediate temperature range, close to the transition, an
additional kind of disorder results from the distribution of
extended and coiled segments of the chain. Because of the
cooperativity of hydrogen-bond breaking (Sec. II), this
further binary disorder is characterized by a degree of
short-range order.

Our general objective, then, is to answer the question of
what qualitatively new effects can be caused by the dif-
ferent types of disorder present. In particular, since we
are interested in optical and vibrational properties, the
first thing we should consider is the change in the struc-
ture of the density of states that results from disorder. In
order to give a physical interpretation to these new struc-
tures we would like to associate characteristic length
scales to the corresponding wave functions. Accordingly,
we shall also calculate the localization length as a func-
tion of energy and discuss how it is related to the spatial
extent of the wave functions.

The problem of calculating the electronic structure in
the presence of such complicated types of disorder is quite
a formidable one, so that a number of rather restrictive
simplifications are necessary in order to make the problem
accessible to current theoretical methods. In what follows
we shall describe these approximations and briefly discuss
their individual relevance. We have already mentioned
that the conformational motion of the chain is sufficiently
slow on the time scale for electronic processes that we can
consider the chain as static when evaluating the electronic
structure. Because of the bulkiness of side chains and the
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finite viscosity of the solvent, it appears that this approxi-
mation is realistic. Another simplification will be to ig-
nore both the changes in dimerization (bond length) and
the presence of longitudinal phonons, both of which
should be relatively unimportant, since the corresponding
changes in the chain geometry are much less effective in
perturbing the electronic structure than conformational
ones.

A more serious limitation, though, is introduced by
treating the electronic system in the independent-electron
approximation, ignoring the effects of electron-electron
correlations. Even with no disorder this formulation can
lead to erroneous predictions for the symmetries of excit-
ed states and the corresponding transition probabilities, as
is well established for small conjugated molecules.
However, there are indications that these effects are less
pronounced in long conjugated polymers. ' Experimental
optical spectra have, over the years, been relatively suc-
cessfully interpreted (at least on the qualitative level) us-

ing independent-electron models. Moreover, recent stud-
ies on doped conjugated polymers such as polyacetylene
have shown that the predictions of the existence of soli-
tonlike excitations (for example) are not qualitatively
changed when the correlation effects are explicitly includ-
d 42

The interplay between electron-electron correlations and
disorder, on the other hand, has recently become a focus
of increased interest, in relation to phenomena such as the
fractional quantum Hall effect and the electron glass.
This interesting subject is still in its infancy, in that the
current level of understanding of such effects is nowhere
near that of disordered systems with noninteracting elec-
trons. We shall comment on possible implications of the
interplay of correlations and disorder in conjugated poly-
mers in the concluding section of this paper; for the time
being we limit our attention to the noninteracting electron
picture, since the inclusion of correlations clearly deserves
to be the object of a separate study. In this framework,
we use the simple tight-binding model, a model which
has been widely used to investigate the effects of disorder
on various systems. Because of its frequent use, a number
of theoretical approaches for studying disordered tight-
binding models have been developed and tested. Let us
now briefly consider the applicability of some of those
methods to the study of disordered polydiacetylenes.

The simplest approach, of course, is to do perturbation
theory in the strength of disorder. To analyze strongly
disordered systems, where perturbation theory fails, vari-
ous effective medium theories such as the virtual-crystal
approximation (VCA), average- T-matrix approximation
(ATA), and the coherent-potential approximation (CPA),
have been devised. ' Although these methods have met
with considerable success in application to higher-
dimensional systems, they fail to reproduce the details of
complicated densities of states in one dimension. %'orse
still, these theories are unable to account for the presence
of localization. ' Fortunately, new calculational
schemes for one-dimensional systems have been developed
recently, combining the ideas of effective medium theories
and real-space renormalization-group (RG) methods.
The new methods give qualitatively different results from

effective medium theories. In particular, the Green's
functions obtained from these methods have the strongly
singular form characteristic of disordered one-
dimensional systems. The resulting densities of states and
localization lengths also show very good qualitative agree-
ment with numerical results. By virtue of the nature of
the technique, renormalized counterparts of all the effec-
tive medium theories exist, ' but it has been dernon-
strated empirically that the best results are obtained using
the renormalized average-T-matrix method (RATM).
In the rest of this section we shall apply RATM to study
the effects of disorder in polydiacetylene.

B. Density of states

The RCi methods that we shall use have been developed
for simple tight-binding chains with site disorder. In our
case, bond disorder is present and the chain has a some-
what more complicated structure, with more than one or-
bital on some sites. The decimation procedure therefore
has to be carried out in a slightly different fashion. For
completeness, we shall briefly review the basic ideas of
RATM, and describe how it can be applied to polydi-
acetylene, but the details of the derivation are given in the
Appendix.

In the tight-binding model, the electronic Hamiltonian
is given by

H= gt;, ~i)(j ~, (3.1)
l+J

where
~
i ) is the state vector corresponding to the ith or-

bital, and the t;J are the corresponding hopping elements,
which are functions of the chain conformation. The way
the orbitals are indexed is shown in Fig. 7(a). Because of
the cylindrical symmetry of the triple bond only the rela-
tiue orientation of the p„orbitals at the ends of each
monomer is important, so that we can consider the rota-
tion to be performed on only one single bond in each
monomer. Thus, if we allow only nearest-neighbor hop-
pings, we have: t6n+] 6n+2= V]s]n{It»„, t6 +] 6 +3= V]COS'(t'n» t6n+2, 6n+5 t6n+3, 6n+4 = V3» t6n+4, 6n+6= V], t6n, 6n+] =t6n+6, 6(n+])+] = V2, fOr n = 1,2, . . . With
t,J

——tJ,- and all other hopping elements equal to zero. Here
n is the index of the nth monomer (unit cell), which has
six orbitals in it, and {)I»n is the single-bond rotational angle
on the nth monomer.

The basic idea of RG methods is to treat scatterings on
all length scales on the same footing. The first step, de-
cimation, consists of projecting the Green s function
G =(z H) ' on a subspace sp—anned by orbitals at alter-
nating unit cells. The average over occupation of de-
cimated sites is then performed using some effective-
rnedium theory, so that the Green's function on the new
length scale has the same form as on the old one. In this
way, renormalization-group equations are obtained relat-
ing Green's function elements on different length scales.
These equations are iterated until the fixed point is
reached —where the Green*s function can be simply calcu-
lated.

%"hen the RG methods are applied to polydiacetylene it
is necessary to decimate over alternating monomers, as
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shown in Fig. 7(b), in order to preserve the structure of
the chain on the new length scale. To average over con-
figurations of decimated monomers, we split the Hamil-
tonian in the following way:

6n+1 6n+3 6n+4

+5

6n+6

H =H+5H,
where 6H consists of double bond hoppings:

5H = +5H„,

5H„= V2[16n +6) (6n +71

+ 16n +7) (6n +61]
and H reflects isolated, but disordered, monomers:

H= gH„,
n

6

g &6, +;,6, +, 16n+i)(6n+J
I

(3.2)

(3.3)

(3.4)

--C

(a)

n+1

(b)

n+2

Following Ref. 32, we then consider 6H as a perturba-
tion and consider the T matrices corresponding to 6H„:

T„' '=5H„+5H„G 5H„+ =5H„(1—G 5H„)

(3.5)

n+1

(c)

Il+2

The quantity G(z)=(z —K) ' is the "unperturbed"
Green s function. Since H is block diagonal in 6)&6 ma-
trices, G also has this form, so that the corresponding ma-
trix elements can be easily calculated. Note that, although
6H„does not depend on any rotational angle, T„' ' does
because G itself is a function of conformation. The result
for T„' ' is

FICz. 7. Labeling of orbitals in polydiacetylene monomer n

(unit cell n) is shown in (a). When the decimation is performed,
the Green's function is projected onto alternating monomers, as
illustrated by the blackened sites in (b); the averaging is then
done over the decimated (white) sites. A simplified electronic
structure model (and the appropriate decimation scheme) is
displayed in (c). This latter model is used only for localization
length calculations.

T„' '(a„,a„+~) =a' (a„,a„+~) 16n +6) (6n +61 +O' I(a„,a„+q) 16n +6) (6n +71
+b' '(a„+~,a„) 16n +7)(6n +61+a' '(a„+~,a„) 16n +7)(6n +71 (3.6)

where a stands for both the rotational angle P and the
hydrogen-bond-indicating variable p, and

G=G+G g T„"' G
n

+G gT„"' G g T"' G+ (3.7)

&' '(a, p) = V2Gd(p)I[1 —V3Gd(a)Gd(p)],
b' '(a, p) = V~/[1 —V3Gd(a)Gd(p)] .

The quantity Gd(a„) is a diagonal matrix element of the
unperturbed Green's function

rn (&n)

The decimation procedure then consists of projecting G
onto alternating monomers ( n even):

evenG even

Gd(a„)—:(6n
I

G 16n ) = (6n +61 G 16n +6)
—z (z V3 )(z —V3 —V( )

2 2 2 2 2

&& [z (z —V~ —V3) V]V3cosp„]

where

--= g X 12n+i)(2n+i
I

n i=1

Given the T matrices, the full Green's function can be

expressed as

are the appropriate projectors. In order to cast the
Green's function on the new length scale into the same
form as the old one, we can write
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G'= G'+ G' g T,'„G'
n

+G' g T2„G' g T2~ G',
n m (~n)

(3.8)

where G'=P,„,„GP,„,„ is the unperturbed Green's func-

tion on the new scale and T2n is the T matrix correspond-
ing to the perturbation 6H2n ~~2n+~~2n+1 ~

The approximate averaging over the conformation of
decimated monomers can be performed, within RATM,
by replacing the average of products of T2n matrices by
products of averages, leading to the desired Green's func-
tion on the new scale

G'''=(G')~d=-6'"+G ' g T2'„' G"'+6'" g T~'„' G"' g T~ ' G I'~+
n n m (&n)

L

(3.9)

with G"'=G and T2'„' (Tz„),——dd. Hence it is the relationship between the matrix elements of T matrices on the old
and new length scales which defines the RG equations. The detailed derivations are given in the Appendix, but the final
result is that

with

a' +"(a,y)= gP' '(a, P, y)[a' '(a, i3)+GH(13)a' '(P, y)b' '(a, P)b' '(P, a)/d' (a,P,y)],
P

b' + "(a,y)= gP' '(a, i3, y)GH(P)b'~'(a, ,P)b'+'(P, y)/d'~I(a, 13,y),
P

(3.10a)

'(&,P, y ) = I —G (13)a ' '(P,a )a ' '(P, y ),
GH(P) = (6n + 6

~

G
~

6n + 1 ) = (6n + 1
~

G
~

6n +6)
V3 V] (2 V3 )cos p&l[~'(z' V~ —V,'—)' —V, V3cos p&]

Recall that p stands for the conformational state [p&, /&I, so that

X=—X J, dip
P pp

(3.10b)

In these equations, use is made of the probability distribution P' '(a, P, y), the probability (at iteration step N) of a
monomer having a conformation P if the neighboring monomers have conformations a and y, respectively:

P' '(a, P, y)=[Z' '(a, y)] 'exp[K' '(p +pr)pp+h' Ipp][(1 pp)o(Pp)+(—2/~)pp],
n./2 (3.11)

Z' '(a, y)= g dP~PI '(a, /3, y), K' '—:S,h/k, hI '= Eb/kT . —
0

Pp
The reason we have to specify step N is that when the decimation is performed, this probability distribution also gets re-
normalized. It preserves the same form on every length scale, but the values of K and h are changed according to the
RG equations

K' +"=lnIcosh(K' '+ —,h' ')cosh( —,h' ')/cosh [—(K' '+h' ')])

h' +"=h' I+K' '+21n[cosh[ —,
' (K' '+h ')]/cosh( —,

' h' ']I
(3.12)

These RG equations are easily derived using the standard
decimation procedure for the one-dimensional Ising
model. 45

This entire set of renormalization-group equations, Eqs.
(3.10)—(3.12), can be iterated until the fixed point is
reached. There b' '(a, P) =0, so the resulting T matrices
are diagonal. Moreover, it is easy to see that
a' '(a, ii)=a' '(a) (independent of P), which means that
the T matrices can be regarded as corresponding to diago-
nal perturbations at the end sites of each monomer. At
the fixed point, therefore, the system consists of discon-
nected monomers with an effective Hamiltonian

where the sum is over the undecimated (remaining) mono-
mers and

~,'"'=HJ(o, )+e'(~, )[
~
6j +1)(6j +1

~

+
~
6j+6&(~i +6

I ],
E'(a)=a' '(a)/[1+a' '(a)Gd(a)] .

(3.14)

This result follows from the fact that a diagonal perturba-
tion c,'(a)

~

a ) (a
~

has a corresponding T matrix:

T, = [E'(a)/[1 —E'(a)Gd(a)] I ~

a) (a
~

H,rr= QHJ
J

(3.13) =aI I(a)
)
a) (a

)
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Since our effective Hamiltonian is block diagonal, the
fixed-point Green's function G™)can be calculated easi-
ly. The averages over conformations of remaining mono-
mers can be performed independently, since K' '=0, so
that the probability distribution is uncorrelated at the

Tr(G)=QP' '(P)TrG' '(P),
P

where

(3.15)

fixed point. The resulting expression for the trace of the
average Green's function (per monomer) is

Tr G' '(P) =(2z[z +2z[z —e'(P)] —V~ —V3I Iz[z —E'(P)] —V~ —[z —e'(P)]V3/zI)

X(z'[z[z —e'(P)] —VI —[z —E'(P)] V3/z ) VI V3cos (5p) (3.16)

which is precisely what we need to obtain the density of
states per monomer:

p(E) = lim [(—I/m)lm(Tr(G(E+i ))) )] . (3.17)
I~0+

With the aid of this formula we have calculated the vr

electron density of states for our model of polydiacetylene.
The empirical values for V&, Vz, and V3 quoted in Sec. II
were used and the results evaluated with g =0.01 eV (de-
fining the energy resolution) in order to make the plotting
possible. We have also chosen the values of K and h re-
ferred to earlier, S,h/k =6.6 and Eb ——6.6(330 K), so that
the transition takes place at T, =330 K. In Fig. 8 the
density of states (DOS) per monomer is presented at
T = T, . By comparison with the virtual-crystal predic-
tion, Fig. 6, we observe that a considerable amount of new
structure is obtained when the nontrivial effects of disor-
der are included. To understand the origin of this struc-
ture we calculated the DOS for di fferent temperatures
across the transition. Figure 9 shows the DOS in the en-
ergy range which is important for optical transitions (near
the optical gap).

The most striking feature of Fig. 9 is the presence of an
isosbestic point, in agreement with experiment, ' but a

l

closer look reveals interesting facets. At low tempera-
tures, below the transition, the DOS is similar to the one
for the perfect chain, since most of the hydrogen bonds
are unbroken and the rotations are unlikely. At inter-
mediate temperatures, T—T„new structure appears.
The peaks at 1.3—1.S eV correspond to states localized in
coi 1ed parts of the chain since they persist at T» T,
where the whole chain is essentially coiled. However, the
new structure in the range 1.1—1.2S eV is present only at
intermediate temperatures and thus can be interpreted as
due to scattering from the interfaces between extended and
coiled parts of the chain. This structure must therefore be
caused by the additional binary disorder present at inter-
mediate temperatures If this idea is correct, these peaks
should be very sensitive to changes in the amount of
short-range order. To verify &his, we calculated the DOS
at T = T„but with a different value of IC (short-range or-
der). In Fig. 10 the DOS for T=T, and K=6.6 and 4.0
are plotted. We see that at K =4 (less short-range order,
more binary disorder) the structure from 1.1—1.25 eV is
enhanced, as expected. On the other hand, the structure
from 1.3—1.S eV is not significantly affected since it cor-
responds to the uncorrelated, continuous disorder which is
due to rotations within coiled segments.
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FIG. 8. Density of states calculated from RATM at
T =T, =330 K. The conformational disorder clearly introduces
a significant amount of new structure. However, even in the
presence of disorder the density of states should exhibit gaps
below 1.05 eV and from 3.3 to 4.06 eV. The apparent band tails
are a result of the finite energy resolution used in the calculation
(q =0 01 eV). For th1s f1gure &,},/~ =6 6.

FEG. 9. RATM density of states over the optically relevant
energy range for temperatures below, at, and above the confor-
mational transition. The parameters used are the same as those
in Fig. 8. Note the presence of an isobestic point at —1.27 eV.
and the existence of some features (such as those in the
1.1—1.25-eV range) which only exist at intermediate tempera-
tures.
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$1 perfect chain and when the rotations are present:
V&

——0.88 eV, V2 ——1.93 eV. In this streamlined model, as
with the more accurate one, the RATM can be applied to
calculate the DOS. The RG equations have the same
form as before, the only difference being that the "unper-
turbed" part of the Hamiltonian H now has a simpler
form (i.e., it consists of single-bond hoppings only). Ac-
cordingly, the matrix elements of G are now

GD(a) =z/[z —Vi cos P~],
GH(&)= V /[z' —V', cos'P ] .

At the fixed point,

0.0
1 1.2 1.4 1.6

Energy (eV)

FIG. 10. Changes in the RATM density of states as the
amount of short-range order is varied. The curves are for
T=T, =330 K with the two different values of side-chain en-

tropy referred to in Fig. 5: the dashed curve is for S,h/k =6.6
(as in Figs. 8 and 9) and the solid curve is for S,h/k =4.0 (less

short-range order, more binary disorder). Increasing disorder
apparently enhances features in the 1.1—1.25-eV range.

C. Localization length

As we alluded to in the Introduction, there is an exact
relationship between the localization length and the densi-
ty of states of one-dimensional systems,

A(E)= f p(c)ln
I
E —E

I
ds —ln

I
V

I
(3.18)

Here A, is the inverse localization length, p the density of
states, and V is the geometrical mean of the off-diagonal
terms in the Hamiltonian. However, because of the ex-
treme sensitivity of k(e) to the local, singular structure of
the DOS, conventional effective-medium theories, which
give smooth, structureless spectra, cannot be used success-
fully in calculations of the localization length. On the
other hand, RG methods such as RATM do give highly
structured and singular spectra and therefore, as recently
demonstrated, give results for A,(e) in excellent agreement
with simulations.

Unfortunately, the above formula has been derived for
simple chains with only one orbital per site, by making ex-
plicit use of the tridiagonal form of the corresponding
Hamiltonian matrix. In order to be able to apply this
method directly to polydiacetylene, we make a further
simplification which should not significantly affect the re-
sult in the energy range of interest. Because we are in-
terested in optical and vibrational properties, we are most-
ly concerned with the structure of the low-energy band
(near the optical gap). Therefore we can use a simpler
model for the electronic structure which will nevertheless
accurately reproduce the details of this band. This model
is obtained by replacing the single-triple-single unit by an
effective single bond and keeping only two orbitals per
monomer [Fig. 7(c)]. Again, only rotations around single
bonds are allowed and the same probability distribution
for disorder is used. The effective values for the single-
bond and double-bond hopping elements are chosen so
that the size of the gap has the correct values, both for a

Tr 6' '=2[z —E'(a)]/I [z —E'(a)) —V, cos P ]
with E'(a) the same as before.

The resulting structure of the low-energy band is well
reproduced, although the other bands are not present.
Since A, (E) depends essentially on the local structure of
the DOS, we expect that the results obtained from this
model will be reliable in a limited energy range. We will
therefore make use of Eq. (3.18) without further com-
ment. However, in order to apply Eq. (3.18) we need the
geometric mean of hopping elements, which for this case
1S

where (p ) is the fraction of broken bonds. Using RATM
results for the DOS, we can then do the numerical in-
tegration to obtain A. as a function of energy. In Fig. 11
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FIG. 11. Localization length k ' and inverse localization
length A, (both in units of monomers) as calculated from the
RATM density of states with the parameters used in Figs. 8 and
9. The top graph illustrates how the localization length de-
creases as temperature increases and the bottom graph (for
which T=T, =330 K) shows how the localization length in-
creases as energy increases. As one can see by comparison with
Fig. 9, the structure of the density of states is also reflected in
the localization length: peaks and shoulders in the latter corre-
spond to peaks in the former.
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we plot 1, at three different temperatures, and show the lo-
calization length itself, k ', at T = T, .

Clearly our results indicate that the localization length
generally decreases with temperature, as expected, since
the amount of disorder is being increased. The depen-
dence of the localization length on energy reflects, to
some extent, the structure of the DOS: Peaks in the DOS
correspond to larger localization lengths (compare Figs. 9
and 11). On the average, though, the localization length
increases with increasing energy —which seems paradoxi-
cal in view of the fact that higher energy features corre-
spond to states localized in the coiled segments, where the
disorder is the strongest. We suggest, in agreement with
Ref. 32, that the reason for such behavior is that when
correlated disorder is present, one length scale is not
enough to characterize the form of the waue functions.
States in the lower energy range, 1.0—1.3 eV, correspond
to extended (rodlike) segments of the chain, as sketched in
Fig. 12(a). At these energies the wave function has appre-
ciable amplitude over length scales of order ( i ), the aver-
age length of extended segments (calculated in Sec. II).
The localization length, on the other hand, only measures
the exponential decay as one enters the coiled segments.
Therefore the typical "size" of the state in this energy in-
terval is of the order of (I ) »A, '. The situation is quite
the opposite for the states of higher energies, 1.3—1.5 eV,
corresponding to states localized in coiled segments.
There, the disorder is uncorrelated and the size of the
state is measured by the localization length [Fig. 12(b)], so
that in this energy interval the typical extent of the wave
function increases with energy.

IV. DISCUSSION

What we have tried to demonstrate in this paper is that
conformational disorder can be an important factor in
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FIG. 12. Schematic representation of

~ g ~

for electronic
wave functions, (a) corresponding to extended segments of the
polymer and (b) localized in the coiled part of the polymer. In
the second situation, the localization length k ' suffices to
characterize the state, but in the first an additional length scale
is necessary —the average length of rodlike segments, (l ).

determining the electronic structure of conjugated poly-
mers. We started with a simple model for disorder which
was nonetheless sufficiently detailed to contain both un-
correlated, continuous rotations and binary disorder with
strong short-range order. Our results show that such dis-
order, by itself, is enough to account for the existence of
specific features in the density of states. Thus one does
not need to invoke conformational defects with particular
geometries. Moreover, the existence of disorder in conju-
gated polymers is therefore expected to have nontrivial ef-
fects not only on transport but also on optical and vibra-
tional properties. We also want to emphasize the idea
that two length scales are needed to characterize the form
of the electronic wave functions in these systems: the lo-
calization length and the average length of the rodlike
segments of the chain. Traditionally, the concept of con. -

jugation length has been used to interpret a variety of
specific features in experimental spectra. Since the size
of the optical gap decreases with the length of the conju-
gated region, one typically associates higher energy ab-
sorptions with shorter conjugation lengths. However, we
have shown that the localization length, which is the only
relevant length scale for uncorrelated disorder (in the
coiled phase), actually increases with energy. While this
result is not all that surprising, since the localization is in
general stronger in the band tails, it shows the inadequa-
cy of the conjugation-length concept, especially in the
high-temperature (coiled) state.

One still has to be reasonably cautious in comparing
our results directly to experiment because we have calcu-
lated only densities of states and localization lengths. To
predict optical and vibrational properties one also has to
calculate the appropriate transition probabilities, which
themselves can be affected by disorder. It would be in-
teresting to see if the methods of this paper could be used
to pursue this problem as well. Indeed, it seems likely
that the same RG techniques used here could be general-
ized enough to permit the calculation of the average of the
two-particle Green's functions needed for quantities such
as the optical-absorption coefficient.

Another interesting direction for future work would be
to consider the role of electron-electron correlation in
presence of conformational disorder. We have already
mentioned that correlations can have nontrivial effects
even for perfect systems. However, upon conformational
changes it is possible that such effects can become more
pronounced. Even when disorder is ignored, the average
value of the hopping integral (bandwidth) is reduced when
the chain goes into a coiled state, and the importance of
correlation is enhanced, in the Hubbard-Mott sense.
Furthermore, the presence of disorder itself can lead to an
additional increase in the effective electron-electron in-
teractions. This behavior has been reported in other
disordered systems; intuitively it follows from the fact
that in presence of disorder the motion of the electrons is
diffusive, so that two electrons brought together spend
more time within the interaction range. If this idea is
correct, one can speculate on the resulting change in effec-
tive rotational potentials. We can imagine that, as some
random rotations are introduced, the randomness
strengthens the electronic correlations. This enhanced
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correlation, in turn, decreases the effective magnitude of
the (single-bond) hopping integrals and thus decreases ro-
tational barriers. This feedback effect will allow still
more randomness, possibly even driving a conformation
transition in a narrow temperature range.

We should note that there is one more aspect of the
behavior of polydiacetylenes in solution that has not been
considered in our work, but which clearly deserves more
attention. Extremely long relaxation times (days and
months) have been observed' as the solutions are heated
up through the transition and then cooled down. As
demonstrated by optical and Raman measurements, the
system does not return to its original low-temperature
(rodlike) state. A fraction of the chain remains quenched
in the coiled form in a way reminiscent of glassy behavior.
Presumably, arguments about the origin of such behavior
could be given within the framework of our model, in re-
lation to the difficulty for the long and flexible side chains
to realign sufficiently to remake the hydrogen bonds that
stabilize the rodlike state. However, the situation is far
from clear and further investigations are definitely needed
in order to understand the dynamical behavior of polydi-
acetylenes. It is interesting to note though, that it is pre-
cisely this glassy behavior which makes possible the
preparation of polydiacetylene film with different
amounts of quenched-in disorder (depending on the
thermal preparation of solutions from which the films are
made). By performing optical and Raman measurements
at low temperatures on such films, one may be able to ob-
serve the effects of disorder on the electronic structure
more directly, allowing a more direct comparison with
our theory.
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APPENDIX

In this appendix we derive the relation between T-
matrix elements on the old and new length scale which

comprises our RG equations, Eq. (3.10). The T matrix on
the new length scale is defined as

Tp„(a,y) = (,P,„,„T2'„(a,P, y)P,„,„)tt, (A 1)

where T2'„(a,P, y) is the T matrix corresponding to the
perturbation

5H2„=5H2„+5H2„+ ) .

Accordingly, the integral equation for T2'„ is

Tp„——5H2„+5H 2„GT2„

=5H' „2(1+GT2'„)

= (5Hp„+5H2„+ ) )(1+GT2„)=—Q2„+Q2„+, ,

where

(A2)

(A3)

Q;:—5H;(1+GT2'„); i =2n, 2n+1 . (A4)

We wish to express Q; in terms of "old" T matrices. In
(A4) we replace T2'„by Q2„+Q2„+~ and get

Q2n =5Hznl 1+«Q2n+ Q2n+ i ) ]

Q2 +1 5~2 +1[ +G(Q2 +Q2 +1)]
We can rewrite these equations as

Q2„——(1 5Hp„G—) '5H2„(1+GQ„+))

—:T2 (1+GQ2„+t ),
Q2n + 1 ( 1 5~2n + 1 G ) 5H2ll( 1 +GQ2n )

= T „2]+(1 +GQ 2) .

(A5)

(A6)

Now, we can solve these two (matrix) equations for Q2„
and Qz„+t ..

Q2„——( 1 —T2„GT2„+,G ) '( T2„+T2„GT2„+t ),
(A7)

Q2n+t (1 T2n+I GT2nG) (T,„+,+ T,„+,G T,„) .

Since T2'„—=Q2„+Q2„+~, we have expressed Tq'„ in terms
of T2„, T&„+&, and G. Using the block-diagonal form of
6, and the fact that Tz„and T2„+&

are nonzero only in
appropriate two-dimensional subspaces, it is now easy to
calculate matrix elements of T2„ in terms of elements of
T2„, T2„+~, and 6 from the above expression. The result
of this lengthy but straightforward algebra are the RG
equations, Eq. (3.10).
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