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Universal scaling relations in compressibility of solids
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A particularly simple two-parameter scaling relation for the variation of the bulk modulus of
solids with changing density has been found. The relation, although empirical, fits all metals and
metal alloys tested, and also fits semiconductors, ionic crystals, and, with a lesser degree of success,
organic compounds. The two parameters seem to be related to the rupture strength and the elec-

tronegativity of the solid.

I. INTRODUCTION

Attempts to form general relations for the compressive
properties of metals go back to the early days of high-
pressure research, when it was observed that compressibil-
ity was not constant as a sample is compressed. This lead
to approximate formulas which represented little more
than curve fitting to the available data.! The first well-
founded theoretical indication that there was some degree
of universality in the compressibility of metals came from
the extensive density-functional calculations of the ground
states of elemental solids performed by Moruzzi et al.?
In the process of calculating the equilibrium lattice con-
stant, they obtained sufficient information to numerically
evaluate the bulk modulus of the elements studied at zero
pressure. In addition, their muffin-tin geometry yielded
an unambiguous value for the electron density in the in-
terstitial regions. They then observed a universal relation
between the bulk modulus and interstitial electron density,
which appears in Fig. 1. The solid line is the compressi-
bility of an electron gas of equal density evaluated using
the Hedin-Lundqvist correlation energy.> Moruzzi et al.
suggest that a reasonable physical approximation is to as-
sume that the ionic cores are rigid and to consider the ma-
terial compressibility as solely due to the interstitial elec-
tron gas. This is at least a starting point for understand-
ing where such universal behavior can come from. Cer-
tain empirical observations of universal scaling behavior
in the binding energies of metals have been reported by
Rose et al.,*~7 which will be discussed later. (In this pa-
per the term empirical is used not in the rigorous sense of
describing a relation derived from trends observed solely
in experimental data, but also to describe trends observed
in numerical data from related theoretical calculations.
Thus, although the work of Rose et al. is based on metal-
lic adhesive binding-energy calculations,* the universal
scaling behavior reported by them is not the result of any
underlying theory of structural energetics, and is thus
empirical in nature.)

II. VARIATION OF METALLIC BULK MODULI
WITH PRESSURE

The generality of the relationship of Moruzzi et al. can
be tested by examining the variation of the bulk modulus
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with pressure in selected metals and seeing if the observed
dependences still apply. Unless otherwise stated, all
compressibilities are calculated by numerical differentia-
tion of pressure-density curves based on zero-temperature
isotherms calculated from shock-wave data.® Shock-wave
experiments are necessary in most cases so that sufficient-
ly large compressions can be generated. In Fig. 2, we im-
mediately see that the simplest relation, where the intersti-
tial electron density scales with the material density, is
inadequate to explain the variation in bulk modulus. The
bulk modulus of aluminum increases more slowly than
that of the electron gas with increasing density under this
assumption, even if one corrects for the rigidity of the
ionic cores. This is true for most metals.
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FIG. 1. Bulk modulus versus interstitial electron density ex-
pressed in terms of r, (4mwr=p,). The data points result from
the density-functional calculations of Moruzzi et al. in Ref. 2,
and the solid line is the bulk modulus of a homogeneous electron
gas. The figure is reproduced from Ref. 2.
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FIG. 2. Bulk modulus versus electron density for aluminum
(X) and a homogeneous electron gas (@). The assumption of
rigid Al ionic cores is made, and thus r,~' for the experimental
Al moduli varies as the cube root of the material density. The
resulting curves do not agree.

Recalling that the Moruzzi et al. relationship is based
on results from a muffin-tin calculation, however, allows
for a simple generalization of this viewpoint. In such a
calculation, the number of interstitial electrons per atom
is a variable, depending on the crystal structure and densi-
ty. It is therefore possible to conjecture that the number
of interstitial electrons per atom in the calculation
changes with density, and thus that the interstitial elec-
tron density rises slower than does the material density.
We have found that the simple relation

e~ /atom=n(py/p)+A (1)

for the number of interstitial electrons per atom, where pg
is the zero-pressure material density, p is the material den-
sity, and 17 and A are material-dependent parameters, gives
quite a good fit to the observed variation of bulk modulus
with material density.

The above treatment of the experimental compressibili-
ty data works reasonably well, but the procedure has no
physical significance as the rough model of Moruzzi
et al. for electron density versus bulk compressibility has
been used far outside its regime of applicability. Howev-
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er, the success of Eq. (1) in fitting the experimental data
offers promise for finding a simple universal variation of
metallic bulk modulus, and thus of compressibility and
the equation of state, with density. We have indeed found
a simple two-parameter scaling relation for the bulk
modulus as a function of material density:

B(p)=alv—PB)*, (2)
where v=(p/py)!”? (the inverse of a normalized intera-
tomic spacing), and a and 3 are material-dependent pa-
rameters, a having units of GPa. In Fig. 3 are displayed
fits to Eq. (2) for compressibility data for a large number
of metals and alloys. (The parameter values used appear
in Table 1.) The fits are at least as good as the data, with
correlation coefficients® in excess of 0.9999 being common
in the pressure range 0—100 GPa, which for these metals
corresponds to maximum densities of roughly
1.25p9— 1. 6pp.

The parameters a and 3 can be derived from zero-
pressure compressibility data. By differentiating Eq. (2)
with respect to v and manipulating, we obtain an expres-
sion for f3:

B=1—%[3B(P)/3P]"', v=1 (or P=0), 3)
where P is the pressure. One then immediately obtains
a=Bv)(1-B)%, v=1, )

where v=1 represents zero-pressure conditions. The pa-
rameters needed to predict the high-pressure bulk
modulus of metals are thus the zero-pressure density, bulk
modulus, and (3B /9P )Po'

The bulk sound speed as a function of density can also
be evaluated using Eq. (2). The bulk sound speed is ex-
pressed as

c*=B/p, (5)

where c is the bulk sound speed and p is the material den-
sity. By substituting Eq. (2) for B and observing that
p:pov3, we obtain

cl=(a/po)v—B)v73. (6)

Equation (6) is quite successful at predicting the sound
speeds along the zero-temperature isotherms obtained
from Ref. 8. This correspondence is shown in Fig. 4.

The bulk modulus, expressed by Eq. (2), can be in-
tegrated to give pressure and specific energy as functions
of v, while still retaining only the two material-dependent
parameters. The pressure is given by

P(v)= [ (3/v)B(v)dv
=3a/2)(v’—4Bv+2B* Inv+43—1) (7
and the specific energy by
EW)=3 [v7*P(v)dv
=a{3(1—B)+B*—(9/2v)+(9B/V?) (8)
—[3(48—1)/2v)]1 =B [BInv+1) /1) .
Thus, again within the regime of applicability of Eq. (2),
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FIG. 3. Fits of experimental bulk moduli of various elemental metals and alloys to Eq. (2). The axes are B'/? and p'/* so that the
theoretical relation gives a straight line. The figure is separated into three separate graphs for clarity: (a) Al, Be, Fe, Mg, Mo, Pd, Pt,

and W; (b) Cr, Cu, Hf, Ir, Re, Rh, and 304 stainless steel; (c) Nb, Ta, U, V, and WC.
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TABLE 1. Universal compressibility parameters for metals.

Metal a (GPa) B — P, (GPa)
Be 3300 0.817 22.5
Mg 2210 0.885 3.46
Al 4290 0.870 9.75

v 5860 0.838 26.0
Cr 13100 0.880 23.3
Fe 16400 0.926 6.8
Cu 9940 0.885 15.6
Nb 6020 0.833 29.3
Mo 9830 0.835 46.1
Rh 14 100 0.858 419
Pd 15300 0.892 19.8
Hf 3280 0.815 21.8
Ta 6690 0.831 33.8
w 12000 0.840 51.2
Re 16420 0.851 56.5
Ir 20590 0.872 44.6
Pt 18 850 0.880 33.6
U 9980 0.893 12.6
Steel 11100 0.881 19.3
wC 17 140 0.855 54.3

the pressure and compressive energy take on the form of
simple analytic universal functions having two material-
dependent parameters. In Fig. 5 is shown experimental
pressure-density data on 19 metals and alloys compared to
the universal relation of Eq. (7).

One is tempted to extend the relations given above into
the dilatational regime in order to extract some informa-
tion concerning materials in tension. It is clear that the
form of Eq. (2) limits the extent to which this can be ac-
complished, since it defines a positive-definite bulk
modulus, which does not allow for rupture of materials,
and is thus unphysical in this regime. However, it does
seem reasonable to suggest that rupture would occur, in a
perfect crystal, near where the bulk modulus goes to zero
in the current model. This occurs when v=/3, which
varies between 0.90 and 0.81 for most of the metals stud-
ied here. These values are typical of ultimate crystalline
strength calculations.!® If one then evaluates the pressure
at this value of v, a (negative) rupture pressure P, is ob-
tained, which is listed in Table I. The value of this rup-
ture pressure is between 10% and 20% of the zero-
pressure bulk modulus. Similar calculations have been
performed by Rose et al.” Their values for P, agree with
ours within about 15%.

III. UNIVERSAL COMPRESSIVE BEHAVIOR
OF NONMETALS

In the preceding section we established that the two-
parameter universal scaling relationship for compressive
properties established by Eq. (2) accurately predicts the
behavior of metals and alloys. In this section we investi-
gate the extent to which this relationship will predict the
compressive behavior of various classes of nonmetals.
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FIG. 4. Bulk sound speed calculated using Eq. (6) versus
(v—B)v~3% (v is the inverse of a normalized interatomic spacing
and f3 is one of the material-dependent parameters describing
the universal compressive behavior. The x-axis function is
chosen so that the theoretical sound-speed dependence will be a
straight line.) The metals displayed are Al, Hf, Mo, Rh, and W.

There are essentially three classes of nonmetals which will
be considered: covalently bound crystals, ionic crystals,
and van der Waals systems, such as organic materials. In
Fig. 6 we display fits based on Eq. (2) for selected
members of these classes, for which we have 7 =0 iso-
therms based on shock-wave data.® (The fit parameters
appear in Table II.) We observe that the fits of covalently
bound crystals, represented by SiC and Al,O3, ionic crys-
tals, represented by NaCl and LiF, and organic solids,
represented by paraffin (a mixture of medium-length hy-
drocarbon chains) and by polymethylmethacrylate
(PMMA), a structural polymer, all work very well over a
range of pressure corresponding to maximum compres-
sions to 1.6p;—1.7p,. Beyond these compressions in the
ionic crystals and organics, the calculation of the iso-
therms is somewhat questionable because of the extremely
high temperatures attained in the shock-wave experi-
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FIG. 5. Material density versus pressure for various metals and alloys. The pressure range is O to 100 GPa. The solid lines are the
theoretical fits resulting from Eq. (7). ' The isolated points are data resulting from experimental zero-temperature isotherms derived
from shock-wave data (see Ref. 8). Again, for clarity the figure is separated into four simpler graphs. (a) Al, Be, Cr, Mg, and V; (b)
Cu, Fe, Mo, Nb, and 304 stainless steel; (c) Hf, Rh, Ta, and WC; (d) Ir, Pt, Re, U, and W. In all cases the fits are as good as the ex-
perimental data.
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FIG. 6. Material density versus pressure for select nonmetallic solids. The solid lines are theoretical fits based on Eq. (7). The iso-
lated points are data from zero-temperature isotherms from Ref. 8 for SiC, PMMA (Plexiglass), and paraffin, and from shock-wave
hugoniots from Ref. 13 for Al,Os, LiF, and NaCl. (a) shows data for Al,O3, SiC, and LiF up to 100 GPa, and (b) shows data for
NaCl, PMMA, and paraffin to 25 GPa. In both figures the maximum degree of compression is similar, since those materials in (b)
are much more compressible than those in (a). Again, the fit is as good as the data, indicating that the universal relation expressed by

Eq. (2) also applies to certain classes of nonmetallic solids.

ments. We are thus faced with the surprising result that
all classes of materials, from metals to van der Waals
solids, obey Eq. (2) closely over a large range of compres-

sion.

IV. DISCUSSION

These results have the same flavor as the observation by
Rose et al. of universal scaling in the binding energy

curves of metallic systems.

4—7

They observed that the

TABLE II. Universal compressibility parameters for nonmet-

als.

Material a (GPa) B
Covalently bound

Al 04 1675 0.550

SiC 3090 0.745

Ionic crystals

NacCl 1040 0.830

LiF 6440 0.905
Organic compounds

Plexiglass 2060 0.965

Paraffin 1800 0.960

binding energy of metals can be expressed in terms of a
two-parameter scaling of an empirical universal binding-
energy function.* They have established that this function
and the scaling relationships quantitatively describe bime-
tallic adhesion, molecular binding, cohesion, and chem-
isorption on metals.® An expression for the mechanical
response of metals based on this universal binding-energy
function has been developed,’ but is said to apply only to
metals (and Si and Ge). Other materials, because of
differing electronic overlap interactions, are believed to re-
quire a different description. By contrast, through the
present study we have been able to establish that not only
does the mechanical response of metals depend solely on
two parameters, but that one can express, at least in the
compressive regime, the mechanical response of (ap-
parently) all materials in terms of a simple two-parameter
scaling relation.

It is of interest to investigate the degree to which Eq.
(2) will describe the behavior of a simple analytical model.
Consider the example of a perfectly harmonic solid, i.e.,
one in which the interatomic interaction is described by

D(N=K(1—14)*/13 , 9)

where [ is the interatomic spacing and [, is the zero-
pressure equilibrium spacing. Differentiation of Eq. (9)
twice gives an analytical expression for the bulk modulus,
which can then be fit to Eq. (2). When this is done for v
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FIG. 7. ELectronegativity ¢* versus the material-dependent
parameter a. The electronegativity scale chosen is due to
Miedema (Ref. 11). There appears to be a reasonably strong
linear correlation between ¢* and «, with a least-squares fit giv-
ing *=1.1X10"*a+3.44. Since electronegativity and electron
density are closely related, it appears that our a is also related to
electron density.

values from 1 to 1.2 (representing compression to 1.73pg),
the bulk modulus is described by 3=0.3245 with a corre-
lation coefficient in excess of 0.99999 [a is arbitrary in
this example because K in Eq. (9) is unknown]. This is an
extremely good fit, even though the functional form of
B(v) resulting from Eq. (9) is slightly different than that
of Eq. (2). The extraordinarily small value of 3 is an ar-
tifact resulting from the fact that a harmonic solid cannot
rupture.

We also find a significant correlation between the
values of the parameter a in Eq. (2) and the electronega-
tivities of the corresponding metals. In Fig. 7 is plotted
the electronegativity versus a for the metallic elements
studied in this paper. (The electronegativity scale is that
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of Miedema and de Chatel.!') The electronegativity ap-
pears to depend linearly on a within the considerable un-
certainties in both the values for a and the electronegativi-
ty. Specifically, a least-squares fit yields

$*=1.11x10""a+3.44 (10)

with a correlation of 0.925. This provides an interesting
connection back to the picture proposed by Moruzzi
et al.,? since the electronegativity and the interstitial elec-
tron density are closely related, as is also the chemical po-
tential in the density-functional approach to many-body
solid-state theory.!? Thus Eq. (2) may appear more simi-
lar to Eq. (1), the compression-dependent interstitial elec-
tron population, than seemed true at first.

In this paper we have demonstrated that the compres-
sive properties of most solids (not simply metals and pos-
sibly some covalent semiconductors, as in Ref. 7) display
universal behavior which is accurately described over a
large range of densities by the two-parameter universal
scaling function appearing in Eq. (2). The parameter a
has a linear correlation with elemental electronegativity in
the metals, and the parameter f3 is tentatively identified
with the rupture strength of an ideal crystal. Although
identification of the material-dependent parameters with
real and appropriate physical constants in this manner
strongly suggests that there is some first-principles basis
for Eq. (2), a fundamental derivation is currently un-
known.

Note added. After submitting this paper, we received a
copy of work by Vinet, Ferrante, Smith, and Rose'*
describing an empirical relation based on their previous
work on metals*~7 but requiring additional assumptions,
which models the compressive P-¥ relations of all classes
of materials. Although our explicit formulas differ, both
relations depend on the same input data [pg, B(pg), and
(3B /3dP), ], and the accuracy of description seems to be

similar. A fundamental derivation of the universal scal-
ing behavior is still lacking.
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