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The nonlinear Thomas-Fermi-Dirac equation is solved numerically for the positive and negative
point charges in gallium arsenide and gallium phosphide. Results are obtained for screening radii,
Coulomb hole radii, and spatial dielectric functions which are compared with those obtained by
solving the nonlinear Thomas-Fermi equation. The inconsistency in the definition of the Coulomb
hole radius, observed earlier, has been taken care of. The wave-vector-dependent dielectric function
and the spatial dielectric function are also obtained for the linear case and its range of validity given.

I. INTRODUCTION

Resta! has developed a nonlinear Thomas-Fermi (TF)
theory of the screening of point impurity charges in semi-
conductors at zero temperature. Cornolti and Resta? have
numerically solved Resta’s nonlinear equation and have
presented graphically results for e(r), the spatial dielectric
function, for point charges Z =+1,+4 (in atomic units)
in diamond, silicon, and germanium. Similar calculations
were made by Chandramohan and Balasubramanian® for
GaAs and by Singh and Balasubramanian for GaP (Ref.
4) and other semiconductors.” The TF model dielectric
functions obtained by Resta are in good agreement with
the accurate pseudopotential random-phase-approxi-
mation calculations of Walter and Cohen® made in wave-
vector space. Csavinszky and Brownstein’ and Csa-
vinszky and Elabsy® have calculated the dielectric func-
tion by a variational method in the TF theory. Recently
Scarfone®!° has formulated a nonlinear Thomas-Fermi-
Dirac (TFD) theory of dielectric screening in undoped
semiconductors at zero temperature. In his formulation,
Scarfone has introduced corrections to the TF theory of
dielectric screening by taking into account the effects of
exchange. Scarfone has solved the nonlinear TFD equa-
tion numerically for Z =+1,+2,4+3,+4 in diamond, Si,
and Ge.

There was some discrepancy in Ref. 9 in the case of
negative point-charge impurities which was rectified by
Scarfone in the subsequent work.!® An inconsistency in
the definition of the Coulomb-hole radius for the negative
point charges in Refs. 9 and 10 has been recently pointed
out by the present authors.!! It has been noted that the
above inconsistency has no noticeable consequence on the
dielectric function for diamond, while for Si and Ge, there
has been some noticeable change.

It would be of interest to do calculations on the dielec-
.tric functions for compound semiconductors GaAs and
GaP using the TFD theory. The screened impurity poten-
tials in these materials are useful in calculating the impur-
ity states as well as ionized-impurity-limited mobilities of
the carriers.!> Positive charges would correspond to
donors and negative charges to acceptors. In the present
work, the nonlinear TFD equation is solved numerically
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for Z=+1,+2,+3,+4 in GaAs and GaP. Results are ob-
tained for the screening radii, Coulomb-hole radii, and
spatial dielectric functions. These are compared with the
results based on the nonlinear TF equation without ex-
change. The wave-vector-dependent dielectric function
e(k) and the spatial dielectric function are also obtained
for the linearized case. Atomic units are used throughout
the paper, so that e, #, and m, equal 1. Section II con-
tains a brief outline of the theory and Sec. III has the re-
sults and discussions.

II. TFD SCREENING EQUATION

We consider the valence electrons in a semiconductor as
a Fermi gas with electron density n. When a point charge
is introduced, the redistributed charge density n(r) is re-
lated to the screened potential ¥ (r) by Poisson’s equation,

— VWV (r)=4x[n(r)—n] . (1)

In the TFD theory we have’
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n:g—;[y+(y2+Ep)“2]3. (2)
3

For the positive point charge + Z,

TABLE 1. Listing of physical parameters and characteristic
quantities entering in the linearized TF and TFD models of
dielectric screening for GaAs and GaP.

GaAs GaP
Nearest-neighbor distance a (a.u.) 4.62 4.46
Static dielectric constant K 12.56 11.02
Valence Fermi momentum kg (a.u.) 0.92 0.95
Erau)=k}/2—kp/m 0.13 0.15
Screening radius R (a.u.) 3.57 3.43
2750 ©1987 The American Physical Society
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TABLE II. Listing of various measures of the range of validity of the linearized TF and TFD
screening equations for GaAs and GaP when Z =1 and Z =2. TF values are in parentheses.

GaAs GaP
Z=1 Z =2 Z=1 Z=2
ro (a.u.) 1.16 (0.90) 1.49 (1.24) 1.11 (0.86) 1.44 (1.19)
ro/a 0.25 (0.19) 0.32 (0.27) 0.25 (0.19) 0.32 (0.27)
ro/R 0.33 (0.20) 0.42 (0.28) 0.32 (0.20) 0.42 (0.28)
€(ro) 4.24 (2.53) 5.96 (3.51) 3.94 (2.47) 5.52 (3.39)
[e(ro) /K] (100%) 33.76 (20.1) 47.45 (27.90) 35.75 (22.41) 50.09 (30.76)
2’72 2 17233
Sy +[(=y)*+Er+V(R)—V(N]'?}°, r<R
n(r)=1 3w
n, r>R (3)
and for the negative point charge — Z,
O, O<r§RC
272 2 17273
n(r)= 3—2—{7/4—[(—7) +Er+V(R)—-V(r)]'/*}°, R, <r<R (4)
T
n, r>R .

In Egs. (3) and (4), y is a constant equal to 1/2!/%7, R is
the screening radius, Er is the valence Fermi energy in-
cluding the exchange correction, and V(R)=FZ /KR,
K, being the static dielectric constant of the semiconduc-
torl.1 The Coulomb-hole radius R, in Eq. (4) is defined
by

V(Rc)=Ep+V(R) . (5)

Equation (1) is in general nonlinear and can be solved
numerically with appropriate boundary conditions. Ana-

TABLE III. Listing of screening radii and Coulomb-hole ra-
dii for nonlinear TFD screening equation when Z =+1, *2,
+3, and +4. TF values are in parentheses, and Z =0 corre-
sponds to the linear results of Table I.

z GaAs GaP
Screening radius R (a.u.)
4 3.19 (3.86) 3.04 (3.66)
3 3.25 (3.95) 3.10 (3.74)
2 3.32 (4.05) 3.18 (3.85)
1 3.42 4.19) 3.27 (3.98)
0 3.57 (4.44) 3.43 (4.20)
—1 4.00 (4.81) 3.84 (4.57)
-2 4.31 (5.08) 4.13 (4.83)
-3 4.56 (5.30) 4.37 (5.04)
—4 4.77 (5.49) 4.57 (5.22)
Coulomb-hole radius R¢ (a.u.)
—1 1.53 (1.03) 1.45 (0.98)
-2 2.07 (1.52) 1.97 (1.46)
-3 2.45 (1.88) 2.34 (1.80)
—4 2.76 (2.16) 2.63 (2.08)
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FIG. 1. TF and TFD wave-vector-dependent dielectric func-
tions in the linearized model.
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lytic solution may be obtained for the linearized equation;
the linearization involves a binomial expansion in which
the square of [V(R)—V(r)]/(y>*+Ef) is neglected in
comparison with unity. The linearization is valid only
when

V(R)—V(r)

5 <1. (6)
Y +Er

Equivalently the linearization is valid'®> for distances
r >rqo where rq is defined by

V(R)—V(ro)=y*+Eg . 7))

The solution of Eq. (1) obtained using appropriate
boundary conditions [lim,_,or¥V (r)—FZ for positive or
negative charge, respectively, and lim,_, , V' (r)-—0] en-
ables one to calculate the “spatial dielectric function,”
€(r), defined by

__3Z

40N
A wave-vector-dependent dielectric function may be de-
fined as

(8)

_ 4nZ
elh)=F— O
k“V (k)
13f (o) 12.56
/”
" e
9 /// GaAs
€(r) 7
7/
s ,
/7
4
sk e __TFD
e --- TF
-
3F ///
| ,"/ 1 1 ! ! I
0 | 2 3 4 5 6
r(au)
(b)
13+
" .02 —
/“’
of /’ GaP
€(r) /’
dd 7
/
.
4
st I/ — TFD
L’ =t TF
e
3F e
Cd
P
| - 1 ) L " A
[¢] | 2 3 4 E)

FIG. 2. TF and TFD spatial dielectric functions in the
linearized model.
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where V (k) is the Fourier transform of ¥(r). In the next
section we present the numerical results and discussions.

III. NUMERICAL RESULTS AND DISCUSSIONS

The physical parameters used are listed in Table I. The
subscript TF is used for quantities in the Thomas-Fermi
model neglecting exchange. Table II presents the value of
ro and the screening radius R obtained for the linearized
model [rg is obtained using Eq. (7) and R is obtained by
using the continuity of the derivative of V(r) at »r =R].
The results obtained in the TF case (without exchange) are
also presented in the same table. Values of the static
dielectric function at » =7 are also given in Table II. It
is seen from the table that the region of validity for linear-
ization is smaller for the TFD case when compared to the
TF model.

The numerical procedure for solving the nonlinear TFD
equation for positive and negative point charges is the
same as that for solving the nonlinear TF equation.? The
nonlinear TFD equation is solved numerically by fourth-
order Runge-Kutta method for Z=+1,+2,+3,+4 in
GaAs and GaP. In order to obtain the results for the TF
case, we need to put ¥ =0 and Er=~kz? in the input file
of the computer program for the TFD case and not mere-
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FIG. 3. TFD spatial dielectric functions in the nonlinear re-
gime when Z =11 and +4. The dotted line denotes the Z-
independent linearized model.



35 THOMAS-FERMI-DIRAC DIELECTRIC FUNCTION FOR GaAs . . .

ly ¥ =0, as was mentioned by Scarfone.® Table III reports
the screening radii R and Coulomb hole radii R obtained
from the numerical solution of nonlinear TFD equation.
TF values are given in parentheses.

Typical dielectric functions obtained are presented in
Figs. 1—6. Figure 1 shows a comparison of the wave-
vector-dependent dielectric function obtained in the linear
model for both TFD and TF cases. The screening is
found to be more effective in the TFD case. Figure 2
shows a similar comparison of the spatial dielectric func-
tions. Figure 3 presents a comparison of the spatial
dielectric functions for different Z values (including the
linear case specified as Z =0). The results for positive
and negative ions fall above and below the linear curve,
respectively. Thus, nonlinear screening tends to reduce at-
tractive potentials and enhance repulsive potentials. A
comparison of the nonlinear TFD and TF dielectric func-
tions is presented in Figs. 4 and 5. Figure 6 shows a com-
parison of the results based on the variational method of
Ref. 8 and the numerical solution of TF equation. The
variational method has not so far been employed for the
TFD equation.

When we compare the results obtained on the basis of
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FIG. 4. Comparison of the TF and TFD dielectric functions
in the nonlinear regime when Z = +1 and + 4.
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FIG. 5. Comparison of the TF and TFD spatial dielectric
functions in the nonlinear regime when Z = —1 and —4.

the statistical models used here with the dielectric func-
tions given by Richardson and Vinsome!'*!'* (RV) (a com-
parison between the TF results and RV have been present-
ed in Refs. 4, 5, and 16), it is seen that the TF results
agree better than the TFD results. This indicates that ad-
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FIG. 6. Comparison of the TF spatial dielectric functions
based on the variational approach (¥) and numerical solution
(N) when Z = +1.
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ditional effects such as correlation'’ and quantum correc-
tion!® may have to be incorporated, as was pointed out in
Ref. 9.

On an examination of the results given in our present
work for the two semiconductors, we see that the results
are qualitatively similar. This is to be expected, since the
models used have not included any of the detailed differ-
ences in the band structure of the two materials.
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