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A quantitative theory of extended x-ray-absorption fine structure (EXAFS) in diatomic molecules
is presented and tested by ab initio calculations in Br&. The theory, based on a refinement of con-
ventional EXAFS theory, takes into account (1) an energy-dependent exchange-correlation potential,
(2) multielectron excitations, and (3) a single-scattering, spherical-wave expansion. Inelastic process-
es are included assuming that core-hole excitations and losses in propagation are uncorrelated. We
find that a Dirac-Hara exchange potential gives better overall agreement of the EXAFS phase than
does the Hedin-Lundqvist potential. The amplitude discrepancy between experiment and single-
particle theory can be corrected by adding core-hole lifetime effects, experimental resolution, and
multielectron excitations.

I. INTRODUCTION

The single-particle theory of EXAFS (extended x-ray-
absorption fine structure) has been quite successful in
describing the overall shape of the experimental EXAFS
spectra both in simple molecules and in a few solids. '

However, there is invariably a discrepancy between the
measured and calculated EXAFS amplitudes, calculated
amplitudes always being larger. ' For example, Lee and
Beni introduced an additional factor 0.62 to make the
theoretical amplitude for Br& consistent with experiment.
Part of this discrepancy was due to experimental error but
for the one-electron theory of Lee and Beni a factor of 0.8
is still required. Rehr et al. and Lee and Beni suggested
that such a discrepancy can be ascribed to certain "mul-
tielectron excitations" in the system, which give rise to an
energy-dependent amplitude reduction factor. A quanti-
tative understanding of EXAFS amplitudes is important
for extending the utility of EXAFS, allowing, for exam-
ple, more accurate determinations of local coordination
numbers.

In this article we present a detailed theory of EXAFS in
diatomic molecules that includes many-body effects,
which aims to resolve this amplitude discrepancy for the
case of Br2. We have chosen to study Br2, as it is a com-
paratively simple, single-distance diatomic system with a
tolerable number of electrons for ab initio calculations;
also good experimental data are available. Our theory is
based on the prescription of Ref. 8; it includes many-body
effects such as an energy-dependent exchange-correlation
potential and multielectron excitations. Moreover, a
spherical-wave expansion of the wave functions is em-
ployed, instead of the plane-wave approximation, and
found to be essential for quantitative agreement.

The outline of this paper is as follows. In Sec. II we
briefly review the conventional theory of EXAFS. Sec-
tion III treats local, density-dependent exchange-
correlation potentials (ECP), and Sec. IV, inelastic losses.

Section V contains the results of our ab initio calculation
and Sec. VI, a summary and conclusions.

II. EXAFS THEORY

As the single-particle theory of EXAFS has been treat-
ed in detail previously by many workers. ' ' ' we only
quote the main results here. The normalized EXAFS
spectrum P is defined as the oscillatory part of the x-ray-
absorption coefficients p:

X = (P —Pp) /Pp, (2.1)

where po is the smooth absorption coefficient due to an
isolated atom. In the one-electron approximation, p is
calculated using the golden rule together with the dipole
approximation:
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where the wave number k is

k =Q2( fun+ E; —Ep ) . (2.4)

Here Eo is the inner potential, 5& is the l =1 phase shift of
the central atom, 5I the l-wave phase shift of the neigh-
boring atom, I, stands for the angular quantum numbers

(l, m ), C&p t I = Y&p(k ) YL (k) Yt (k)dk are Gaunt coef-

where
~ P; ) and

~ Pf ) refer to one-particle eigenstates
with energies E; and Ef, respectively, of effective one-
electron Hamiltonians appropriate to the initial and the fi-
nal states and e is the x-ray polarization vector.

For a diatomic molecule and K-shell absorption, the
single scattering approximation to the final state yields a
spherical wave expansion for 7:
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(2.3)
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ficients which vanish unless l'=l+1, and hl'+' are spheri-
cal Hankel functions. In obtaining this expression the po-
larization vector has been taken along the z axis and an
average over all molecular orientations carried out. The
Debye-Wailer factor e is due to the mean-square
fluctuation in bond length. For diatomic systems
multiple-scattering corrections are of third and higher or-
der in the scattering amplitude and thus can safely be
neglected. In the small-atom and short-wavelength limit,

i(kR —ln /2)h(+'(kR)-, kR»l(l+1),
kR

(2.5)

and Eq. (2.3) reduces to the plane wave -approximation
(PWA);

—if (k)

IGR
e " sin(2kR +26|+5 )e, (2.6)

i5„
where f (k)—:

i f (k)
i
e " is the backscattering ampli-

tude and k is the mean free path, A, = [1m[k+A|/R
+5„/(2R )]]

III. EXCHANGE-CORRELATION POTENTIAL

V„,(r) = — kF(r),3(x
(3.1)

where kF(r) =[3' p(r)]' and a is the adjustable ex-
change parameter. ' This approximation has computa-
tional advantages in practical calculations compared with
the nonlocal HF potential used in several previous
EXAFS studies; ' ' ' also the nonlocal HF potential is
unstable for angular momentum l )9. ' However, as we
will see, Xcz is appropriate only for the ground state.
Since it is energy independent, it fails at high energies
(E)50 eV) where exchange effects become small and
must be replaced by an energy-dependent exchange-
correlation potential, such as Dirac-Hara exchange
(ED).' ' The Hedin-Lundqvist potential' '' is a more
complicated, numerically constructed non-Hermitian po-
tential, introduced for EXAFS calculations by Lee and
Beni. It incorporates the Sham-Kohn density-functional
formalism for excited states within the single-plasmon

In the single-particle description of EXAFS, many-
body interactions between the photoelectron and other
electrons are taken into account through an appropriate
complex optical potential. This potential consists of two
parts " a Coulomb or Hartree potential and an
exchange-correlation potential. Because the nature of this
potential for high-energy excited states is not well estab-
lished, we have studied three local charge-density-
dependent ECP's: the real Xo. exchange potential
(Xa), ' '' the energy-dependent Dirac-Hara (ED) poten-
tial, ' ' used in EXAFS calculations for the first time
here, and the Hedin-Lunqvist potential (HL). ' '

In the Xa exchange approximation' '' (often used in
ground-state calculations) the Hartree-Fock (HF) ex-
change term is replaced by its statistical average over all
occupied spin orbitals and evaluated at the local electron
charge density p(r); this potential is given by

where the coordinate x denotes both space and spin,
x=(r,s), E~ is the energy of the electron, V(r) is the Har-
tree potential, and X is the nonlocal ECP. If the charge
density of the system p(r) varies slowly compared with
the local de Broglie wavelength of the electron (a good ap-
proximation for EXAFS), the self-energy X can be ap-
proximated by a local ECP V„,(r), ' so that (3.2) becomes

[ Ez ——,
'

V—+ V(r)+ V„,(r)]gq(x) =0 . (3.3)

Here Ez is the energy defined relative to the muffin-tin
zero (in a solid) or the vacuum level, in atoms and mole-
cules.

The Xa approximation for V„,(r) is given by Eq. (3.1).
At high energies, Xa exchange overestimates V„,(r), and
one must reexamine the derivation of this term from HF
theory to obtain a better approximation. From the HF
equation, the exchange term is given by

V„,(r)gq(x)= —g fdr', P*(r')P&(r')
J

X Pl(r)6, ,„ . (3.4)

If one approximates Pq(x) as a plane wave' ' with local
ip (r) r

momentum p. (r), P&(x)=(e ' /v Q)si, where
pi(r)=[2EJ +kF(r)]', kF. (r) is the local Fermi wave
vector, 0 is the volume of the system, and sj a spinor,
then Eq. (3.4) gives a local energy-dependent exchange ap-
proximation,

V„,(r) =—3akF(r) 1 —Xg I+Xg1+ ln
2& 2', 1 —Xl,

(3.5)

where Xq ——pq(r)/kF(r). A parameter a has been added,
such that when the energy is close to the Fermi energy,
V„,(r) reduces to the Xa potential. This formula with
a = —, was obtained by Dirac' and has been discussed by
Hara. ' Note that when the local momentum pq(r) is
much larger than the local Fermi wave vector kF(r), Eq.
(3.5) reduces to

kF(r) p(r)
V„,(r) —

z —,k»kF(r) .
p~(r) k

Thus for a high-energy photoelectron, instead of being

(3.6)

pole approximation' ' of the electron-gas dielectric func-
tion. Other potentials have also been suggested. For ex-
ample, the potential of Beni, Lee, and Platzman ' applied
to Cu, but this approach is difficult to use in practice, and
we do not discuss it here. Also a semiclassical approach
has been developed by Noguera et al. which includes
dynamic effects but is not considered here; instead,
dynamical effects are treated phenomenologically.

A brief description of the formalism associated with
these potentials is now given. ' ' The main result is that
the final-state wave function Pz(x) [Pf in Eq. (2.2)] of an
electron with momentum k will satisfy a Schrodinger-like
equation,

[ Eq ———,V + V(r)]pz(x)+ fdx'X(x, x';Ez)pz(x') =0,
(3.2)
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proportional to kF(r) or p', V„,(r) becomes proportional
to the local charge density p(r), and decreases inversely
with energy. We have found that this energy dependence
is crucial to a good calculation of EXAFS phase shifts.
Moreover, since the potential varies as p(r) rather than
p(r)'~, the spurious step in the potential at the muffin-tin
radius is reduced. A drawback of this ECP is that it is
Hermitian and hence does not include the energy-loss ef-
fects which would give rise to an imaginary absorptive
part to the potential.

From the work of Sham and Kohn, and of Hedin and
Lundqvist, ' ' a non-Hermitian ECP can be constructed

to describe the propagation of the quasielectron in a free-
electron gas, namely,

V„,(r)=X(p(r), E—V(r),p(r)) . (3.7a)

V„,(r)=X(p(r), ,
' p—'(r)) . (3.7b)

To calculate X, Beni and Lee use Eqs. (2S.14) and
(25.15) of Ref. 12,

Here X is the self-energy of an electron in a homogeneous
electron gas with momentum p(r), energy E —V(r), and
density p(r). Lee and Beni approximate this as

dq 4~ f(p+q)
(2~)' q' e(q, —,'(p+q)' —~)

2 dq 4~ 1 1

2~& q co q —co+ —p+q
(3.8a)

2

ImX(p, co) = J If(p+q)&( —,
' (p+q)' —~&(q) —~)—[1—f(p+q)1~( —,

' (p+q)'+~~(q) —~) I(2~) q co&(q)

(3.8b)

where the dielectric function is approximated as

e(q, co) ' =1+
[~ —~i(q)]

co)(q) =cop+ep[ —,(q'/kF ) —(q /kF ) ]

(3.9a)

(3.9b)

(3.10a)

and f(k) is the Fermi distribution function. ' We have attempted to find analytical expressions for Eqs. (3.8a) and (3.8b)
which can well approximate X without the need for numerical integration. This is a great simplification in numerical
calculations. The analytical formulas we have used to interpolate X are

kF(r) —p (r) p(r)+kF(r) 3coz[p (r) —kF(r)1
ReX(p(r), —,'p (r)) = — kF(r)+ ln p'r

ImX p(r),
p'(r)

2
Qm, .F(Q ..)

ln
2p(r) Q,„F(Q;„)

(3.10b)

where

kF(r)x
+ 2cop +

kF(r)x
3

XF(x)=2 co~ +P
2+cup

Q,„=—, k~(r)+ [4kF(r—)/9+k 4cop]'~—
Q;„=~ (p'(r) ——,

' kF(r) —p(r) [~'/[p'(r) —kF(r)/3] I
' ')

1/2

(3.1 la)

(3.1 lb)

(3.11c)

and p (r) is the electron momentum, defined as

p (r) =k +kF(r) . (3.11d)

IV. MULTIPLE-ELECTRON EXCITATIONS

A. Multiple-electron excitations in EXAFS

The last term in (3.10a) is very crude but appeared to be
adequate in the range k=2—10 a.u. where our calcula-
tions are performed. The expression for the imaginary
term is a good approximation in the EXAFS region and
becomes exact when p &&kF. Attempts to improve on
these approximations are in progress. One can readily see
for a low-energy electron (E=eF) that this ECP reduces
to X exchange (3.1).

It is known that multiple-electron excitations in the
photoabsorption process have a significant influence on
the EXAFS amplitude. ' ' Such intrinsic losses are not
explicitly included in the conventional single-particle for-
mu1ation, which includes only extrinsic losses through the
imaginary part of the potential; however, intrinsic losses
have been included phenomenologically through an ad hoc
constant reduction factor. In this section we outline how
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p y [ (yk
~
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ls ) (4.2)

Hence, by Eq. (2.1), the EXAFS is given by

(4.3)

where the moment we have assumed that Q„S„=I [but
see Eq. (4.7) below]. For low-energy excitations, X„may
be approximated as Xo(k„), and Eq. (4.3) for X can be ex-
pressed as a phasor sum. The sum is equivalent in form
to the conventional EXAFS formula, but with an
energy-dependent amplitude reduction factor:

X( k) =A (k)XO(k +p/2R ),
where

(4.4)

A (k )e'~ =QS„e (4.5)

and

P„(k)=2R(k„—k) . (4.6)

B. Corrections to sudden approximation

The intrinsic multielectron excitations in EXAFS can
be viewed as transitions of passive electrons induced by
the creation of the core-hole potential. When the pho-
toelectron has an energy far above threshold, the excita-
tion probability is given by the sudden approximation, Eq.
(4.1). Conversely, as the photoelectron energy is reduced
toward threshold, one might expect the transition to be-
come more adiabatic and hence that multiple-electron ex-
citations should be suppressed. Indeed, when the final
photoelectron energy is below the first excitation energy,
there can be no multiple-electron excitations. The nature
of the crossover from sudden to adiabatic behavior is an
interesting theoretical question which is not yet well un-
derstood. Some energy dependence arises naturally within
b,SCF-HF (delta self-consistent-field Hartree-Fock) theory
if one does not factorize the final state as

such multiple-electron excitations are included in our
theory; ' possible corrections to the sudden approxima-
tion are also discussed.

In the single-particle theory outlined in Sec. II, we only
considered photoelectrons in the "primary channel, " in
which the ion with the ls hole is in its fully relaxed
ground ionic state. In the sudden approximation, the
probability that the final N-particle state (denoted by a
prime),

~

4„'), consists of a photoelectron in state
~ Pk )

and the ion with the core hole in its nth excited state") is given by

g = [(q)' "~Ey' ") [2 (4.1)

i.e., the square of the overlap between the passive elec-
trons in the initial and final (N —1)-particle ground
states. Here AE„ is the excitation energy of the ion and
k„=(k —2b.E„)'~ is the shifted wave number. By sum-
ming over the contribution to the EXAFS from each of
these channels, we obtain an expression for the absorption
coefficient given by

S„=

P = [(EP "~(@')' ) ]

P„= [ 4&;
J

(@')„ 2
4 sin (AEn1/2)

(b,E„r)

(4.8a)

(4.8b)

hE„
(4.8c)

Ek

where the prime in Eq. (4.7) indicates that the sum is re-
stricted to excitations for which b,E„&Ek, Ek being the
maximum photoelectron energy. The parameter ~ in Eq.
(4.8b) is a phenomenological turn-on time, adjusted to fit
experiment. We also will present results by using the
theory suggested in Ref. 28. Comparisons between the
above models and experiments are presented in the follow-
ing section.

P =
~

(@' "~(@')' ")
[

V. CALCULATION AND RESULTS

A. Muffin-tin model

The construction of the ground-state occupied (passive)
one-particle states, both with and without the core hole, is
based on the Xa scattered wave formalism. In this for-
malism the molecular potential of Br& is taken to be a
spherically averaged muffin-tin potential within a sphere
of radius RMz and beyond an "outer sphere" of radius Ro
centered on the molecule, while the interstitial potential is
approximated by a constant VMz. In our calculation of
the final states, the central atom is taken to be a relaxed
1s core-hole state, with a hole localized at one atomic
site."

The self-consistent-field (SCF) procedure starts from an
initial potential constructed from superimposed atomic
and ionic (i.e., with a Is core hole) potentials, where the
corresponding atomic charge densities are determined
from (Herman-Skillman-Hartree-Fock-Slater) calcula-
tions. ' The interatomic distance for the ground state is
4.31 a.u. , ' and an "atomic number radii" method sug-
gested by Norman is used to determine the muffin-tin
radii for the atomic spheres and for the outer sphere.
Choosing the muffin-tin radius at 88% of the atomic
number radius, the virial theorem V= —2T is satisfied
approximately, and both the ionization energy and transi-
tion energy are in agreement with experiment. Thus we
set the atomic muffin-tin radius at 2.74 a.u. and the outer
sphere radius at 4.89 a.u. At these values the outer sphere
is tangent to the atomic spheres.

] P'k )
~

@'„' "), but rather uses the full Slater-
determinant wave functions. However, this goes well
beyond the treatment here. Our approach is simply to re-
tain the general form for the absorption coefficient [Eq.
(4.2)] but with S„now energy-dependent excitation proba-
bilities which crudely take the anticipated corrections to
the sudden approximation into account. In addition to
the sudden approximation (model a), we have therefore
used a form (model b) based on a semiclassical approach
and adiabatic perturbation theory ' and also a simple
exchange model (model c ).

P„
(4.7)

m
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The deep molecular core levels are labeled by their
atomic conventions (ls to 3d). The upper valence electron
levels are labeled by the nomenclature of the C, point
group, which is appropriate for a heteronuclear diatomic
molecule. The Slater Xa exchange potential [Eq. (3.1)]
was used in the self-consistent-field procedure' ' " with
a=0.70606. The SCF iteration procedure was repeated
until the eigenvalue of each spin orbital converged to
within 0.00005 Ry (1 Ry=0.5 a.u. ). The electronic ener-

gy levels for neutral Br& and Br&+ (ls hole) are listed in
Table I.

From a "transition-state" calculation, ' ' ' we find
that the adiabatic ionization energy for the electron in the
uppermost valence level 2~ of Br2 is 10.52 eV, very close
to the published experimental result of 10.51 eV, and the
virial ratio —2T/V=0. 999 487.

B. ECP far excited states

As discussed in Sec. III, a different exchange-
correlation potential is used to calculate the excited pho-
toelectron state Pk. We present here results for Xa, ED,
and HL potentials. Figure 1 is a plot of r V„,(r) at k =4.0
a.u. ; the real part of the HL potential shown here is based
on the interpolation formula of Eq. (3.9a); for comparison
the Lee-Beni result is also given. We see that the
switching-off of the exchange-correlation interaction as
the density decreases (with increasing r) is more rapid for
the ED potential than for the HL potential. Figure 2 il-
lustrates the switching-off of the ED potential with ener-
gy. Figure 3 shows the imaginary part of the HL poten-
tial for k=2. 8, 5.0, and 7.0 a.u. The result for k=7.0
from Ref. 7 is also plotted (dashed line) for comparison.

C. Inner potential

The inner potential Eo is defined here as the energy at
which k vanishes: k = [2(Ek Eo)]'; wh—ere Ek ——Ace

TABLE I. Eigenvalues of Br2 and Br2 (Ry). (RM~ ——2.74
a.u. ; Ro ——4.89 a.u. )

+E; is the photoelectron energy, E; is the initial core-
level energy, and k is the wave number. We therefore set
the interstitial constant muffin-tin potential V~& equal to
Eo. In our SCF calculation, V~&- is found to be 10.15 eV
below the vacuum value. The energy difference AE be-
tween the vacuum and the first peak at the absorption
edge (which fixes the position of the vacuum level) is
determined by the following procedure: in Br&, the first
unoccupied spin orbital is 4cr, so the first peak should cor-
respond to the transition is~4cr, with energy fico& (see
Fig. 4), while the is ~continuum transition energy is fuoz.
Thus AE =Acu2 —Ace& or

AE =E (n(, —l, n4 ——0) E(n—(, —i, n~ = 1), (5.1)

where E is the total energy of the system and n.; is the
occupation number of the ith level. Thus, AE is the ioni-
zation energy of the 4o. spin orbital in a 1s core-hole
ground state. We used a transition-state method' ' ' to
estimate this energy and find that b,E=8 eV (Fig. 4).
(This is different from the value 13 eV used by Kin-
caid. ' ) Since the muffin-tin zero is 10 eV below the
continuum limit, we set Eo at 10—8=2 eV below the first
peak.

D. Phase shifts

d(ji((r )

P((r) dr r =RM'r
(5.2)

and P((r) is the regular, radial solution of the Schrodinger
equation inside the atomic muffin-tin radius. After ob-
taining the phase shifts, we can calculate the EXAFS
spectrum both with a spherical-wave expansion [see Eq.
(2.3)] and with the plane-wave approximation [Eq. (2.6)].

The partial-wave phase shifts 5((k) are determined in
the usual way by matching at RM-f, '

kji(kr) y(j ((kr)—
tan6((k) =

kji (kr) —y(g((kr)

Level

Br+ 1s
Br 1s
Br+ 2s
Br 2s
Br+ 2p
Br 2p
Br+ 3s
Br 3s
Br+ 3p
Br 3p
Br+ 3d
Br 3d
1o
20
30
1~
2&

Br2+

—992.1860
—961.9932
—131.2716
—124.1967
—120.7441
—112.1589
—19.0770
—17.4017
—14.9322
—13.1786
—6.9751
—5.6108
—2.3382
—1.9672
—1.4625
—1.3306
—1.0555

VMg —0.7460

Br2

—961.4534

—123.6594

—111.6213

—16.8663

—12.6432

—5.0758
—1.5905
—0.7997
—1.3541
—0.6462
—0.5032

VM-f ———0.3380

-0.4—

-0.6

-0.8—
EJ

I 0
ED k = 4 a. u. —,.g/((
HL. k = 4 a.u.
(Lee 8 Ben), Ref. 7)

HL. k = 4 oU. y/

xa, a = 0.70

4 i I I I I

lo

r (o.0.)

IO

FICx. 1. Plot of rV„,(r) vs r for the neighboring Br atom with
electron momentum k =4.0 a.u. For the Hedin-Lundqvist po-
tential, only the real part is presented; the results from Ref. 7
are plotted for comparison.
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&((k)+~P (k)
MT k' V(r) ——V„,(r) (1+—'—)'Ir']' 'dr

MT
[k =(l+ —,

'
) /r ]' dr

where the turning point r =(I + — k
mined b

'n r = + —, )/k and ro is deter-

(5.3)

k —Vk —V ro) —V„,(ro) —(I + —')'/r' =0 (5.4)
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s r for the neighboring Br atom

at k =7.0 a.u. is also plotted
. , an .0 a.u. The result from Ref.e . 7 (dashed line)
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FIG. 5. Com ariparison of the real part of the
for the neighboring B

e phase shifts 5i(k)
ring r atom using the HL oten

'

WKB (d h d 1on as ed line) [see Eqs. {5.2) and (5.3)].
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and Beni used an atomic muffin-tin radius larger than
ours, and therefore included more (perhaps excessive)
damping. Figure 6 is a plot of P~(k) for the neighboring
Br atom.

Figure 7(a) shows the comparison of the EXAFS phase
for the three ECP treated here using the full spherical
wave expansion together with a comparison to experimen-
tal results. ' It is clear that the phase using the ED po-
tential with a spherical wave expansion is in very good
agreement with experiment without any adjustable param-
eters! In Fig. 7(b), based on the plane-wave approxima-
tion, only the phase from the HL potential is consistent
with experiment and this agreement must be regarded as
fortuitous.

E. Multielectron excitations

The quantities needed in evaluating the amplitude
reduction factor are the overlap integrals between Slater
determinant wave functions,

6.0

5 0—

40—
O

3.0—
o
L

2.0—

I.p—

0.0—

—
I 0

2

6.0

5.0—

4 0—
O

3.0—0

Ai

4
k (a. U. )

(a)

(b)

where the prime denotes orbitals for the final configura-
tion with a 1s core hole. We approximate the excitation
energy AE„ for a particle-hole excitation between levels a'
and b' as the difference of the corresponding one-electron
eigenvalues, i.e.,

b E„Eb—E~ (5.6)

=(Eg)' " lH

(q( — ) l~
l

( —
)& (S.7)

O. 14

0.12-

0.10-

p 0.08-
C7

o.o6-

We only calculate the excitation spectrum for those
shake-up channels with low excitation energy. As in Ref.
8 the shake-off spectrum is simply approximated by an
exponential decay distribution starting from 20 eV. The
relaxation energy,

0 0—

-IO
2 4

k (a.U.)

FICx. 7. Overall EXAFS phase P(k) =28|(k)+8 (k) as calcu-
lated using Xa, HL, and ED potentials, and compared to exper-
iment (E from Ref. 38 and H from Ref. 6). Plot (a) is from the
full spherical wave expansion while (b) employs the small-
atom —plane-wave approximation. Here k =0 is taken at 2 eV
below the first peak near the absorption edge.

EE, =BE~I(1—So)=188 eV, (5.8)

close to that of Ref. 39, 183 eV.
Table II displays the results of the calculated excitation

spectrum for Br2. We also list results of the photoemis-
sion experiment of Bomben et al. ' (Table III). The loca-
tions of excitation energies are very similar, but the rela-
tive intensities are different, probably because their spec-
trum is that for a 3d hole where correlation effects be-
tween 3d hole and valence electrons are much stronger
than those between 1s hole and valence electrons.
The difference in the shake-off intensities between 1s hole

is found to be 55.8 eV, quite close to the result 50.2 eV of
Ref. 39. The average excitation energy (i.e., the centroid
of the shake-up —shake-off spectrum) is

0.04- TABLE II. Excitation spectrum for Br2 (1s photoabsorption).

0.02-

0
0

K (au)

FIG. 6. Plot of the imaginary part of the phase shifts P, (k)
for the neighboring Br atom using the HL potential [see Eq.
(5.3)].

Peak

0
1

2
3
4
5

Intensity

0.704
0.066
0.020
0.016
0.009
0.185

Energy (eV)

0.0
7.8

14.6
26.S

29.4
shake-off (E & 30 eV)
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TABLE III.
photoemission').

Excitation spectrum for Br& (3d 0.02

Peak

'Reference 41 ~

Intensity

0.620
0.064
0.092
0.059
0.045
0.120

Energy (eV)

0.0
8.6

16.8
25.0
30.4

shake-off (E ~ 33 eV)

O.0 I

0.00

—0.0 I

—0.02
2

I I

4. 5
k (a. U, )

and 3d hole for bromine (0.185 versus 0.12) is consistent
with the difference for krypton (0.205 versus 0.122).
Our calculation of the overlap factor So ——0.70 is in good
agreement with that of Ref. 39, So ——0.725. Also the sum
of the low-energy molecular overlaps Q„S„ for b,E„&30
eV is 0.815, very close to the atomic overlap factor
So ——0.797. This suggests that the low-lying excitations
in a molecule yield a contribution to the EXAFS compar-
able to that from the central atom, consistent with the ex-
perimental results in Ref. 6.

F. EXAFS amplitude

1. Single-particle results

Figure 8 gives a comparison of our calculated back-
scattering amplitude with that of Teo and Lee. Both are
based on the HL potential in the neighboring atom and on
the PWA. Figure 9(a) and 9(b) compare theoretical
EXAFS spectra for bromine; for comparison, the experi-
mental results are also presented as dotted lines. Here
the experimental X(k) is obtained using the BrH absorp-
tion spectrum as the smooth "atomic" background. It is
assumed that any EXAFS osci11ations from the H atom
are entirely negligible above k =2 a.u. The value of o.

used in our calculation in the Debye-Wailer factor is
cr =7.084)&10 a.u. , assuming an experimental tem-
perature of 300 K. Comparing Figs. 9(a) and 9(b), one
sees that the amplitudes of EXAFS obtained with a
spherical-wave expansion or with the PWA are obviously
quite different. Our results indicate that, as pointed out
by Lee and Pendry, the errors in the PWA are quite large

l.6

l.2—

0.8-

0.4—

4
(a.0.)

FKJ. 8. Comparison of the backscattering amplitude f (k)
for this work (solid line) with that of Teo and Lee (Ref. 47)
(dashed line). Both are based on the HL potential and are in
good agreement for k ~ 3 a.u.

0.02
(b)

O. OI

0.00

-0.OI

for a low-energy photoelectron (E &200 eV). This partly
explains the discrepancies in comparisons between experi-
ment and the conventional EXAFS theory at low energy.
We find that it is essential to drop the PWA to get good
agreement for both phase and amplitude at energies below
200 eV.

2. Amplitude reduction factor A (k)

The single-particle calculations of the EXAFS ampli-
tude including intrinsic losses with the HL potential in
both central and neighboring atoms are seen to be only
slightly larger (about 10%) than experiment. Thus the ef-
fect of multiple-electron excitations due to intrinsic pro-
cesses in Br& is not large. The amplitude reduction factor
A (k), as defined in Eq. (4.5), is determined by the excita-
tion probabilities S„. In addition to the sudden approxi-
mation, Eq. (4.8a), we used the two different expressions
in Eqs. (4.8b) and (4.8c) to interpolate the excitation prob-
ability between the adiabatic and sudden approximation
limits. All of these require knowledge of the excitation
spectrum, or equivalently

I ( q)' "
~

q)' —'I ) I

'

as defined in Eq. (5.5). Figure 10 shows the results for
A (k) from these different approaches. We calculate
A (k) with (a) the sudden approximation [r=0, Eqs. (4.5),
(4.7), and (4.8a)], (b) the adiabatic approximation with
r=4r/v, and r =1.5 a.u. (which fits the data of Ref. 27),
(c) "exchange model, " and (d) Thomas's model. The
corrections to the sudden approximation increase A(k)
from around 0.80 to 0.90. The semiclassical result (b) is

-0.02—
I I I I

2 3 4 5 6 7

k (O. U. )

FIG. 9. Comparison of theoretical and experimental EXAFS
spectra for Br&. Theoretical spectra [(a) and (b)] are displayed
for both the spherical wave expansion (solid line) and the small-
atom —plane-wave approximation (dashed line). Experimental
data (dotted lines) are from Ref. 6.
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I
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I
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FIG. 11. Plots of the mean free path k(k) for (a) the HL po-
tential (solid line) and (b) the ED potential with a constant imag-
inary potential Vt [Eq. (5.9)].

0.7 4 6
a (a.u. )

FIG. 10. Amplitude reduction factor A(k) calculated using

(a) the sudden approximation [Eq. (4.8a), (b) the adiabatic ap-

proximation [Eq. (4.8b)], (c) the exchange model [Eq. (4.8c)],
and (d) Thomas's model (Ref. 28) with r =1.50 a.u.

consistent with a recent study of Lu and Rehr. This is
also qualitatively consistent with experiment. The Ne
shake-up satellite peaks were found to be 20—40% small-
er than in the high-energy limit, and the Ar peaks showed
some energy dependence.

3. Damping factor e

VI ——Vo
E

E+250 eV
(5.9)

where Vo ——9 eV for Br and E is the photoelectron energy.
Note that when the energy is much smaller than 250 eV
that the damping factor approaches unity, as expected.
This gives a A. comparable to the HL value as shown in
Fig. 11.

To assess the role of inelastic effects, we have calculat-

This damping factor is associated with both the lifetime
of the photoelectron and that of the core hole. ' ' '
These inelastic processes can, in principle, be taken into
account by a complex potential. It is found from low-
energy electron diffraction (LEED) experiments that this
decay can be accounted for by adding a constant imagi-
nary potential (e.g. , 4 eV for copper and 9 eV for nickel ).
Powell found that for most metals, the mean free path
A, (k) appears to follow a universal curve, which has a
minimum at intermediate energies (around 30 eV). For
E-edge spectra of Br2, the total (Lorentzian) linewidth at
threshold is about I =5.4 eV (2.7 eV of core-hole life-
time, and the rest for monochromator resolution' ).
This broadening can be lumped into a complex potential
with an imaginary part of I /2=2. 7 eV. The damping
factor associated with the lifetime of the photoelectron is
automatically included in the Hedin-Lundqvist potential.
Since the ED potential is real, we have also included an
energy-dependent imaginary potential VI to account for
damping in this case, namely,

F(a)(k) F (k) —2R/A(k) (S.1Oa)

where FED(k) is the amplitude obtained from the ED po-
tential and A, (k) is the mean free path.

(ii) Intrinsic losses included using the sudden approxi-
mation Eq. (4.8a) and extrinsic losses using the mean free
path from the imaginary potential in Eq. (5.9), yielding

1.2

1.0—

g 0.8-

Q
X:
CX

0.6—

Q. 4 3 4 5 6 7
k (e.u. )

FIG. 12. Overall EXAFS amplitude for Br2 as calculated
from (a) the ED potential with an added constant imaginary po-
tential [Eq. (5.9), dotted line]. (b) Same as (a) except that the
amplitude reduction factor 3, o(k) obtained from the sudden
approximation approach is also included [see Eq. (4.8a) and Fig.
9(a), dashed line]. (c) Intrinsic losses are treated using Eq.
(4.8b), using the HL potential only in the backscattering atom,
and the core hole lifetime and monochromator resolution effects

—2R /A. (k)
are lumped into a damping factor e ' (solid line). Experi-
mental data (Ref. 6) are indicated by circles (0).

ed the EXAFS amplitude with both the damping factor
and the amplitude reduction factor included. Three dif-
ferent prescriptions to account for inelastic effects are
summarized below.

(i) Intrinsic losses are ignored and extrinsic losses are
calculated from the constant imaginary potential in Eq.
(5.9), yielding an overall amplitude
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F' '(k) =FEo(k)A, o(k)e (5.10b)

(iii) Intrinsic losses are treated using Eq. (4.8a) and in-
elastic losses using the HL potential only in the back-
scattering atom, yielding

e (5.10c)

where A,,(k) is obtained with an imaginary potential of 2.7
eV, ' ' and P~(k) is the extrinsic losses in the central
atom.

Figure 12 shows the overall EXAFS amplitudes ~X
~

calculated as described above, and for comparison, the re-
sults of experiment. Note that the theoretical results, us-
ing Eqs. (5.10b) and (5.10c), are in agreement with experi-
ment to within 10%%uo. However, Eq. (5.10c) is logically
more appropriate than Eq. (5.10b), since all the damping
terms included in Eq. (5.10c) are based on parameters ob-
tained from other independent experimental results and
the theoretically determined multiple-excitation spectrum,
Eq. (5.10b), has an ad hoc term, the effective mean free
path A.(k).

VI. SUMMARY AND CONCLUSIONS

We have presented a refined version of EXAFS theory
which is in good quantitative agreement both for the
EXAFS phase and amplitude. The theory includes both
extrinsic and intrinsic inelastic losses. The results depend
on how one partitions the losses between intrinsic and ex-
trinsic effects (ignoring possible interference). Several dif-
ferent prescriptions all give reasonable agreement with ex-
periment. In the single-particle calculations, it is found to
be essential that one use a full spherical-wave expansion to
get agreement at low photoelectron energies. Also, it is
necessary to use an energy-dependent exchange-correlation
potential. We have found that the unscreened Dirac-Hara
exchange gives better agreement for the EXAFS phase

than does the Hedin-Lundqvist potential (for which the
Coulomb hole decays very slowly with increasing energy).
Additional support for this latter finding can be seen in
Pettifer's results for Nb. Further work to clarify these
findings in other systems is clearly in order.

By cotnparing Figs. 12(a), 12(b), and experimental re-
sults, it is clear that one must include the intrinsic losses
in the theoretical calculations of the EXAFS amplitude.
For k above 3 a.u. , the simple theory of the sudden ap-
proximation and extrinsic losses (without dynamic correc-
tions) can describe the amplitude discrepancy between
theory and experiment. Inelastic losses in propagation
seem to be well approximated by the imaginary part of the
HL potential, provided the multielectron excitations are
turned on slowly [as shown in Fig. 12(c)]. However, the
theoretical curve [Fig. 12(c)] is around 5% smaller than
the experimental value. This is because we used overlap-
ping muffin-tin potentials. It is known that an over-

lapped muffin-tin model gives a much better description
of the potentials in molecules than the nonoverlapped one.
However, this overestimates the extrinsic loss in the HL
calculations.

Alternately, we have found that for the ED potential,
an ad hoc imaginary potential can be added (as in LEED)
(Refs. 23 and 53) with good results. The reduction factor
for the sudden approximation is 0.8, where as a constant
factor 0.9 in the HL calculations gives good agreement
with experiment. The use of the atomic So (Refs. 6 and
57) is seen to be consistent with Eq. (5.10b), where

o —So and the mean free path A, (k) is a quantity
which accounts for both resolution and core-hole lifetime
as well as extrinsic losses. The ED potential is found to
be superior to the HL potential because it reproduces the
phase more accurately. Both ED and HL give compar-
able amplitude, provided an ad hoc k, as estimated from
HL, is added to the ED potential.
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