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Potential fluctuations and density of gap states in amorphous semiconductors

C. T. Chan* and Steven G. Louie
Department of Physics, University of California, Berkeley, California 94720

and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

J. C. Phillips
ATd'cT Bell Laboratories, Murray Hill, New Jersey 07974

(Received 14 July 1986)

The exponential-band-tail (Urbach-tail) problem for structurally disordered material is treated by
a simple model in which quantum wells (used to model the effects of local disorder) trap states in
the gap. The density of states in the gap is calculated and is shown to have approximately exponen-
tial behavior over a range of energy of physical interest. A direct relation is established between the
Urbach-tail slope and the glass transition temperature. Agreement with experimentally determined
Urbach-tail slopes is obtained for the Ge-Sn-Se glasses for reasonable parameters employed in the
present model.

I. INTRODUCTION

Structural atomic disorder modifies electronic spectra,
especially near band edges in amorphous semiconductors,
where tails in the density of states (DOS) are produced
below crystalline band edges. ' In insulators, tails are pro-
duced near exciton bands broadened statically by defects
and thermally by lattice vibrations. These absorption tails
have an exponential functional dependence I (to)
=exp(irico/cr), as first noticed by Urbach. This exponen-
tial dependence has often been observed and in favorable
cases has been found to hold for several orders of magni-
tude (up to four or five decades).

The problem of defining and solving in the tail region a
quantum-mechanical model with large structural disorder
is difficult even for drastically simplified Hamiltonians,
whether the solution is obtained formally or numerical-
ly. ' A closely related problem is the threshold
behavior of the electrical conductivity of impurity bands
at ultralow temperatures when the overlap of localized
impurity states is varied through the metal-insulator tran-
sition. So far, neither an exact formal method nor a
computational algorithm is known for solving these prob-
lems, and all the models that have been analyzed contain
assumptions of one kind or another.

Experimental evidence on the origin of Urbach tails in
amorphous semiconductors mainly concerns the composi-
tions and temperature dependence of o. ', the Urbach-tail
slope. Toyozawa and co-workers have argued, ' ' from
model Hamiltonians, that a white-noise model with a
Gaussian-distributed site energy 5E can explain Urbach
tails. If the crystalline bandwidth is of order 6B, and the
Gaussian width of 5E is 8', then they argue that
o=Sk&T/2B, where kz is Boltzmann's constant and S
(of order B) is the lattice relaxation energy such that
8' =Skz T. The potential fluctuations are expected to be
Gaussian because a large number of sources of random-
ness contribute to these fluctuations.

One of the drawbacks of the otherwise elegant Toyo-
zawa models is that the convolution of crystalline band
edges by Gaussians produces exponential behavior in the
DOS only over relatively narrow energy ranges in three
dimensions. For
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small, Gaussian fluctuations give
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where p(E) is the density of states and E is measured ei-
ther from the top of the valence band or from the bottom
of the conduction band and d is the dimensionality of the
system. For

~

E
~

large, p(E) is a Gaussian. Toyozawa
argues that the exponential form holds only over a limited
range of energy and results merely from an interplay be-
tween the bandwidth energy B and the Gaussian fluctua-
tion width 8'.

For a glass at low T, the dominant static structural dis-
order corresponds to thermally induced disorder frozen in
at T = Tg. In this paper, we attempt to model the effects
of these static potential fluctuations by assuming that the
non-bond-disrupting potential fluctuations are most im-
portant. This approximation should be valid in semicon-
ductors with

~

E Eo
~

&&B where Eo i—s the Tauc (k-
non-conserving) optical band edge. " We do not intro-
duce an explicit model Hamiltonian, but instead treat the
potential fluctuations in terms of quantum wells with a
distribution of well size and depth given by a Boltzmann-
like factor related to the total-energy changes resulting
from the potential fluctuations. Our analysis leads to re-
sults which are of interest in connection with recent ex-
periments on Urbach tails associated with grain boun-
daries" and in selected binary and pseudobinary semicon-
ductor glasses. '
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II. MODEL AND CALCULATIONS

We consider a state of energy c. in the gap near the top
of the valence band as a state trapped by local disorder
(thermal or static) which will be modeled by a quantum
well' of strength V and radius a. The total energy need-
ed for the formation of such a quantum well is of the or-
der of the local change of electronic energy of the elec-
trons inside the well:

b, E= f e5p(e)dc, , (3)

where 5p is the change of density of states due to the per-
turbation induced by the quantum well and EF is the Fer-
mi energy. The use of the difference in the sum of one-
electron energies to approximate total structural energy
change has been justified by the Andersen force theorem'
and used successfully in applications to crystalline materi-
als. ' We estimate the right-hand side of Eq. (3) by as-
suming that the density of states within the valence band
is constant, and that the effect of the quantum well is a
rigid shift of band energies of the electrons inside the well

by an amount V. The total-energy change is then

bE=nV a g'=nva g,
3

(3')

where n is the density of electrons in the material and
g= (4m/3)g' is a dimensionless factor of order unity.

For given V and a, the probability distribution for such
quantum wells is given by the Boltzmann factor:

—EE/k& T —n Va 3g/k& T8 e B (4)P(V, a)=e

V, r&a
v(r)= '0

where T is either the temperature for a pure crystal
(thermal disorder) or a temperature near but above the
glass transition temperature Tz for a glass (static disor-
der). The density of states for states trapped by the quan-
tum wells in the gap is given (up to a constant) by

( —ng/k T) Va 3

D(e)= f dV f da e
" ' 5(E(v,a) —e), (5)

where E(V,a) is the energy of defect states corresponding
to a particular value of V and a. The energy c is mea-
sured from the top of the valence band. In the present
form, Eqs. (3) and (3') may be regarded as somewhat
heuristic, and they can be tested by their ability to
describe experimental data. '

We attempt a solution for a particle of negative effec-
tive mass, m', in a spherical well of depth V and radius
a, 1.e.,

1/2

g2
( —V +E)

1/2

( —E) (gb)

Using atomic Rydberg units and assuming m*= —m„
we have

a=(V E)'—

P E 1/2 (9b)

Equation (5) may be written as
—1

D(e)= f dV f da g 5(a —a')e
a' a =a'

(10

where a' are all values of the well depth satisfying Eq. (7)
given e and V(or 13 and a) and are given by

1a'= —mm —cot
cz CX

where m are positive integers (since a ~ 0) and
cot '(P/a) is taken to be within the range [0,(m. /2)].

It is straightforward to show that

BE
Ba

1+—mm —cot
u Ct

2a P
(12)

Hence we have

v
D(e)= g f '"dV

m( &1)

1+—m~ —cot
CX CX

2a 13

3
n 1—

X exp V m vr cot-kr ~' a

(13)

mD(e)= f '"dV
1+—m- —cot '—

CX CX

2a P

Because of the m factor in the exponential, we may take
only the m = 1 component and obtain

Since it requires larger energy to create deeper wells, we
will restrict ourselves to I =0 solutions (lowest energy for
a given well) of the Schrodinger equation with spherical-
well potentials. For this simple case, the zero-angular-
momentum state of energy E is given by the equation'

a cot(aa) = —P,
where

—n, Z 1
Xexp " V

3
m. —cot

kgT o3 a

3

(14)

Upper and lower bounds have been set for V in the in-
tegral. This is because of the following.

(i) V has to be greater than e in order for a bound state
of energy c to exist and hence the lower limit.
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(ii) For an arbitrary small a, there always exists a V
large enough such that a given s is a solution of Eq. (7).
However, we know that in a crystal, a cannot be arbitrary
small if V is large. Thus, there is a cutoff a =a;„with a
corresponding V,„which is related to a;„via Eq. (7).
We expect that a;„ is approximately a typical bond
length which is = a few atomic units. Now changing to
the variable

1/2

(15)

-50

-60

UJ -70a

1
d 1+y(m —cot 'y)

-80

Xexp —I +1 y'(~ —cot 'y)

where yo is given by the solution of

pa;„=yo(n —cot 'yo),

and

(16)

(17)

&& exp — (pa;„)'(1+y, ')

Since P= Wc, , we have

lnD(E) = —I a;„(1+yo )E

1+V ca,„+ln I ea,„[(3+yo )v Ea;„+3]
and hence

(20)

lnD(E) = —I a;„(1+yo )E+O(ln(E)) .

The second term is small and varies slowly with z. As far
as the slope of InD(s) is concerned, the first term dom-
inates and we may write

r=—"
k~T

It is shown in the Appendix that D(e) given by Eq. (16)
can be approximated analytically by

1 1 +Pa min

P'a', .[3+(3+yo ')Pa;. 1
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FIG. 1. Comparison of numerically integrated density of
states with analytic approximations. The squares are deter-
rnined from Eq. (16) by direct numerical integration. Equation
(20) is plotted as the solid line (excellent agreement with numeri-
cal integration). Equation (22) is plotted as the dashed line. The
parameters used are a =2 a.u. and I =10 (a.u. Ry)

V(s~amm)
1+so

with those from the approximate analytic expression in
Eq. (20). The parameter yo in Eq. (20) is obtained by
solving Eq. (17). It can be seen that Eq. (20) almost agrees
exactly with the numerical data. Results from Eq. (22)
are also presented in Fig. 1. Comparison of these curves
shows that the second term of Eq. (20) is small, and Eq.
(22) gives a good approximation to the energy dependence
of the density of states.

From Fig. 1, we see that for E&0.04 Ry, InD(s) is
quite linear with respect to c.. In Figs. 2 and 3, we plot
numerically integrated values of lnD (s) for different
values of I and a;„. Essentially the same behavior is ob-
served. The approximate linear behavior of ln[D(e)] can
be seen as follows. By Eq. (15),

lnD(e) = —I a;„(1+yo )E . (22)

We first compare the approximate expression in Eq.
(20) with values of D(s) determined directly from Eq.
(16) by numerical integration for particular values of the
parameters. %'e are interested in the energy range 0.01
Ry & c. &0. 1 Ry. a;„ is the smallest potential well in the
glass and is taken to be -2 a.u. Taking a glass transition
temperature Tg -600 K, g= 1, and n =0.03 a.u. , we
have I =10. Using these values for the parameters, we
have integrated Eq. (16) numerically for the energy range
of interest. The results are presented in Fig. 1 together

where V(s,a;„) is the depth of a well of radius a, trap-
ping a (lowest-energy) state with energy s. Equation (22)
may also be written as

1nD(s) = —I a;„V(e,a;„)
(23)

V(s,a;„) does not scale linearly with respect to E,
'6 but

for the range of energy in which we are interested, the de-
viation from linearity is small, as can be seen from the
Figs. 1—3. The right-hand side of Eq. (23) is just the ex-
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tion temperature T~ and the experimental slope of the Ur-
bach tail. The a factor in the Eq. (3') means that the
wells with the smallest radius commensurate with physi-
cal restrictions need the least energy to form and thus
these wells with minimum radius (a;„) dominate the
problem.

-65

-85

DISCUSSION

Two recent experiments have yielded theoretically sig-
nificant resu1ts on Urbach tails in disordered semiconduc-
tors. %'erner and Peisl" have studied the density of statesX„(E)on grain-boundary surfaces of polycrystalline Si bytwo independent methods. They fitted their results to

hEN„(E)=Xcexp
0
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FIG. 2. Plot of the natural logarithm of the density of states
(ln[D(E)]) as determined from Eq. (16) by numerical integra-
tion against energy {E)for different values of 1. The well ra-
dius parameter a =2 a.u. I is in units of (a.u. 'Ry)
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FKJ. 3. Plot of the natural logarithm of the density of states
(1n[D(E))) as determined from Eq. (16) by numerical integra-
tion against energy (E) for different values of the well radius pa-
rameter a (in a.u.). The parameter I = 10 (a.u. Ry)

ponential of the Boltzmann factor m Eq. (4) with
a =a;„. Thus, we see that the approximate exponential
behavior of the density of states is essentially a conse-
quence of the Boltzmann factor. For glasses, I in Eq.
(22) is determined by the relation I =nj/k&T~. Thus the
model gives a direct correlation between the glass transi-

for both conduction and valence bands AE. in Eq. (24) is
taken to be bE=E, —E and &E=

I EU I
—

I
E

I
for Po»-

tive and negative energies E from midgap, respectively. It
was found that Eo ——49 and 69 meV for the conduction-
and valence-band electrons, respectively. Exponential
behavior is observed over more than three decades. For
two dimensions, exact exponential behavior is expected
from Gaussian potential fluctuations [see Eq. (I)], so these
data do not test the limitations of the Gaussian model for
three dimensions. '

The second experiment, which is of greater theoretical
interest, is the composition dependence of the Urbach
slope o(x) in Sn„Ge~ „Se25 glasses. Previous studies of
cr(x) in As„Se& „and Ge„Se& „glasses showed that
qualitatively a-k&T&, where Tz is the glass transition
temperature, as expected from general considerations. '

However, the actual composition dependences of o(x) and
T~(x) did not agree quantitatively. This was explained'
by the observation that varying x in these binary alloys
means varying the proportions of local building blocks
[chain segments Se„, pyramids As(Se~&2)3, and tetrahedra
Ge(Se~q2)4]. Therefore, it was suggested' that pseudo-
binary alloys like Sn„Ge~ „Se2 containing fixed propor-
tions of building blocks of varying mechanical strength
[Sn(Se&&2)4 versus Ge(Se~&q)4] should be studied. These
studies have shown a strong correlation, with
or(x)=1.5k~T~(x) over the range 0&x &0.6. This range
goes from an overconstrained glass network (x =0) to
ideally constrained (x =0.4) to underconstrained
(x =0.6) as described theoretically' and confirmed by
Mossbauer site' and Raman bond studies. This is the
first time such a close relationship between a and Tz has
been established.

The linear relation between o. and Tz is reproduced in
the present model [Eq. (22)] if the structural disorder is
assumed to arise fram fluctuations frozen in at 7 =Tg.
Using the parameter values I = 10 (corresponding to
Ts ——600 K, n =0.03, g= 1), and a;„=2 a.u. , we find
that for s)0.05 Ry, I/o=Bln[D(e)]/c)e=200 Ry ', or
cr=68 meV. This gives o/k&T& -1.3, in good agreement
with the value of 1.25 0.1 found in the stoichiometric
chalcogenide glasses ' g-As2Se3 and g-GeSe2. The
larger values which are found for other compositions are
discussed elsewhere.
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Matrix element effects have been neglected in the es-
timation of o. The optical transition density, F(e), has
the same kernel as Eq. (5) weighted by a to account ap-
proximately for the photoexcitation oscillator strength
with initial states localized in a volume of approximately
a . In this case, InF(e) has the same expression as
inD(e) in the form of Eq. (21) except that the second
term is slightly different. In fact, to the same order of ap-
proximation as in Eq. (20), it can readily be shown that

tegral of the form

I(e)= J P(x)e ""dx (A 1)

, I" P(e) (A2)

with P(x) a repeatedly differentiable function. By repeat-
ly integrating by parts, one obtains

InF(e) =lnD(e) —31na (25)

where we use Eq. (20) for lnD(e) in Eq. (25). Thus
InF(e) has the same energy derivative as lnD (e) and there
is no difference whether we estimate cr from D(&) «
F(e).

In summary, our model assumes that the Urbach tails
observed in amorphous semiconductors are produced by
potential fluctuations frozen in at the glass transition tem-
perature (Tg). The probability distribution of these fluc-
tuations depends on their formation energy and is
governed by the Boltzmann factor. As a consequence, a
proportionality relationship between o. and k&Tg ls found
with a constant factor near 1.3. Experimental identifica-
tion of this factor and its calculation contributes signifi-
cantly to understanding the physical origin of the defects
responsible for Urbach tails.

After this paper was submitted for publication, a paper
employing assumptions similar to ours appeared. How-
ever, in that paper, the ratio o./k&Tg is not determined.
In another recently published paper, exponential band
tails have been obtained with "correlated potential fluc-
tuations. " The presentation is mathematically more ela-
borate, but the derivation of the exponential form of the
density of states relies essentially on the same short-range
potential (square well or Gaussian) that we use. No con-
nection is made between their parameters V, and cl and
the defect freezing temperature Tg, nor can we see a sim-
ple way to make such a connection, except through
derivations similar to those given here.

where P'"'(x) denotes the nth derivative of P(x) with
respect to x.

Now, writing Eq. (16) in the form

D(e)=
oo

dy g(y )e I rri .)g(y)

Ve ~o
(A3)

where

1
g(y) = —[ I+y(m. —cot 'y)],

3'
(A4a)

and

g(y) = 1

, +1 y'(m. —cot 'y)', (A4b)

1 —(I /~c)goD(e) = —f(go)e (A6)

with

and yo is given by Eq. (17). By changing the integration
variable to g, we have

D(e)= J dg fe (A5)vs ~o

where go=g(yo) and f =g(y)(dg/dy) '. For the range
of parameters we are interested in (see text for discussion),
I /v e & 30»1, we may use just the first term in Eq. (A2)
and obtain
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APPENDIX

and straightforward manipulation leads to

1+ a
f(no)=

(Pari. )'[3+(3+so '»a in)

(A7)

(A8)

We show in this appendix that the integral in Eq. (16)
can be approximated by Eq. (19). We first consider an in-

Substituting Eqs. (A7) and (A8) in Eq. (A6) gives us Eq.
(19) in the text.
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