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Infrared-laser excitation of the internal vibrational mode
of a diatomic molecule adsorbed on a metal surface
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The infrared-laser excitation of the internal vibrational mode of a diatomic molecule adsorbed on
a metal surface is analyzed theoretically. This vibrational energy is damped into the metal by
electron-hole excitations. Simple expressions for the populations of the vibrational levels, the mean
number of vibrational quanta, and the rate of energy transfer between the infrared laser and the
metal surface in the steady state are derived. An equation of evolution can readily be solved numeri-
cally to determine the time necessary to reach this steady state. The criteria of applicability of the
Markov approximation (which leads to the golden rule) is clearly established, where it is seen that
this approximation may not be used to compute the evolution of the populations of the vibrational
levels. The random-phase approximation is shown to give the correct kinetic equation for the popu-
lations of the vibrational levels. The excitation of carbon monoxide adsorbed on a copper surface is
analyzed quantitatively.

I. INTRODUCTION

The excitation of a molecular vibration can significant-
ly contribute to overcoming the activation barrier of a
chemical reaction. This fact has led to many attelnpts to
modify the course of surface processes by resonant excita-
tion of vibrational modes by means of infrared-laser radia-
tion. Due to their importance in catalysis, laser-
stimulated reactions at metal surfaces have been investi-
gated. For example, it has been shown that focused
infrared-laser radiation can induce resonant ionization of
adspecies or gaseous species above a surface, where the
fragments from the latter process can then undergo sur-
face reactions which are not possible with the original
molecules. Even when the laser is not focused, the
resonant excitation of a gaseous species can decrease the
likelihood of physisorption or increase the tendency for
dissociative chemisorption. When laser radiation im-
pinges on a gas-solid interface, it can excite the substrate,
adsorbate, and/or species in the gas phase. Chuang has
demonstrated that resonant excitation of the adsorbate
can stimulate etching of a silicon surface by SF6. While
this mechanism of adsorbate resonant excitation has been
proposed for experiments involving metal surfaces, it is
perhaps not as obvious here since the vibrational energy of
a metal adsorbate quickly damps into the metal, as ob-
served by infrared reflection absorption spectroscopy. '

This leads to two questions: (i) Can an infrared laser
beam maintain a high surface concentration of vibration-
ally excited molecules, and (ii) what is the rate of energy
transfer from the laser to the metal through the adsorbed
molecules? Such energy transfer leads to resonant heating
of the substrate, which can then "thermally" enhance a

surface reaction or the desorption of the adsorbate before
reaction occurs. These questions have motivated us to
carry out a theoretical study of the simple case of the
resonant interaction of infrared laser radiation with a dia-
tomic molecule adsorbed on a metal surface.

The spectral infrared absorption width of a diatomic
molecule in the gas phase is of the order of 10 cm
When the molecule is adsorbed on a metal, this width may
reach many cm '. This broadening was successfully ex-
plained by Persson in terms of electron transfer between
the adsorbate and the substrate, ' and this mechanism has
been confirmed by means of cluster calculations. " The
lifetime of an excited vibrational state was estimated to be
of the order of 10 ' s. This is much shorter than the
lifetime due to other mechanisms such as phonon-phonon
energy transfer ( —10 s) (Refs. 12—17) or dipole-hole-
electron interactions ( —10 ' s). ' We shall thus assume
electron transfer to be the only mechanism responsible for
energy transfer between the substrate and the adsorbate.

Theoretical studies already presented in the literature
related to the interaction of an infrared-laser beam with
adsorbed molecules are focused on the phonon-phonon en-
ergy transfer between the substrate and the adsorbate.
The computational techniques used are the "golden
rule"' ' and the transformation to dressed states. '

The Zwanzig projector technique' within the Born, the
random-phase, and the Markov approximations has been
used to compute molecular desorption rates. ' We shall
use the Zwanzig projector technique within the Born ap-
proxirnation only, and shall obtain simple expressions
describing the kinetic and the steady state of our system.
Furthermore, our results will provide criteria for the ap-
plicability of all the approximations listed above.
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In Sec. II we present our model and write down the
Hamiltonian. In Sec. III we derive the kinetic equation
for the density operator characterizing the vibrational
state of the adsorbed molecule. In Sec. IV we analyze the
memory kernels, where the validity of the Markov ap-
proximation is questioned. In Sec. V we derive the prop-
erties of the steady state and the equation of evolution of
the populations of the vibrational levels, where we look at
the effect of anharmonicity by restricting our equations to
a two-level system. In Sec. VI we present soroe numerical
results, and we end with the conclusions in Sec. VII.

positions of the metal nuclei and molecule with respect to
the surface. We have also assumed a weak dependence of
V,s on g'. This is a generalization of the Hamiltonian
written by Persson and Persson. '

We can decompose H as

H =H'+H'+H'+H" +H~

where H' is the electronic Hamiltonian,

H'= g EsEsEs+ g (V sEsa +h.c. )+E,a a
S S

II. MODEL + +ebb b,
b

(4)

The internal vibrational mode of the adsorbed diatomic
molecule is assumed to be harmonic, with the molecule
adsorbed perpendicular to the surface. The infrared laser
beam is collimated and polarized in such a way that the
electric field is parallel to the axis of symmetry of the
molecule. This simplification is valid because an infrared
beam can only create an electric field perpendicular to the
surface in its vicinity. The laser is tuned in resonance
with the internal molecular vibration. The adsorbate-
substrate electronic system is taken to be in the ground
state, so that the vibration of the adsorbed molecule
creates electron-hole pairs. This causes a strong damping
of the vibrational energy into the metal. This approxima-
tion is valid if Ace~&kT, where T is the temperature of
the metal, k is the Boltzmann constant, and co is the fre-
quency of vibration of the molecule.

The Hamiltonian can be written in the second-
quantization form as

H = g EsEsEs+ g( V~sEsa +h.c. )+ncaa+. V (g)a a
S S

+ g ebb b+ g Vb(g)b b+H +H"+Eg;„. (1)
b b

Here, E& is the creation operator of one electron in the
state

~

S) of the unperturbed metal; a and b are
creation operators of electrons in the orbitals

~

a ) and

~

b ), respectively, of the free diatomic molecule; g is the
coordinate associated with the stretching of the molecule;
and Ek;„ is the kinetic energy associated with g'.

~

a ) is
assumed to be the only molecular orbital interacting with
the electronic orbitals

~

S) of the metal, and this interac-
tion gives the factor V,s. s, + V, (g), eb+ Vb(g), and Es
are the Hartree-Fock energies of the electrons in the orbi-
tals

~

a ),
~

b ), and
~
S), respectively. H" is the Hamil-

tonian of the radiation, given by

H'= g~kV kuk+ ~ ) . (2)
k

Here, k is the norm of the wave vector k of the photons,
where k is parallel to the direction of propagation of the

f ~

beam, k=kkp, and pk is the creation operator of one pho-
ton of wave vector kkp. The light is contained within a
cubic quantization volume U. H is the interaction
Hamiltonian between the molecule and the infrared beam.
Since we are only concerned with the coupling between
the molecular stretching and the electronic system, we
have neglected the dependence of this Hamiltonian on the

and can be formally diagonalized to give

H'= g epC pCp+ g ebb b,
P P

where

a=+(a ~P)Cp.
P

The vibrational Hamiltonian is given by

H"= g V, aa+ Vb bb g +Ekin
b

2pM

X —i
2epU

' 1/2

y ~k(Pk Pk )

k

where 6 is the effective charge carried by the stretching
coordinate g, E is the electric field, and eo is the dielectric
constant of the vacuum. H" is given by

H'"= V, (g)a a+ y Vb(g)b b
b

—g V, a a + Vb b b g
b

(10)

We approximate V, (g) by
1/2

(V+V) .

III. KINETIC EQUATION

To compute the evolution of the vibrational state of the
molecule, we shall use the Zwanzig projector technique. '

where
~
g) is the ground state of the electronic system.

H' is assumed to be the Hamiltonian of an harmonic os-
cillator,

~22 2
Hv P~ 0 + Pk ~(VtV+ &

)
2 2

where p is the reduced mass of the molecule and V is the
creation operator for a vibrational quantum. H is then
given by

1/2
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In this approach, Zwanzig derived an exact kinetic equa-
tion for the density operator of one subsystem interacting
with another one, which will be named the bath subsys-
tem. In our situation the first subsystem will be the inter-
nal vibrational mode of the adsorbed diatomic molecule.
It interacts with the bath subsystem, which is constituted
of two independent subsystems: the laser beam and the
electronic system. The interaction Hamiltonian between
the vibration and the bath is given by

p(0) =p'(0) p" . (16)

We assume the vibrational subsystem to be in its ground
state at time t =0,

The density operator of the bath subsystem is itself the
outer product of the radiative (p") and electronic (p') sub-
system:

H =I

where

' 1/2

(V +V)B, (12)
p =pp (18)

The electronic subsystem is taken to remain in its ground
state,

B =B'@I,+B'I, . (13) p'= g&&g
I

.

BcB'= (a a+(g a a Ig&),
a

1/2

B'= —i6
2epU

(14)

We have removed the dependence of H" on the electronic
degrees of freedom corresponding to the occupation of the
molecular orbitals

I
b &. This simplification comes from

the fact that these orbitals are not coupled with the elec-
tronic orbitals

I

S & of the metal, which can be verified by
computing explicitly the memory kernels in Eqs. (24) or
(28) below, where no specification on the form of H is
needed.

The starting operator of the complete system [p(t =0)]
is taken to be the outer product of the vibrational
[p'(t =0)] and the bath (p") density operator,

Here I, and I, are, respectively, the identity operator of
the radiative and electronic subsystem, symbolizes the
outer product, and

Tr,„[H'.p" ] =0, (21)

where Tr,„[ ] is the trace over all the electronic and radia-
tive states.

To obtain a tractable kinetic equation, we shall invoke
the Born approximation. ' This approximation is valid if
the interaction Hamiltonian between the vibrational and
bath systems is small in comparison with the Hamiltoni-
ans driving their evolutions independently ( H"
»H «H ). It then follows from that that the kinetic
equation can be written as'

The density operator of the radiative subsystem corre-
sponds to a statistical superposition of coherent states
with different phase. ' p' is then diagonal in the radiative
Hamiltonian eigenstate representation,

p Xpk. I
«&&«

I
(20)

k, n

We note that p'(0), p, H", and H ( =H'gH") commute
with each other. Furthermore,

ihip "(t)= [H",p"(t)]——f ds Tr,„[[H,exp( iH's/fi)[H ( ——s),p'(t —s)g p ]exp(iH"s/fi)] ], (22)

where the density operator of the vibrational system is defined by p„(t)=Tr,„[p(t)J, and

H ( —s)= exp( —iH"sly)H exp(iH"s/fi) . (23)

Equation (23) can be written in terms of the matrix element p „(t) ( = (m
I p (t)

I

n &) simply by multiplying it, respec-
tively, on the left and by the right with (m

I

and
I

n &. The derivation in the case where m =n is given in Ref. 12. The
generalization to the case m&n is straightforward. We observe that the integrand in (22) contains a double commutator,
corresponding to four terms. To simplify the notation, we shall track explicitly just one of these terms, keeping in mind
that the others must be treated in the same way. We then arrive at

p"„(t)= ice„p"„—(t) — f ds (three terms) —g exp(icoz„s)(H& H„, ( —s) &p,'z(t —s)
O,P

(24)

where

and
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To solve these coupled equations, we transform into the interaction picture by defining

p„" (t) =p „' (t)exp( —iso„ t) .

After some simple algebraic manipulation, we end up with

p'„(t)= — (three terms) —+exp[i(co~+co„)t] f ds exp(ice, „s)&H& H„, ( —s))p,"z(t —s)
g2

O,P

(25)

(26)

Without any interaction (H =0), the quantities p,~(t —s) are constant. With H &0, they are expected to vary only on a
time scale much greater than the oscillation period of the vibration. Thus the only terms in the sum g, which give
rise to a variation of p „(t)during a period corresponding to several oscillations are the ones verifying

~po+~nm =O
or

p =m —n+o .
(27)

Neglecting all the others, we can write the following kinetic equation, where we use (H~( s)Hki —) = (HkIH~( —s))*,
pi", =(pJ )* HkI-=Hi'a.

p„" (t)= — f ds Q Iexp(ice„,s)(H„,H,„(—s))p"„(t s)+—[exp(ice, s)(H, H, ( —s))p"„(t—s)]*I
0

—g I exp(ice, „s)(H( „)+, H„, ( —s) )p," ( „)+,(t —s)

+ [exp(ice, s)(H~„~+,„H,( —s) )p, ~„~+,(t —s)]"
) . (28)

The above equation gives us the following result: only the elements of the vibrational density matrix which belong to
the same diagonal (p,t with

~ j—i
~

=const. ) are coupled in the kinetic equation. More generally, even for a highly
anharmonic vibration it is easy to see that the diagonal elements of p (t) evolve independently from the others [put m = n

in Eqs. (26), (27), and (28)]. The importance of this result will be emphasized in Sec. VII. In our situation, further sim-
plifications can be made. Using (12) we find that (H~ „~+, H„, ( —s)) is different from zero only if o =n+1. In the
case where 0 =n + 1, it is equal to

[(m + 1)(n + 1)]'~ D ( —s),

where D( —s) is defined as

D( —s):—(&&(—s)) .

The kinetic equation can then be written as

(29)

p „'~ (t) = — f ds I (n + 1)exp( —icos)D ( —s)p „" (t —s)+ n exp(its)D ( —s)p „' (t —s)

+(m +1)[exp( icos)D( ——s)p„' (t —s)]*+m [exp(icos)D( —s)p'„(t —s)]*I

—( [ [(n + 1)(m + I)]'~ exp(icos)D( —s) I +c.c. )p'„+, +,(t —s)

—([V'mn exp( icos)D( —s)—I+c c )p'„~ . &.(t —s) I .

The kinetic equation for the diagonal elements is

(30)

P„(t)=— 1
Re ds I [(n +1)exp( icos)+n exp(icos—)]D ( s)P„(t —s)—

CO

—( n + 1)exp(icos)D ( s)P„+~(t —s) —n exp( —i cu—s)D ( s)P„~(t —s) I, — (31)

where P„(t)=p„'„(t)=p"„„(t).A last simplification comes
from the fact that

(~'), = &~"),=0, (32)

where (K),=Tr, IK p'I, and Tr, I I is the trace over all

the electronic states (with a similar definition for ( )„).
The memory kernel then splits into two parts, one relat-

ed to the interaction between the molecule and the laser,
the other related to the interaction between the molecule
and the substrate,
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D ( —s) =D'( —s) +D "(—s), (33)

where D'( —s) =(B'B'(—s))„with a similar definition
for D'( —s). Because at time t =0 the nondiagonal ele-
ments of the vibrational density matrix are equal to zero,
they will remain zero at all times. We are not interested
in their evolution anyway, because the mean vibrational
energy does not depend on them.

IV. COMPUTATION OF THE MEMORY KERNEL

&&(a a —(g
~

a a
~
g) )exp(iH's/fi)

~
g) . (34)

Using (6) and its Hermitian conjugate, we can transform
this into

Let us first compute the part of the memory kernel due
to H". From (13), (23), and (33), we obtain

2

D'( —s) = BEa

a (g
~

(a a —(g
~

a a
~
g) )exp( iH'—s/fi)

Taking into account the fact that the orbital
~

a ) is four-
fold degenerate, ' we end up with a rate of transition
from the vibrational state n to m equal to

R„' = (n5„+))o.n, m 4
(38)

where o.=(Bc /Bg)p, (cf ).
As shown in Ref. 10, o. may be determined experimen-

tally. It is the derivative of the number of electrons in the
orbital

~

a ) with respect to the stretching amplitude.
Persson assumed that the difference between the dipole
moment of the adsorbed (D, ) and free (Df ) molecule is
due to this charge transfer. Then, the effective charge (5)
associated with the stretching of the adsorbed molecule is
equal to 5=(5++edo ), where 6+ is the effective charge
associated with the stretching of the free molecule, e is
the charge of one electron, and d is the mean distance
separating the electron in the orbital

~

a ) from the metal
surface. Using the fact that the transition dipole mo-
ments of the free and adsorbed molecule are, respectively,

D'( —s) = aE.
'

E~( (Ef ) Es( )Ef )

X exp [—( c, —c~)s /A] .

(35)

and

Df ——5+

D, =6
2p6)

1/2

' 1/2

This formula has been derived previously by Persson. '

The new feature which we shall introduce is a generaliza-
tion to all vibrational transitions, the justification of the
Markov approximation, and the formula (39) which is not
clearly established in [10].

Replacing the sum by an integral,

f dcp(c), p(c) i(a ~a) i' p. (c),

we can estimate o to be

D, —Df 2pco
' 1/2

(39)

We now compute the part of the memory kernel due to
H . Some simple algebraic manipulations lead to

we obtain

D'( —s) =
2

~~a 'f QOf dc f dc~p. (c )p, (cp)

A5D'( —s) = geek[(pkpk )exp( Ici)ks)—
2epU

+ ( (Pkpk ) + 1)exp(inks)] (40)

X exp[ i (cp —c )s—/fi],

t
8 2 ~ca

Re ds exp(icos)D'( —s)=M cop, (cf )
0

t
Re ds exp —icos D' —s =0.

'2

(37)

(36)

where p, (c) is the density of states of the orbital
~

a ). If
we assume that the width of p, (c) is on the order of 1

eV, then D'( —s) vanishes for s »A'/(I eV)=10 ' s.
During such a short time, the system cannot evolve, and
D'( —s) may be integrated over s assuming
P„(t s)=P„(t) in (31), which is —the Markov approxima-
tion. From Ref. 10, we have

U 1/3
d~L (pkpk ) n (~L, )2~c

where c is the speed of light.
We also neglect the term (+ 1)exp( —inks), which

gives the damping of the vibrational level due to the vacu-
um fluctuations of the electric field. Finally, we assume
the spectral intensity of the laser to be a Lorentzian cen-
tered around co,

n (coL )=X
m [I L + ( co —cot ) ]

(41)

By taking U large enough, we may replace the sum by an
integral
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where I L is the spectral linewidth of the laser and N is
the density of photons. Because n(tvL ) vanishes quickly
when cvL is different from co, we may replace teak in (40)
by co. The intensity of the laser is given by

0 1 0 0
0 —1 2 0
0 0 —2 3

0

0 0 0 —n (n+1)
C E'pI = D'(0) = (42)

0 0 0 0
Finally, we obtain from Eqs. (40)—(42)

I L [exp(itvt s)+ exp( its—t s)]
D "( —s) = dtvL

2c&p m [I L + ( cv —coL ) ]

or

I6 —rLsD'( —s) = e [exp(its)+ exp( —icos)] .
2c Ep

(43)

The quantity D "( —s) does not vanish before s is larger
than I L

'. I L
' is the temporal coherence of the electric

field and may be larger than the characteristic time of the
evolution of the probabilities P„(t), in which case the
Markov approximation is not applicable. Furthermore,
we may not then neglect the temporal coherence of the
stretching position g(t). To take this into account, we re-
place +co in (31) by +to+i I „I,' .is the temporal coher-
ence of g'(t) and is given by

I,=R] p
——7TAcT

(44)
4p

and E is given by

0 0 0
0 0
3 0

n —(2n + 1) (n + 1)

—3 2

2 —5

0

In the steady state, P(t) is zero and P(t —s) is equal to
P(t), such that (45) becomes

P(t) =a(D+PE)P(t) =0 (46)

with a=Ma l4p and p=26 I/M col cr ceo. In fact, by
eliminating =0 on the far right-hand side of Eq. (46), we
obtain the kinetic equation within the Markov approxima-
tion. In the steady state, the probabilities P„are given by

P„'+ ~
——[(2v + 1)P+v]P„' PnP„'— (47)

This kind of equation admits only one normalized solu-
tion, given by

n
V. EQUATION OF EVOLUTION AND PROPERTY

OF THE STEADY STATE Pn 1+P
1

1+P (4&)

By neglecting the integrals

ds exp(+i 2cgs)exp( —I s)P„(t —s),
0

we can express the kinetic equation (31) in the simple
form

P(t) = D.P(t)
4P

6'XE
+ . dsexp —Is P t —s

2AcoPc Ep
(45)

where I"=I
L +I „P(t) is the vector [Po(t),P, (t), . . . ], D

is the matrix

The mean number of vibrational quanta is given by

(n)= g nP„'=P.
n=0

(49)

~ =
~

—aPkco
~

= molecule
6I —1

2pct-oI
(50)

To know how many times it takes for the system to
reach the steady state, we must integrate Eq. (45) numeri-
cally. This leads to the iterative equation

The power dissipated into the metal is given by the scalar
product between aDP' and (O, Ace, 2fico, . . . ), which is
equal to

P„(t +At) =P„(t)+At a [ nP„(t)+(n + 1)P„+—&(t)]

+PI f ds exp( —I s)[nP„~(t —s)+(n + l)P„+~(t —s) —(2n +1)P„(t—s)] (51)

To iterate this equation to arbitrary t, we need not know
all the history, P„(t —s), of the system since

~+AT
ds exp( —I"s )P„(t +At —s )

r' At P„(t+b,t)

ds exp —I s P„ t —s 52

When the anharmonicity of the vibration is high, the
laser can only couple the two lowest vibrational levels.
The interaction between the molecule and the metal en-

tails a vibrational transition to just the lower level. Then
the populations of the levels containing more than one
quantum will decay rapidly to zero (a ' is approximately
the lifetime). Furthermore, if at t =0 these levels are not
occupied, they will remain empty all the time. In that sit-
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uation, our problem reduces to a two-level system, and the
kinetic equation reduces to

0 1
P'(t) =a 0 1

P '(t)+Pl
L

t
ds exp —I s P' t —s (53)

pa
2P+1 26~+ 2aI

(54)

fiona
molecule

2P+ 1
(55)

These results are formally equivalent to those obtained by
van Smaalen, Arnoldus, and George (see Sec. VI of Ref.
16), who transformed to dressed states to compute the
laser heating of a transparent crystal via adsorbed atoms.
They accounted for the detuning 6 between the frequency
of the laser and the vibration, and they neglected the life-
time a ' and the laser width I I . In any event, by taking
the high laser intensity limit, we end up with the same sa-
turation power

moleculea ~(X —1

2
(56)

Here apI =0 /2, where Il is the Rabi frequency defined
by

n'=
i (I iM

i
0) i'yr',

CEp

where M =5/ is the dipole moment operator and
P'(t)=(PO(t), P;(t)). At the steady state, the population
of the upper level and the power dissipated into the metal
are given by

Comparing (54) and (55) to (49) and (50), we observe that
the only new feature introduced by the anharmonicity is
the saturation factor (2p+1) ', so that the effect of the
anharmonicity is negligible if P « 1.

The kinetic equation (53) can be rewritten in terms of
the population inversion as

[P&(t}—Po(t)]= —cos(Qt) . (58)

Here we have taken the initial conditions to be Po(0) =1
and P&(0)=0. This is the Rabi oscillation, and such
behavior cannot be revealed using the Markov approxima-
tion. This oscillation will damp on a time scale of I ' to
reach the steady state defined in (54) and (55).

VI. NUMERICAL RESULTS

In this section we adopt the numerical data listed in
Table I, which correspond to carbon monoxide molecules
adsorbed on a copper surface. The laser characteristics
correspond to an infrared beam emanating from an opti-
cal parametric oscillator pumped by a YAG (yttrium
aluminum garnet) laser. This beam is focused to obtain a
section of 1 mrn and strikes the surface with a small
grazing angle of incidence.

From (39) and (46), we obtain'

[P )(r) —P o(r}]

= —2aP;(t) —fI ds exp( —I s)
0

X [P;(t —s) P'(r——s)] . (57)

On a time scale shorter than I ', we can describe analyti-
cally the behavior of the population inversion. Neglecting
the term —2aP; and estimating exp( —1 s) as unity, we
can write the solution of (57) as

a =I,=6.4 & 10"s (59)
TABLE I. Data used in numerical calculations.

Characteristics of the Adsorbate

System considered: CO adsorbed on Cu '
Df ——0. 1 debye
D, =0.22 debye
co=2100 cm '=4&(10' s
d =7.8)&10 " m'

To account for the screening of the electric field by the electron-
ic polarizability of the adsorbed molecule, we adopt 6=0.6e

Since the temporal coherence of the position g(t)
(I „'=1.5X10 ' s) is much smaller than the temporal
coherence of the laser electric field (I L

'& 10 " s), we

may make the estimation

Characteristics of the Laser Beam

Pulse duration: 15 &( 10 s

Pulse energy: 10 J
Beam cross section: 10 m
Surface enhancement of the intensity by constructive
interference between the incident and reflected beam:

4e

Mean intensity: —3)& 10' J m s

Laser width: AcoL &1 cm '=3&10' s

'Reference 3.
Reference 8.

'Reference 10.
Reference 25.

'Reference 20.

o 0.5
E

0
-2

FICx. 1. Dependence of the power dissipated into the metal
on the strength (a) of the interaction between the admolecule
and the substrate, where H,„=lim o&(a)=5 I /2I Lpceo.
The region where the hypothesis of harmonicity fails is dark-
ened with points.
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FICx. 2. Evolution of the occupation probabilities of the three
lowest vibrational levels, Po(t), P&|,'t), and P&(t), and of the
mean number of vibrational quanta (n ) for p= 1.

FICx. 4. Occupation probabilities of the vibrational levels at
the steady state for P= l.

(60)

I =I,+IL —I L . (61)

Adopting the numerical data of Table I, and using Eq.
(49), we obtain the mean number of vibrational quanta at
the steady state to be

( n ) =P=0.03 . (62)

The power transmitted from the laser beam to the surface
is calculated from Eq. (50) to be

%=7&10 ' Js 'molecule (63)

From (50) and (60), we observe that the power is inversely
proportional to a, due to the fact that I"I is much smaller
than I, . If the interaction between the molecule and the
substrate is less important, we have a situation where I I

With this condition, the mean number of vibrational
quanta is inversely proportional to the square of cz. This
reflects the fact that this number is limited by the rate of
damping of the vibrational energy into the metal, as well
as by the broadening in energy of the vibrational levels.
The broadening decreases the absorption efficiency of the
quasimonochromatic laser beam. This does not occur if
the linewidth of the laser is greater than the width of the
vibrational levels, in which case

is much larger than I „, in which case the power is in-
dependent of a, where a measures the strength of the in-
teraction between the molecule and the substrate. This
holds if the hypothesis of harmonicity remains valid,
which means that p, the mean number of vibrational
quanta in the steady state, is not too high, say less than
0.1. The region where our model fails depends on the
laser characteristics and is given by

a
log10

56 I
og10

AcoI LpcEp
(64)

O.OIO-

where we have assumed a« I I. This is illustrated in
Fig. 1.

To estimate the time ~ necessary to reach this steady
state, we compute the evolution of the populations of the
vibrational levels using (51) and (52). We adopt the initial
conditions P„(0)=5„0. The evolution of the mean num-
ber of vibrational quanta and the occupation probabilities
of the three lowest levels are shown in Figs. 2 and 3 for
two different values of p. The populations of the vibra-
tional levels in the steady state for P equal to 1 are
presented in Fig. 4. Here we take the steady state to be
achieved when the mean number of vibrational quanta
reaches 90%%uo of its exact value in the steady state. r does
not depend noticeably on p and is estimated to be

I—

0.5
CQ

CQ

C)

CL

-05 c

0
0

time I a'

3
time la '

FIG. 3. Same as Fig. 2, with P=0.01.

FIG. 5. Evolution of the mean number of vibrational quanta
under the Markov approximation {( n )~) and without this ap-
proximation ((n )„,„M) for P=0.01.
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7 4a '=5.6)& 10 ' s . (65)

This small value indicates that the mean number of vibra-
tional quanta will follow the instantaneous intensity of the
laser since the intensity varies on a time scale of the order
of 10 s. In Fig. 5, we show the evolution of the mean
number of vibrational quanta both with and without the
Markov approximation. We observe that this approxima-
tion overestimates the rate of evolution of the system and
gives ~ equal to 2.3a

VII. CONCLUSIONS

We have derived a simple kinetic equation for the popu-
lations of the vibrational levels of a diatomic molecule ad-
sorbed on a metal. The molecule interacts with the elec-
tronic degrees of freedom of the metal and an infrared
laser beam. This equation can readily be solved and is
valid for all laser linewidths, infrared absorption widths
of the adsorbed molecule, and time scales. It has been
shown that, to compute the evolution of the populations,
the Markov approximation is not valid if the temporal
coherence of the laser field is greater than the time scale
during which the populations are changing. This failure
was observed earlier by Beri and George.

Our kinetic equation corresponds exactly to the one ob-
tained using the random-phase approximation. The use of
this simplification has entailed the neglect of the nondiag-
onal elements of the density matrix to compute its evolu-
tion, and this approximation has remained questionable in
the case of the interaction between a laser and a mole-
cule. ' It has been used extensively, either implicitly in
application of the golden rule, ' or explicitly. ' ' Our

theoretical development proves that this approximation
leads to the correct kinetic equation for the populations of
the vibrational levels. This conclusion should emphasize
the validity of some theoretical predictions already given
in the literature.

Our results also show the equivalence of the steady-
state properties computed using the golden rule, ' the
random-phase approximation, ' ' the Markov approxi-
mation, ' the transformation to dressed-states tech-
nique, ' ' or the Zwanzig projector technique. In the
specific situation considered in the preceding section, the
probability of finding an adsorbed molecule in its first-
excited vibrational level is 0.03, which suggests that
resonant excitation of a molecule adsorbed on a metal sur-
face could provide a means of laser-enhanced surface re-
actions.
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