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A new model is presented for the structure of the pseudobinary alloys of the III-V semiconductors
GaAs and GaSb with the group IV semiconductor germanium. This model is based upon the ran-
dom arrival of the constituent atoms at the growing I 100I surface. The main postulates are that
Ga—Ga and As—As or Sb—Sb nearest-neighbor pairs are prohibited and that each incorporated
Ga atom acquires a nearest-neighbor As (or Sb) atom from the excess of the group V constituent
that is present during growth. The model has been implemented by Monte Carlo simulation and
analyzed by analytic approximations. The results are in good agreement with the measured energy

gap of (GaAs)l „Ge2„and with the results of x-ray, Raman, and extended x-ray-absorption fine-
structure determinations of the order parameter and the nearest-neighbor environments in
(GaSb)~ „Gez„. We also present calculations of the, as yet unreported, energy gap of the latter
compound.

I. INTRODUCTION

Thin films of pseudobinary alloys of III-V compound
semiconductors with germanium have been made by
Greene and co-workers, ' who used a modified sputter-
ing technique and by others using metalorganic chemical-
vapor deposition (MOCVD) or molecular-beam epitaxy
(MBE). Here we will be concerned with the alloys
(GaAs)~ „CJez„and (GaSb)& „Gez„, both of which are
metastable. From a theoretical standpoint the alloy of Ge
with GaAs is the more attractive because its components
have almost identical lattice constants and their bonding
should be quite similar. Also its optical energy gap is
known to be in a range (0.5—1.5 eV) that is potentially
useful for optoelectronic devices, although no such de-
vice has yet been reported. However, the available experi-
mental data for (GaAs)

& „Gez„are far from adequate for
a complete characterization and we must supplement
them with measurements of the related (GaSb)t „Gez„.

An understanding of the factors that lead to the ob-
served deep bowing of the energy-gap —versus —com-
position curve of (GaAs) t „Gez„ is particularly desirable.
A further feature of interest is the transition between the
zinc-blende and diamond symmetries of the two constitu-
ents that perforce occurs at some composition. Here one
would like to understand the composition dependence of
the ordering of the diamond lattice into the two inter-
penetrating fcc sublattices that comprise the zinc-blende
structure. In particular, any satisfactory theory of the al-

loys must predict correctly the critical mole fraction of
Ge, x„above which this ordering vanishes. Finally we
need to consider the statistics of the nearest-neighbor
(NN) relationships. These are important because, to the
extent that a tight-binding approximation is valid, they
dominate the distribution of electronic energy states, and
hence the energy gap, to the virtual exclusion of the ef-
fects of longer-range ordering.

Calculations of the structure and the direct energy gap
of (GaAs)

& „Gez„were made by Newman and Dow7
(ND) who applied a three-component spin model to the
NN interactions. This led to a composition-dependent or-
dering in response to a postulated local minimum in the
free energy of the metastable alloy. Lacking a calculation
for x„ they derived a composition dependence of the or-
der from the speculation that x, is also associated with
the minimum energy gap, i.e., that x, =0.3. The virtual-
crystal approximation (VCA) was then used to obtain a
composition dependence of the energy gap that was in fair
agreement with the rather scattered experimental data.
(Later studies extended the calculations to similar alloys
for which there are no experimental data. ) However, sub-
sequent work by Holloway and Davis, ' showed that
these calculations were erroneous because the VCA is not
valid for (GaAs)& „Gez„. In fact, application of the more
accurate Haydock recursion method to clusters with the
same NN statistics as the mean-field theory used by ND
gave zero energy gap for midrange compositions, rather
than the observed value of about 0.5 eV. This difference
arises because the VCA, from its nature as an average of
the components, is inherently incapable of handling
strong alloy scattering. This arises in the ND model from
large concentrations of As—As NN pairs. In particular,
the model implies complete randomness of Ga and As site
occupancy when x & x, . (An equal concentration of
Ga—Ga NN pairs is also implied, but these have less ef-
fect on the energy gap. ) This leads to VCA-derived ener-
gies for the lowest conduction band with errors that are
larger than the energy gap of the alloy. "

From comparison of our calculations with experimental
values of the direct energy gap we concluded that Ga—Ga
and As—As NN pairs do not occur in (GaAs)& „Gez„.
(Even moderate concentrations of As—As NN pairs
caused the gap to vanish. A refinement of the ND model
by Koiller et al. ' decreases the As—As NN-pair concen-
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tration, but not by enough to remove this difficulty. ) We
then incorporated this conclusion into a statistical model
of the alloy structure that has since become known as the
percolation model. This did not involve a cooperative or-
dering phenomenon of the kind proposed by ND. Instead
the lattice sites were occupied randomly, subject to the re-
strictions that wrong NN pairs were prohibited and that
the GaAs component occurred as Ga—As NN pairs.
(Most subsequent theory for the alloy, including that
presented here, resembles the percolation model by postu-
lating random site occupancy subject to some NN restric-
tions. ) Our percolation model gave an energy gap that
was in acceptable agreement with experiment and it also
predicted a rather large critical composition, x, =0.75.
(Note that this was an absolute prediction because, unlike
ND, the percolation model does not contain any adjust-
able parameters. )

Recently Shah et al. ' used x-ray diffraction to obtain
the first direct evidence of an order-disorder transition in
(GaSb)& „Gez„. The (002) reflection, which is allowed in
the zinc-blende structure, but forbidden in the diamond
lattice, was found to disappear as x increased from zero to
0.3. This implies that, at larger Ge contents, each fcc sub-
lattice of the zinc-blende structure contains equal concen-
trations of Ga and Sb atoms, corresponding to diamond
symmetry. (The interpretation is subject to the limitation
that x-ray measurements average over distances of the or-
der of microns, so that ordering on a smaller scale would
not be detected. ) The observed value of x, =0.3 is much
smaller than that predicted by our percolation model, but
it agrees with the value inferred for (GaAs)& „Gez„by
ND. Less direct evidence for a phase transition can also
be seen in the Raman spectra of (GaSb)

& „Gez„.'
[Similar x-ray measurements of (GaAs), „Gez„are diffi-
cult because the constituent atoms have almost equal
scattering factors. ' ]

Later extended x-ray-absorption fine-structure
(EXAFS) measurements of (GaSb) ~ „Gez„by Stern
et al. ' showed an absence of Ga NN's around the Ga
atoms. This agrees with the absence of wrong NN pairs
in our percolation model. [As with x-ray experiments, the
small differences between the constituent atoms make
EXAFS difficult with (GaAs)& Gez„.] Interpretation of
the Raman sPectra of (GaSb)& „Gez„ is subject to some
uncertainty, but again there is no evidence for the Ga-
Ga and Sb—-Sb NN pairs that are predicted by the ND
theory. ' Unfortunately, despite the theoretical impor-
tance of (GaSb)& „Gez„, we lack information about its
energy gap.

In the next round of refinement Kim and Stern (KS)
proposed a model in which growth of (GaAs) t „Gez„was
simulated layer by layer. Site occupancy was subject to
prohibition of Ga—Ga and As—As NN pairs. This pro-
cess resembled our implementation of the percolation
model, ' but new ground was broken by recognizing that
the sequence in which the lattice sites are filled defines a
direction for simulated growth. Pairing of Ga and As
atoms was not imposed and, consequently, stoichiometry
was achieved only by assuming identical behavior of Ga
and As. (Under real growth conditions these constituents
have significantly different volatilities and concentra-

tions. ) Nevertheless, the calculated x, =0.26 for (100)
growth is remarkably close to the experimental value for
(GaSb) ~ „Gez„. (As in the percolation model, x, is not
an adjustable parameter here. ) KS also suggested that dif-
ferent growth directions could give different values of x,
(from the results of a simulation of growth spherically
outward from a single atom). In contrast to the relative
success of the KS model with (100) growth, attempts to
simulate (111) growth gave unrealistic model lattices
with large concentrations of Ge atoms on alternate [111]
planes.

In the present paper we introduce a new theory for the
structure of (GaAs)

& „Gez„. This we designate the
growth model. We retain the short-range order (SRO)
that was imposed by the NN restrictions of the percola-
tion model and thereby also retain a good fit to the energy
gap. However, the long-range order (LRO) now arises
from a set of rules for adding atoms to the growing sur-
face. These rules are physically reasonable for growth of
(GaAs), „Gez„and they may also apply to growth of
(GaSb) i „Gez„.

The model has been implemented by Monte Carlo (MC)
simulation of crystal growth in the ( 100 ) direction,
which corresponds to that used experimentally for growth
of the alloys. We will show that the resulting structures
reproduce the known properties of (100) grown alloys,
including the energy gap of (GaAs)~ „Gez„and the order
parameter of (GaSb), „Gez„(with its transition at
x, =0.3). Further confidence in the realism of the
growth model arises from the insensitivity of its results to
variations in the details of its implementation. Indeed we
find that the most important results of MC simulations
are reproduced by an even simpler analytic approach that
neglects all except NN correlations.

Calculations of the energy gap of (GaAs)& „Gez„with
the statistical structure that arises from our new model
gave results similar to those from the structure defined by
our earlier percolation model. This accords with our as-
sertion that the gap is dominated by the SRO. However,
we have also investigated the refinement of our previous
recursion calculations by the inclusion of d, as well as s
and p, orbitals. This allows better fitting of the conduc-
tion bands of the pure components and it gives better
agreement with the experimental gap for the alloy, but it
does not greatly affect our previous conclusions about the
gap of this material. (Neither does it affect our con-
clusions about the consequences of the VCA-related error
in the ND calculations. Even after refinement by in-
clusion of d orbitals, the recursion method still indicates
that the lattice statistics of the ND model ~ould lead to
zero gap at compositions near the middle of the range. )
We also include here a prediction of the energy gap of
(GaSb)

~ „Gez„ that is based on the recursion method.

II. THE mOWTH MODEL

In this section we introduce a new model for
(GaAs)~ „Gez„and related alloys. This is based on the
postulate that the structure of the alloy is determined by a
stochastic growth process in which, first, As (in one form
or another) is always present in large enough excess to
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react with any free Ga on the surface and, secondly, the
substrate temperature is high enough to reevaporate any
unreacted As. These conditions appear to be consistent
with published descriptions of the growth of
(GaAs)& „Ge2„. Moreover, to the extent that excess Sb is
used at high enough growth temperatures, they may also
apply to (GaSb)& „Gez„. For convenience, the following
discussion refers specifically to Ga and As, but the argu-
ments may also be applicable to other pairs of elements
from groups III and V.

The conditions used for implementation of our model
are listed below. Several of them include optional varia-
tions that we used to test the sensitivity of the results to
details of the implementation. In subsequent discussion
we shall refer to the "simple" implementation as that
without any of the variations. Also, since we will be con-
sidering layer-by-layer growth, it will be convenient to
refer to the lattice plane whose vacant sites are being filled
randomly by Ge or Ga atoms as the "current" plane. The
corresponding just-filled and about-to-be-filled planes are
termed "preceding" and "following" planes, respectively.

(1) Epitaxial growth is initiated on a [ 100I lattice plane
of a GaAs substrate. This orientation has been chosen to
correspond to published growth conditions. (Preliminary
studies indicate that the results are strongly dependent on
substrate orientation. )

Examination of the crystal structure of pure GaAs (Fig.
1) shows that the occupancy of successive I 100 ) planes al-
ternates between all Ga atoms and all As atoms. We as-
sume that growth starts on a I100IAs plane. This is
probably realistic because in the presence of a large excess
of As [see (2) below] a I100IGa plane would be covered
by As atoms before significant alloy growth could occur.

(2) Layer-by-layer growth of the alloy is simulated by
filling vacant sites on successive lattice planes with a ran-
dom choice of either Ge or Ga atoms. Within each plane
the vacant sites are filled in random sequence. When a

FIG. 1. Unit cell of the zinc-blende structure showing alter-
nating I 100I layers of the two constituents. Note also the con-
nection of each atom to two NN's in each of the preceding and
following [ 100] planes.

Ga atom is added it reacts immediately with an As atom,
which then occupies an NN site on the following plane.
(This is the only mechanism for incorporation of As into
the alloy. ) In this procedure we neglect the possible influ-
ence of surface reconstruction.

Published descriptions of (GaAs)~ „Ge2„growth gen-
erally indicate the presence of a significant excess of As,
of which only enough is incorporated to maintain approx-
imate stoichiometry of the GaAs constituent. Our postu-
lated addition of GaAs as molecules appears to be the
simplest way to achieve this result. (Individual Ga and
As atoms may dissolve in Ge to a much smaller extent, to
act as acceptor and donor impurities, respectively. )

(3) The addition of a Ga atom is subject to the condi-
tion that it does not create either a Ga—Ga or an As—As
NN pair. (We note that Ga—Ga and As—As or Sb—Sb
NN pairs are rare in pure GaAs and GaSb and that, from
the evidence cited in Sec. I, the existence of significant
concentrations of these wrong NN's in the alloys is un-
likely. )

At each vacant site the decision to add a Ge atom is
made definitely with a predetermined probability Pz, .
The alternative decision, to add a Ga atom (with an NN
As atom on the following I100I plane) will then occur
with the complementary probability 1-P&,. However, in
this case the decision is tentative and the Ga addition is
only made after confirming that it will not give undesired
NN pairs. If addition of a Ga—As atom pair would
violate an NN restriction, a Ge atom is added instead.
(Such forced addition of Ge is similar to that encountered
in the KS model, although its consequences are nowhere
near so large here. However, it does give rise to a compo-
sition parameter, x, that differs somewhat from Po, .)

In an optional variation these NN restrictions are re-
laxed at the boundaries between GaAs clusters with the
phase and antiphase orientations (as defined in Sec. III).
This amounts to allowing a Ga (or As) atom to have an
otherwise forbidden Ga (or As) NN if it also has at least
one As (or Ga) NN. The variation avoids the forced in-
corporation of Ge at domain boundaries.

(4) A Ga atom that arrives at an unsuitable site reevap-
orates and the site is filled with a Ge atom instead. This
assumption is not entirely realistic because Ga adatoms on
the alloy surface might be expected to have significant
surface mobility and limited volatility at typical growth
temperatures (450—750'C). (Reevaporation of unwanted
Ga is also assumed by KS.) However, approximate
modeling of these effects, described next, shows that they
have negligible influence upon the results.

In a variation we allowed Ga atoms to make a random
walk across the surface in search of a suitable site. Here,
if a site was found to be unsuitable for a Ga atom it was
filled, as before, with a Ge atom. The unwanted Ga atom
was then reevaporated with a predetermined probability.
(We used an arbitrarily chosen value of 0.1.) If the Ga
atom did not reevaporate an attempt was then made to
place it on a randomly chosen adjacent site in the current
plane. From here, if the site was occupied a further
choice was made between reevaporation and a random
move, otherwise the new vacant site was checked for
suitability as if the Ga atom had arrived there by direct
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choice of the site. The process continued until the Ga
atom either reevaporated or found a suitable lattice site.

The variation approximates a situation with Ga ada-
toms that are mobile and relatively involatile, although it
is somewhat unrealistic in two ways. First, the restriction
to movement between sites on the current plane does not
allow for the possibility that the Ga atom might cross the
As atoms of the following plane to find a suitable site on
a later [ 100I Ga plane. This could lead to surface
roughening with simultaneous growth on many [ 100]
planes. Second, the filling of an unsuitable site with a Ge
atom immediately (rather than upon random arrival of a
Ge atom) reduces the extent to which such a site acts as a
source of Ga for the surrounding surface. However, we
found that the lattice statistics obtained with this first ap-
proximation to the behavior of mobile Ga adatoms did
not differ significantly from those with the simpler as-
sumption of complete reevaporation from unsuitable sites.
Consequently, we did not attempt to refine the approxi-
mation (or even to explore the effect of varying the reeva-
poration probability).

(5) The simulation created a succession of [100I lattice
planes that were bounded by [110[ planes that were
orthogonal to them. We assumed that the sample was
periodic across these [110I boundaries. Periodicity was
imposed for two reasons. First, in the recursion calcula-
tion of the electronic states the cluster sizes are relatively
small. Here the periodicity eliminates errors that could
arise from wrong NN relationships across the bounding
planes because the recursion calculation applies periodic
boundary conditions to the sample cluster of atoms. (In
the present case we have eliminated the wrong NN's
across bounding [110[ planes, but some will still occur
across [ 100I bounding planes. However, comparison
with calculations for the previous percolation model,
where wrong NN's were eliminated from both [110I and
[100I boundaries, shows that the resulting errors are
small. ) Secondly, the periodic boundary conditions al-
lowed us to approximate the addition of atoms to an in-
finite lattice plane that is partly filled.

In a variation of the simple implementation the period-
ic boundary conditions were eliminated. Here, NN sites
outside the [110) boundaries of the sample were assumed
to be vacant, thereby not contributing to restrictions on
sites occupancy. This was done to test the dependence of
the observed structure on the relative smallness of the
samples perpendicular to the growth direction. Our con-
cern was that population choices along the boundaries
might have a disproportionate effect because they affect
NN relationships on two sides of the sample. The varia-
tion eliminated this effect at the cost of introducing some
sites that had fewer NN restrictions than those in a real
crystal.

III. NUMERICAL RESULTS
AND COMPARISONS WITH EXPERIMENT

For our discussions of LRO we define the "phase"
orientation of the GaAs constituent of (GaAs)i „Ge2„ to
be that with its Ga and As atoms occupying the same sets
of alternate [100I planes as the Ga and As atoms of the

GaAs substrate. We may then define an antisite fraction,
f, of the alloy as the fraction of the GaAs constituent that
is in the alternative "antiphase" orientation. Possible
values of f range from zero, for the fully ordered zinc-
blende lattice, to 0.5 for the completely disordered dia-
mond lattice. (f = 1.0 for a fully ordered zinc-blende lat-
tice with the antiphase orientation. ) The antisite fraction
may be related to an order parameter, M, (defined
equivalently to that of ND) by

M =(1—x)(1 —2f) .

It is also helpful to have a simple measure of the sizes
of the continuous clusters or domains of Ge and GaAs
(both phase and antiphase) that occur within a sample of
the alloy. For this purpose we associate with each atom
of the sample a length l that we define as the number of
layers that may be reached from the atom by traveling to
preceding layers via NN atoms of the same domain.
(From Fig. 1 we can see that each site on a [100I plane
has two NN's on the preceding plane plus two NN's on
the following plane. ) For Ge atoms we will always travel
via other Ge atoms, but for Ga or As atoms we will trace
a path via alternate Ga and As atoms with opposite se-
quences for phase and antiphase domains. Our measure
of the domain size in the growth direction is then the
average of this length, (l), over all of the atoms of the
appropriate type within the sample. Clearly, as a
component's concentration becomes large enough we will
get I/(I)~0, corresponding to a domain with infinite
depth. The concentration at which this occurs resembles
a percolation threshold for the growth direction. Howev-
er, our clusters will be smaller than those usually con-
sidered in percolation theory because we do not count
cluster members that might be reached by a combination
of backward and forward moves through the sample.
Thus the onset of infinite cluster depth for a component,
as measured here, sets an upper bound for the convention-
al percolation threshold. (In fact, as discussed later, the
restriction to moves in one direction through the sample
gives a situation akin to percolation on a tree. ) Nonethe-
less, our definition of (l ) does give a useful and readily
calculable measure of domain size. Particularly, the MC
simulations are simplified and made capable of extension
to very large samples because we need to keep track of the
occupancy of the sites on only three successive planes and
of the values of l on only two planes.

Growth simulations were carried out using [ 100I
planes that ranged from 10X10 to 50)&50 atoms (along
(110) directions orthogonal to the growth direction) with
most of the work being done at 20&20 and 50& 50 atoms.
Very little dependence of the results upon the size of the
cross section was found although, as might be expected,
the smaller specimens gave larger fluctuations in the lat-
tice statistics. To ensure attainment of a steady state, at
least 1000 planes were grown before beginning the averag-
ing of sample properties and in some cases even longer
lead-ins were made. The averages were mostly of 2000
planes, although overall we used 500—6000 planes. The
adequacy of the lead-ins for establishing constant lattice
statistics was verified by inspection.

At this stage we first give the results of the "simple"
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implementation of the growth model and compare them
to the available data for the LRO and the NN statistics.
We will then consider briefly the effects of variations in
the implementation.

Figure 2 shows the composition dependences of 1/(I )
for the Ge component and the phase and antiphase GaAs
components that we obtained from MC calculations using
the "simple" implementation. These results subdivide the
composition range into four regions as follows.

(1) When Ge is added to GaAs we first pass through a
range (x &0.31) where the alloy, with zinc-blende symme-

try, has an infinite domain of the GaAs phase component.
With increasing Ge content the antiphase GaAs com-
ponent increases its concentration and its domains, though
finite, have increasing average size.

(2) With 0.31 &x &0.42 we pass through a small range
in which both the phase and antiphase orientations of
GaAs exhibit infinite domains. At a little after the begin-
ning of the region (x =0.34) the zinc-blende order (as an
average over the whole specimen) disappears to leave, as a
residue, diamond symmetry.

(3) Next we find a region (0.42&x &0.56) where the
domains of all three components are finite.

(4) Finally, with x &0.56, the domains of both GaAs
orientations are finite, but the Ge component has an infin-
ite domain.

The second region, with 0.31 (x (0.42, is particularly
interesting because LRO persists in both phase and anti-
phase domains of the GaAs component, despite the zero
value of the order parameter that pertains to the specimen
as a whole over most of this composition range. No other
theory of the present alloys has predicted such an ordering
and, to our knowledge, the effect has not been explored
with other alloy systems. Averaging over the specimen is
appropriate for the order parameter as determined by x-

ray diffraction because our simulations yield phase and

antiphase domains that are mixed on a scale that is small
by comparison with x-ray extinction distances that are
typically a few pm. Images of our MC grown crystals
with compositions in region 2 show that the phase and an-
tiphase domains coexist within [100I planes that have di-
mensions in the range 20&(20 to 50)&50 atoms and that
each of these domains tends to remain connected for
thousands of consecutive I 100I planes. 3

The prediction of interpenetrating infinite zinc-blende
domains in a specimen whose average order is that of dia-
mond is intriguing, although it may be difficult to verify
experimentally. We think it likely that this result is real-
istic, rather than an artifact of our MC simulation, be-
cause we obtained the same prediction from an analytic
approximation that is described in Sec. IV. This rules out
explanations in terms of artifacts that are due to the limit-
ed size of our j 100] sample plane. (Similar evidence is
provided by persistence of the result when we remove the
periodic boundary conditions. )

Figure 3 shows the composition dependence of the or-
der parameter calculated from the "simple" implementa-
tion together with experimental data for (GaSb)t „Gez„
from Shah et al. ' Clearly, the agreement is excellent.
Our MC simulations give x =0.34 compared with the ex-
perimental value of x, =0.30—0.31.

In Figs. 4 and 5 we show the number of group V NN's
of Ga and of Ge atoms obtained from the same MC simu-
lations. (The simple implementation gives NN environ-
ments in which Ge atoms have equal numbers of group
III and group V NN's and in which the number of group
III NN's of a group V atom is equal to the number of
group V NN's of a group III atom. ) Here we are able to
make a comparison with data from Stern et aI. ' for the
number of Sb NN's around Ge and Ga atoms in
(GaSb)~ „Ge2„. For the Ga environment the agreement
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FIG. 2. Reciprocal average length (1/( l ) ) of the Ge and the
phase and antiphase GaAs components of (GaAs)

& „Ge2 ~ The
symbols and the solid lines are from the MC growth simulations
and the dotted lines are the analytic approximations.

FIG. 3. Composition dependence of the order parameter.
The open circles and the solid line are from the MC simulation.
The dotted line is the analytic approximation. The solid circles
and the dashed line are the results of x-ray measurements by
Shah et al. (Ref. 13).
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with theory is excellent. In the case of the Ge environ-
ment the data for Xsb are about 30%%uo lower than our cal-
culations. (In this case the calculated Nsb versus x does
not exhibit much curvature. Stern et al. ' suggested that
this deviation from the expected relationship arose from
preferential substitution of Ge atoms at Sb sites that are
associated with imperfections. )

At this stage we note an effect of the finite size of our
sample I IOOJ planes. In the limit of vanishingly small
concentrations of Ge atoms that are randomly distributed
on the sites of a III-V compound that has a zinc-blende
lattice we will average over equal numbers of Ge atoms
with either four group III NN's or four group V NN's.
Thus, we should expect Fig. 5 to show an average of two

FIG. 4. Composition dependence of the number of group V
NN's of a CJa atom in the alloys. The open circles are the MC
results and the dotted line is the analytic approximation. The
solid circles are EXAFS results for Sb NN's in (GaSb)

& „Ge2„
by Stern et al. (Ref. 18).

group V NN's when x ~0. Instead we get an intercept at
about 1.9 group V NN's. This is an indirect consequence
of our pairing of group III and group V atoms in a finite
sample. Each N XX I100I plane of our sample consists
of N rows of X atoms along (110) directions that are
orthogonal to the (100) growth direction. Consider the
region where x~0. The act of placing a Ge atom on one
of the sites along a ( 110) row of a I 100IGa plane reduces
by one the number of NN As atoms in the (110) row of
the following [100)As plane. Since Ga—Ga NN pairs
are forbidden, the vacant site on the following (110) row
is then forced to also contain a Ge atom. Since each site
has two NN's on the following (110) row, these pairs of
Ge atoms that are implied by our NN pairing of Ga and
As have 2/N probability of being NN's themselves when
the Ge concentration is small ~ Thus, the finite-size effect
would be expected to give 2/N Ge NN's of a Ge atom in
this limit. The data in Fig. 5 were obtained with X =20
and this accounts for the discrepancy of about 0.1 in the
average number of group V NN's at x =0. We have also
observed appropriate size effects with other sample sizes.

Next we consider the effects of varying the details of
the growth simulation as described in Sec. II. Evaluation
of the dependences of I/(l) upon x showed that neither
the elimination of the periodic boundary conditions nor
the inclusion of limited reevaporation and random walks
for Ga adatoms had much effect on the results, which
remained close to those of the "simple" implementation
that are shown in Fig. 2. Significant changes did occur
when we allowed wrong NN's to exist at the boundaries
between phase and antiphase domains. In particular the
order-disorder transition was moved from x, =0.3 to
x, =0.2. However, this variation was found to give signi-
ficant numbers of wrong NN's, as shown in Fig. 6. Par-
ticularly, at mid-range compositions the As atoms average
about —, of an As NN each. Our recursion-method calcu-
lations using the sp s* model described in Sec. V have
shown that such concentrations of As—As NN pairs are
inconsistent with the energy gap of (GaAs)t „Gez„and
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FICx. 5. Composition dependence of the number of group V
NN's of a Ge atom in the alloys. The open circles are the MC
results and the dotted line is the analytic approximation. The
solid circles are EXAFS results for Sb NN's in (CxaSb)& „Cxe&„
by Stern et al. (Ref. 18).

FICx. 6. Composition dependences of the number of wrong
NN's (As around As and Cxa around Ga) from MC simulations
that allowed wrong NN's at the boundaries between phase and
antiphase domains.
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therefore we abandoned this variation as unrealistic.
(Essentially the effect of As—As NN pairs here is to close
the gap in the same way as described previously for the
ND model. ' )

Finally, we consider the relationship between the
present growth model and our earlier percolation model.
In our earlier work we attempted to populate a diamond
lattice with a random mixture of Ge atoms and diatomic
GaAs molecules. One cannot reach the whole composi-
tion range by filling the sites in random sequence because,
with increasing population, one will reach a situation
where the remaining vacant sites are isolated and thereby
incapable of accepting the diatomic constituent. (This is
the well-known "parking" problem. ) To avoid the prob-
lem we populated the lattice on successive I 100) planes,
as in the present model. (This point was omitted in our
previous letter. ) The process has obvious similarities to
both the present growth model and the KS growth simu-
lation.

The main difference between the growth model and the
percolation model arises because in the latter we used MC
methods to generate samples of the crystal lattice that
were small enough (up to 4096 atoms) to permit evalua-
tion of conventional percolation statistics with the aid of a
small computer. We assumed implicitly that any infinite
cluster of the GaAs component would dominate the LRO
and thereby overlooked the possibility of simultaneous oc-
currence of infinite clusters of the phase and antiphase
components of GaAs. This neglected possibility was sub-
sequently made obvious by the results of the present
growth simulations where a change in the definition of
cluster dimension (to (l ) ) allowed the evaluation of sam-
ples with up to about 10 atoms. (Clearly, interpenetrat-
ing infinite three-dimensional networks can exist as, for
example, with the pores and the body of a sponge. )

With this difference in mind we may make a crude esti-
mate of the values of x, that will be given by the two
methods. Let us assume that any component on a dia-
mond lattice will percolate at a critical concentration in
the range p, =0.3—0.4. (For simple substitution on the
diamond lattice p, =0.4, but we obtain a somewhat small-
er value for a diatomic constituent. ) Then the percolation
model identifies the order-disorder transition with the on-
set of percolation of the diatomic constituent of a
monatomic-diatomic mixture, so that x, = 1 —p,
=0.6—0.7. In contrast, the growth model suggests that
the transition occurs near the onset of simultaneous per-
colation by the phase and the antiphase GaAs components
to give x, =1—2p, =0.2—0.4. These values cannot be re-
garded as more than suggestive. (In particular, our appli-
cation of an isotropic percolation threshold to infinite
domains in the growth direction is imprecise. ) Neverthe-
less, they are similar to those (0.75 and 0.3, respectively)
that are given by the two MC approaches.

IV. AN ANALYTIC MODEL

In this section we derive analytic approximations for
the stochastic growth process that was described in Sec.
II. While we will sacrifice accuracy relative to the MC
simulation, we will be able to confirm its major features

and gain some insight into their origins.
Let p(n) be the probability that a site in the nth layer

beyond the substrate is occupied by a Ga atom, q(n) the
probability of occupancy by an As atom, and x(n) by a
Ge atom. To calculate the probability that a site in the
( n + 1)th layer is occupied by a Ga atom, we must consid-
er its two NN sites in layer n. If one or both of these
underlying NN sites is occupied by a Ga atom, the present
site cannot contain a Ga atom. Neglecting in-plane corre-
lations, the probability that the two underlying NN sites
contain no Ga atoms is [q(n)+x(n)] =[1—p(n)] .
Therefore, if we also neglect the NN restrictions on the
companion As atom, the probability that a site in layer
n + 1 is occupied by a Ga atom is

p (n + 1)= (1 PG, )[1——p (n)] (2)

and

P, =(1 Po, )(1 Pz—)— (3a)

(3b)

If we assume that p &p2 we obtain the solutions

p) ——[1 2Po, +(1 —4PG, )—'~ ]/2(1 Po,)—
and

p~ = [1 2PG, —(1 —4Po, )'~ ]/2—(1 Po, ) . —

(4a)

(4b)

Since q(n +1)=p(n) (because of Ga—As pairing), the As
composition on layer n + 1, n +3, . . . , is q2 ——p &

and on
alternate layers q] ——p2. Consequently, the Ge composi-
tion is the same in each layer:

x=1—p) —p2

=PG, /(1 Po, ) . —

Another solution to Eq. (3) is

(sa)

(Sb)

pi =p2
= [3 2Po, —(5 4PG—, )' ]/2(1 ——Po, ) . (6)

[In Eq. (6) we neglect an unphysical solution that gives
p „p2 & 1.] The Ge concentration x = 1 —2p &

is

x =[Po, +(5—4Po, )'~ —2]/(1 PG, ) . —(7)

The results of Eqs. (4) and (6) are shown in Fig. 7.
Note that the values given by Eqs. (4) remain real with in-
creasing PG, until P&, ——4 . At this point we have
p&

——p2 ———,', i.e, the the zinc-blende order must disappear
at x, =1—p& —p2 ———,'. This is in excellent agreement
with both the experimental value of about 0.31 and the
value of about 0.34 from the MC simulation.

So far we have ignored the solution with p&
——p2 in the

region where Pz, & —,. A simple argument shows that
this solution is unstable there Suppose .that the (n +1)th

The initial condition is p(0) =0 since we are growing
from the As surface of a GaAs substrate.

For large n, steady state is approached. Let us look for
solutions appropriate to the zinc-blende structure: p(n)
=p(n+2)= . =p2, p(n+1)=p(n+3)= . =p&.
Then
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The approach of p(n) to steady state in the region
where Pz, & 4 is illustrated in Fig. 8. Here Pz, ——0. 1 and

the unstable solution given by Eq. (6) has p& ——p2 ——0.364.
Starting with p(0)=0.36 and applying Eq. (2), we find
that with successive layers, p(n) undergoes an oscillation
that increases until, after about 45 layers, we attain the
steady-state values given by Eqs. (4), i.e., pt ——0.875 and

pz ——0.014. If instead we start with p(0)=0 or p(0)=1,
we reach the steady-state solution after only about ten

1 ~

layers. The different behavior when PG, ) 4 is shown in
Fig. 9. Here we have PG, ——0.4 and the only steady-state
solution is pj ——p2 ——0.297, which is seen to persist as we
add layers. If instead we start with p =0 or p =1, the
steady-state value is reached after about 30 layers.

Since the antisite fraction at steady state is

FIG. 7. Analytic approximations for the phase and antiphase
GaAs concentrations (p1 and p2) as functions of PG, . The solu-
tion with p1 ——p& and PG, )0.25 corresponds to diamond sym-
metry. Note that the actual Ge concentration x differs from

PG, .

plane is {100j Ga with a nonsteady state Ga atom concen-
tration of

p(n +1)=p, +5„+t
and that this is preceded by a {100jAs plane with a non-
steady state Ga atom concentration of

p (n) =pz+5„,
where

I
5.+ t ip t I I

5~ ip2 I « I F«m Eq (3) we find

f =p2i(pt+p2), (14)

it follows from Eq. (1) that the order parameter may also
be expressed as

~=pi —S2-

Using values of pt and p2 from Eqs. (4), we obtain the
composition dependence of the order parameter that is
shown as a dotted line in Fig. 3. In addition to the good
agreement of x, = —, with the MC value, upon which we
have already commented, we note that at other values of
x the curve is also reasonably close to that derived by MC
simulation.

We now obtain analytic approximations for the values
of (I ) that are associated with the Ge and GaAs clusters.
As noted earlier, the unidirectionally connected clusters
that are measured in our determination of (l ) are similar

and

5„+t
———2(1 Po, )(1 —pp —)5„ (10)

1.0 =

I 5„+t15„!=[(5 4Po, )'i —I]—
1)1 when P&, & 4,
1

& 1 when P&, ) 4 (12)

Thus, the solution with p &

——pz is stable only when
1

PG.,) 4.
If instead we are close to one or the other of the solu-

tions with pt&p2, as given by Eqs. (4), we need to consid-
er the change in 5 that occurs as we reach successive
{100jGaor {100jAs planes, respectively. From Eqs. (4),
(10), and (11) this is given, for either kind of {100jplane,
by 5„,/5„, =4PG, ,

which gives stability when P~, & —,', i.e., over the range
where real solutions of Eq. (4) exist and where the solu-
tion of Eq. (6), with p, =pz, is unstable.

(13)

5„=—2( 1 Po, )(1—p t )5„—
Since Pz„p &,pz & 1, the deviations from the solutions
given by Eqs. (4) and (6) must alternate in sign as we add
successive layers. Now suppose that we are close to a
solution with pt ——p2, as given by Eq. (6). In this case
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FIG. 8. Analytic approximation for the evolution of the Ga
concentration p(n) into the phase and antiphase concentrations
(pi and p2) with growth of successive {100 j layers in the region
with zinc-blende symmetry (Pz, ——0. 1). The circles show the
divergence from a value (p =0.36) that is close to the unstable
solution with p1 ——p2. The two orientations of triangle show the
evolution of p1 and pz from initial values of zero and unity,
respectively.
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For an As atom on a I 100}As plane we will have at least
one underlying Ga atom and the probable number of
underlying Ga atoms is

value x =0.56 that was obtained form the MC growth
simulations.

We now consider (1) for the phase GaAs component.
If we start with a Ga atom on a I 100}Ga plane we expect
it to be connected to r1 G, As atoms on the preceding
I 100}As plane, where neglecting in-plane correlations

1,Ga =2$1

with

0 10 20 30
Layer Number

40 50
r1,As 1+s (20)

FIG. 9. Analytic approximation for the evolution of the Ga
concentration p(n) into equal phase and antiphase concentra-
tions (p& ——p2) with growth of successive I 100} layers in the re-
gion with diamond symmetry (PG, ——0.4). The circles show the
stability of the solution with p& ——p2 ——0.297. The two orienta-
tions of triangle show the convergence to this solution from ini-
tial values of zero and unity, respectively.

(1)A 2+rl Cx rl, A (1)A

=2/[I —2si(l+s& )] (21)

when r1 G, r1 A, is small. Also, under the same condition,
we must have that the length starting from a Ga atom is

Consistency requires that the length starting from an As
atom be

&» .=1+2., &», . (22)

to those that would be generated by substitution on a tree.
In the following we approximate the diamond lattice by a
uniformly branched tree in order to gain tractability.
Thus, as we follow a cluster down a (100) axis we will
assume that the two underlying NN's of each cluster
member are not associated with any other path down-
wards through the specimen, i.e., that the potentially con-
nected sites of a given site increase in the sequence
2,4,8, 16, . . . , as we reach successive underlying I100}
planes. Inspection of Fig. 1 shows that the numbers actu-
ally increase more slowly, i.e., as 2,4,6,9, . . . , . Thus, if
we work downwards with a single atom, at large concen-
trations of a component we will overestimate the number
of connected atoms on an underlying plane. However, our
cluster size, (1),becomes infinite when the expected num-
ber of connected atoms in underlying planes exceeds uni-
ty. Hence our approximation is reasonable for finite clus-
ters.

Consider first a uniformly distributed monatomic con-
stituent on a tree. Let the probable number of connected
underlying atoms be r. Then, if the expected length is
(1),consistency requires that

(1)=1+r(1)
= 1/(1 —r),

when r «1. Note that (l)~oo when r~l, which is ex-
actly the condition for the percolation threshold of a
tree. Applying this to the Ge component we have
r =2x, whence

( 1 )o,- 1/(I —2x)

with the size becoming infinite at x =0.5, instead of the

Averaging the results in Eqs. (21) and (22) we get for clus-
ters with the phase orientation

( 1 )~h„,——0.5+(1+2s& )/(1 —2s& —2s
& ) .

Similarly for clusters with the antiphase orientation

( 1 )»„zh„,——0.5+( I+2sq)/(I —2sq —2s2),

where

(23)

(24)

s2 p2/(1 p, )
——. — (25)

From Eqs. (23) and (24) we see that the clusters of either
kind will become infinite when, for s =s1 or s2,

s ~s, =( —I+3'i )/2

=0.366 . (26)

The resulting composition dependences of 1/(I) are
shown as dotted lines in Fig. 2. In the region Pz, & 4

where p& and pq are given by Eqs. (4) and (5) the phase
component has s1~s, and its domains are infinite. In
contrast, the antiphase component has s2 ~ s, with infinite
domains only when x &0.302 and this situation persists
past x =x, =0.333. In the region where pz, ~ 4, both
the phase and antiphase components have infinite
domains until we reach x =0.464 when s1 ——s2 ——s, . Thus
the analytic approximation reproduces a major feature of
the MC simulation, that is the coexistence of infinite
phase and antiphase domains of GaAs over a range of
compositions. The calculated range 0.30& x &0.46 is in
reasonable agreement with the range 0.31 & x &0.42 that
was obtained from the MC experiments.

A curious feature of the analytic results is that the
coexistence of infinite phase and antiphase domains ex-
tends to a region where x &x, . In this range,
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N; j=z, (28)

where c; is the concentration of the ith species (Ga, Ge, or
As), N~ J is the number of j atoms around an i atom, and
z is the total number of nearest neighbors (z =4).

Since the Ga concentration equals the As concentration,
the compatibility relation Eq. (27) implies that
No, z, NA, o, . Likewise——, Eq. (27) implies from the pre-
viously stated cation-anion symmetry that NA, G,
=NG, G, . Imposing the prohibition on wrong bonds and

x =0.0
(0.33)
0.34 1.0
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x =0.0 0.31 0.42 0.56
(0.30) (0.46) (0.50)

1.0

FIG. 10. Positions of the boundaries of the various alloy re-
gions. The values of x are from the MC simulations with the
approximate analytic results shown in parentheses for compar-
ison.

0.30& x &0.33, the antiphase component has an infinite
domain, but is present in smaller quantity than the phase
component. A similar result is suggested by the MC re-
sults where the order parameter (Fig. 3) appears to vanish
at a slightly larger Ge content, x =0.34, than I/(1) for
the antiphase component at x =0.31 (Fig. 2). It is worth
noting that such behavior would not be inconsistent with
physical possibility. (To return to our analogy of the in-
terpenetrating infinite networks of the pores and the body
of a sponge. There is no requirement that the pores and
the material have equal volumes. )

The calculated domain depth for the Ge component is
also in reasonable agreement with the MC results, with
I/(l)~0 when x =0.5, instead of the MC value of
x =0.56. Overall we note that the composition depen-
dences of the domain sizes give precisely the same se-
quence of four regions that was obtained from the MC
simulation and that the boundaries of these regions occur
at about the same Ge contents as in that calculation. A
comparison between the results of the two approaches is
given in Fig. 10.

Finally we consider analytic approximations to the NN
statistics. We prohibit Ga—Ga or As—As bonds and re-
quire cation-anion symmetry, i.e., the number of As
neighbors of a Ge, NG, A„equals the number of Ga
neighbors of Ge, NG, G, . The NN statistics must satisfy
the general compatibility relation

cjNj j cjNj

and the sum rule

using the sum rule in Eq. (28), we find for a Ga site

NG, A, +NG, G, ——4 . (29)

Because of cation-anion symmetry, no new information is
obtained by considering an As site. The sum rule applied
to a Ge site gives

NGe, Ga +NGe, As +NGe, Ge 4 ~ (30)

Using cation-anion symmetry and Eq. (27), we can rewrite
Eq. (30) as

(1 x)No—, o, +xNo, o, ——4x . (31)

Thus we have two equations [Eqs. (29) and (31)] in three
unknowns.

At this point, we make an approximation that reflects
the requirement that a Ga atom must always have at least
one As neighbor (the pairing restriction). We say that the
probability to find a Ge atom in any of the four sites
around a Ge site is equal to the probability of finding a
Ge atom in the three unpreempted sites around a Ga
atom. Hence,

3NGe Ge ——4NG, G, . (32)

'The three equations (29), (31), and (32) can now be solved
to give

NG, o, ——12x/(x+3),

No, o, ——16x/(x+3),
(33)

(34)

and

NG, A, ——4(3 —2x)/(x+3) .

The other quantity of interest is

No, A,
——6(1—x) /(x +3) .

(35)

(36)

The agreement of Eqs. (35) and (36) with the MC results
in Figs. 4 and 5 is good.

V. CALCULATIONS OF THE ENERGY GAPS

In this section, we calculate the energy gap as a func-
tion of Ge concentration x for the steady-state structure
obtained from the model in Sec. II. The energy bands of
the pure materials can be described by a tight-binding ap-
proximation. Vogl et al. fitted the bands with a basis
set consisting of an s function, three p functions, and
another, higher-energy s function (denoted sp s*). In the
original work, the interactions were restricted to on-site
and nearest neighbors. Newman and Dow have added
some second nearest-neighbor interactions. This fitting
determines some, but not all of the parameters needed for
a tight-binding description of the alloy. New parameters
such as Ga—Ge interactions are required. Fortunately
those parameters that are known do not vary extensively
from Ge to GaAs, so averaging to determine unknown pa-
rameters is sensible. We follow the procedure given by
Newman and Dow. We have chosen the band offset to be
1 eV (Ge valence-band top higher than GaAs) to avoid
having an isolated Ge atom in GaAs be a deep trap. Al-
though this is larger than experimental values (0.3—0.5
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eV), the effect on the energy gap appears to be negligible
for all but the smallest x values.

The energy gap is determined by calculations on a clus-
ter of the alloy (typically of 2000 atoms). We use the
Haydock recursion method to calculate approximate
spectral weight functions A (k,E) for the cluster. Specifi-
cally, we are interested in the I

~
(bottom of conduction

band) and the I &s (top of valence band) functions:

1.6

5
1.0

LL

0.8

As) g „Gep„
sp348
sp 5

A(k =O,E)= g(P ~
P)) 5(E E;),— (37)

where g is I
&

or I"» and g; and E; are eigenvectors and
eigenvalues for the cluster. The direct gap at k =0 ap-
pears to be the optical gap over most of the concentration
range, so we calculate only this gap. Each spectral weight
function has a well-defined peak as shown in Fig. 11. For
the pure materials (x =0 or 1), these peaks become delta
functions at the band-edge energies. In the alloys, the
peaks represent the complex band structure and they
broaden and shift. We identify the difference between the
energies of the maxima as the energy gap. Details of the
numerical procedures have been published previously
and will not be repeated here. Extensive comparison with
exact results and with other approximate methods (such
as the coherent-potential approximate) have demonstrated
that the recursion method gives accurate results for the al-
loy problem. '

In previous publications, ' we emphasized the effects
of SRO on the energy gap. For example, for a cluster
(which has no SRO) constructed with probabilities per site
of p(Ga)=p(As)=0. 25 and p(Ge)=0. 5, the peaks in the
spectral weight functions for I

&
and I » overlap, imply-

ing that the energy gap vanishes. This is an instance
when one must take into account the fluctuations in the
alloy potential. In the VCA, where the alloy is replaced
by a crystal (diamond structure) of average atoms
( —,Ga+ —,

' As+ —,Ge), the calculated gap is 0.7 eV. We
concluded that the VCA is not accurate enough to give re-
liable estimates of the small gap of this material. The pri-
mary trouble appears to be with As—As bonds in the

0.6
8

0.4—
0.2—
0.0

0 ~ 0 0.2 0.4 0 ~ 6 0.8
Mole Fr aetio~ Ge (x)

1.0

cluster with no SRO. The sp s' tight-binding approxi-
mation correctly puts the antisite (As on a Ga site in
GaAs) level 0.6 eV above the valence band. In the alloy
with no SRO (as given by the ND model), As—As bonds
introduce enough states into the region where the VCA
predicts a gap that this gap vanishes. Ga—Ga bonds are
not as important. The growth model forbids wrong
bonds, so we expect the gap for this model to be nonzero.

A comparison of the measured optical gap of Barnett
et al. (with the data modified by Newman et al. ) with
the results of the growth model (evaluated using the sp s'

1.0

pseudopo tee tial
0.8-Sp35 sp34~

FIG. 12. Energy gap of (GaAs)& „Ge2 . The dotted line and
triangles show the recursion calculation from the sp s* model.
The solid line and open circles show the results of the more ac-
curate sp d calculation. The solid circles are experimental
values from Barnett et aI. (Ref. 3).
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FIG. 11. Spectral weight functions for x =0.52 calculated
with the sp s* model and the recursion method. I
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FIG. 13. The density of states (DOS) for Ge in the
conduction-band region. The pseudopotential curve is from
Ref. 32. The sp s and sp d curves are obtained using the re-
cursion method.
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tight-binding approximation) is shown in Fig. 12. Both
show a substantial bowing of the gap as a function of x
(not a simple linear variation between end points). Each
has a rapid drop in the region x (0.3. For Ge-rich alloys
the calculated gap is somewhat smaller than experiment,
although the difference of less than 0.2 eV is comparable
to the combined experimental and numerical errors. To
the extent that the discrepancy is real it probably arises
from inadequacies of the sp s* model. Here the conduc-
tion bands are too flat, a defect common to tight-binding
models, and this overemphasizes the effects of disorder.
In this case, the effect is to reduce the gap.

The curve of energy gap versus x calculated for the
growth model differs by less than 0.1 eV from that of our
earlier percolation model. Although the two models give
rise to different LRO's and substantially different values
of x, (as discussed in Sec. III), their gaps are almost iden-
tical. This comes about because the two models have the
same SRO, which is the dominant effect. However, if the
alloy potential contained a long-range part (e.g., a
Coulomb potential), the LRO of the structure would be
more important. Also, the finite size of the clusters used
in the calculation makes the curve smooth near the criti-
cal composition.

To eliminate the problem of flat conduction bands that

the sp s* tight-binding model gives, the more realistic
model of Ivey and Mieher ' has been adapted to the
present problem. The Ge and GaAs pseudopotential
bands of Chelikowsky and Cohen ' have been fitted to
the Ivey-Mieher model, which is a Koster-Slater model
consisting of s, p, and d functions with first and second
nearest-neighbor interactions. Here we denote this model
as sp d . The two-center integrals are given in Table I.
Details of the calculations will be published elsewhere.
Note that both models pertain to 4 K, but the experimen-
tal data were taken at room temperature where the direct
gap is smaller by about 0.1 eV in Ge and GaAs.

The calculated densities of states (DOS) for Ge using
the sp s* and the sp d models are compared to the pseu-
dopotential results in Fig. 13. The DOS for the sp d
more accurately reproduces the pseudopotential calcula-
tion (which we regard as the actual DOS of Ge). Since
the sp s" conduction bands are too flat, the first peak in
the DOS is too sharp and at a lower energy than in the
pseudopotential DOS. (The sp s* DOS is actually much
sharper than shown since our calculation was done with
only 48 recursions. See Fig. 8 of the first paper of Ref. 7.
We used 201 recursions for the sp d model, so it is more
accurate. ) The position and sharpness of the first peak are
significant because they indicate how flat the bands are

TABLE I. Two-center integrals in the sp'd' model. Notation follows Ivey and Mieher (Ref. 31) with
all values in eV. Separate values of the NN interactions for GaAs are listed when different [e.g. , (spa ),
for Ga—As and As—Cra pairs]. The second NN interactions (Cia—Cra and As—As) were constrained
to be equal.

For GaAs

As Ga—As As—Ga Ga—Ga,As—As

( ss o. )0——2.620
( pp o. )0 ——6.703

( ddo )0= 19.689

—6.869
3.237

19.689

( ss o ) i ———1.257
(spo )i ——2.425
( pp o. )1 ——4.051

( pp ~) ]
———1.301

(pdo-), = —4.572
( pd &)1——1.799

(ddo), = —5.140
( dd~) I ——5.564

( dd 5)
&
———1.694

(sd ~),= —5.470

1.528

—3.517
0.915

—4.020

(sso )q ———0.272
( sp o. )q

——0.324
(pp o. )2 ——0.431

( ppm)p ———0.136
(pdo )p ———0.125

(pd~)p ——0.235
( ddo )p ———0.046

( dd ~)p ——0.016
( dd 5)p ——0.243

( sd o. )p ———0.552

For Ge

( ss cT )0———1.926
(ppo )0——4.399

( ddo )0= 18.891

( ss o. ) &
———1.709

(spo. ) &

——-2.024
( ppo. ) &

——3.814
( pp ~) i ———1.471
(pdo. ) &

———4.381
( pd n) I

——1.230
( dd o. ) l

———4.885
(dd ~), = 5.747

( dd6)I = —1.741
(sdcT), = —5.204

( ss o. )2 ———0.333
( spo )q

——0.357
(pp o )q

——0.515
(pp~), = —0.217
(pd o. )2

———0.128
(pd ~)~——0.288

( ddo )g
———0.073

( dd~)p ——0.106
( dd 5)p ——0.441

( sd o. )2 ———0.419
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the energy gap of the alloy (GaSb), „Ge2„. These are
predictions because there are, as yet, no published experi-
mental data. The calculations were done with the sp s*
model using the parameters of Vogl et al. No offset of
the bands was included and no corrections for possible
changes in bond length were made for the data displayed.
For x =0.5, however, the calculation was repeated with
an offset of 0.21 eV (Ref. 27) and scaling of the off-
diagonal matrix elements by the reciprocal of the average
bond length squared. The gap was found to decrease by
only 0.02 eV. The EXAFS data' show that the bond
lengths do not change as much as the average implies, so
the correction is even smaller.

VI. DISCUSSION AND CONCLUSIONS

FIG. 14. Direct energy gap of (GaSb)~ „Ge2„ from the re-
cursion calculation using the sp s model.

and, consequently, how strongly disorder scattering will
affect the energy levels. A related consequence is that
the calculated As-antisite energy is 1.3 eV for the sp d
model, compared to the more accurate value of 0.6 eV for
the sp s* model. This implies that the sp s* model is
more reliable for calculating the effects of As—As bonds.

The sp d values of the direct energy gap for the
growth model are compared with the earlier calculations
and the experimental results in Fig. 12. The Ge valence-
band offset is taken to be 0.33 eV (i.e., I » is at 0 for
GaAs and 0.33 eV for Ge). We note that the sp s" and
the sp d models give nearly identical results for x &0.5.
At larger Ge concentrations the sp d model gives larger
values and agrees with experiment better. The indirect
gap (L~ —I &&) is smaller than the direct gap for x &0.9
(approximately). The uncertainty in the calculated values
of the gap is roughly 0.1 eV near the critical composition
(x, =0.3), but less for other concentrations. The calculat-
ed curves (for both models) do not show the sharp break
at x, that was inferred by ND, possibly for the reasons
discussed above. (The break is less obvious in the original
data of Barnett et al. 3)

Finally, in Fig. 14 we show comparable calculations for

In this paper we have presented a model for the struc-
ture of the alloys (GaAs)& „Ge2„and (GaSb)& „Geq„.
This is based upon the assumption that both the long- and
the short-range orders arise from a combination of the
statistics of arrival of the constituent atoms at the grow-
ing [100) surface with the need to avoid wrong neighbors
(Ga—Ga and As—As or Sb Sb). The model takes into
account the large excess of As that is usually present dur-
ing epitaxial growth of III-V compounds and their alloys
from a gas phase.

The model has been implemented by Monte Carlo
simulation of growth and by analytic approximations.
The results of both approaches are similar and are also lit-
tle affected by significant variations in the details of the
growth process. We obtain excellent agreement with the
measured energy gap of (GaAs), „Ge2„and with the or-
dering and NN environments of (GaSb)& „Ge2„as mea-
sured by x rays, EXAFS, and Raman spectra.
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