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Localization and tunneling effects in percolating systems are studied using the homomorphic-
cluster and coherent-potential approximations. The localization behavior of the electron states and
hence the mobility edges are analyzed by means of the localization functions L(E) and F(E).
When tunneling is neglected, the problem at hand reduces to the ordinary quantum percolation
model. As the tunneling strength is increased, the percolation threshold decreases and no localiza-
tion transition occurs when the tunneling is sufficiently strong.

I. INTRODUCTION

There has been considerable interest in recent years in
studying localization effects in percolating systems.! =% In
the classical percolation picture, we are concerned only
with geometrical connection. Sites or bonds in a lattice
are blocked or broken at random, and the question to be
asked is if there exists an infinite percolative channel of
unblocked sites or unbroken bonds. This underlying
geometrical structure reveals various physical properties
of disordered materials. If a percolative channel exists, a
classical particle or fluid can diffuse infinitely far from its
initial position. This may not be the case for a quantum
particle.

Quantum effects in percolation processes have been
studied on the basis of a tight-binding Hamiltonian where
the sites are randomly assigned with zero or infinite site
energy (site model), or the bonds are assigned with zero or
unit transfer energy (bond model).” The infinite site ener-
gy in the site problem or the zero transfer energy in the
bond problem acts as a blockage for propagation of a
quantum particle. The microscopic disorder in the struc-
ture gives rise to scattering of the particle which in turn
causes quantum localization of the particle and affects the
percolation transition. Since quantum particles cannot
propagate before the classical percolation threshold is
reached, the quantum threshold must be larger than or
equal to the classical one. There have been many estima-
tions of percolation threshold for the quantum percolation
model. Results for two dimensions are ambiguous but be-
lieved to be unity or close to unity.*!® For the simple-
cubic lattice, most estimations centered around 0.35 for
the bond problem*!° and 0.45 for the site problem.!! In-
stead of the discrete models described above, one can also
study continuum models from a dynamical point of
view.!?

The infinite site energy or the zero transfer energy in
the quantum percolation problems is to simulate the ex-
istence of a potential barrier which prohibits the propaga-
tion of a quantum particle and makes the quantum prob-
lem formally similar to the classical problem. In real sys-
tems, however, the potential barrier may not be literally
infinite even though it prohibits propagation of a classical
particle and the classical percolation picture is still valid
for classical particles. For quantum particles, the finite-
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ness of the potential barrier height brings in another im-
portant quantum effect, namely, tunneling effect which
has been ignored in the previous studies of quantum per-
colation. The purpose of the present paper is to investi-
gate quantum tunneling effects on percolation process.

It is physically interesting and important to study quan-
tum tunneling effects since they realistically reflect the
physical situation of disordered materials. Quantum tun-
neling can be incorporated in the quantum percolation
model by reducing the barrier height of the infinite poten-
tial, which makes blocks in the quantum percolation
model, to a finite value so that the tunneling probability is
nonzero. When tunneling is taken into consideration, it
competes with the localization effect and tends to reduce
the percolation threshold. We study in this paper how
quantum tunneling affects the percolation threshold and
the mobility edge.

We consider a system described by a tight-binding
Hamiltonian:

H=3e,[n)n|+ 3 |nltyui{m|,

nsm

(1.1)

where |n) is the Wannier function associated with an
atom located at site n, and the transfer energy t¢,, is
nonzero only if n and m are nearest neighbors.

For the site percolation model with tunneling, the
tight-binding Hamiltonian (1.1) is subject to the following
probability distribution for the site energy ,,:

P(g,)=x8(g,)+(1—x)8(g, —¢),

1>x>0, w0>e>0, (1.2)

and the transfer energy ¢,, is set to unity. Similarly, for
the bond percolation model, the site energy €, is set to
zero and the transfer energy ¢,,, obeys the probability dis-
tribution

P(ty) =P8ty — 1)+ (1—p)8(tpm —1)
(1.3)

Nonvanishing ¢ (or finite €) represents a finite probability
of tunneling through the barrier. The cases where e=
and t =0 correspond to the ordinary quantum percolation
limit.> !>

At this juncture, it may be appropriate to distinguish
our present problem from that of the Anderson localiza-

1>p>0, 1>t>0.
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tion'® problem even though there is a transition of Ander-
son type in our problem. The Anderson model is essen-
tially a tight-binding model of a lattice with the disorder
introduced by assuming randomly distributed site energy.
The site disorder variable in the Anderson model is drawn
from a continuous probability distribution, typically a
uniform one and the transition is governed by the ratio of
the width of the distribution and the transfer energy. In
our case, the width of distribution as determined by the
second moment is x (1—x)e? for the site model and the
distribution is therefore most random at x =0.5. For sys-
tems with off-diagonal disorder, it has been suggested that
the distribution of loglt | is a relevant measure for off-
diagonal randomness.!®~'® The second moment of the
distribution Eq. (1.3) for the bond problem is
p(1—p)logyo|t | > which is the largest at p =0.5. As we
shall see later, localization transition does not necessarily
occur at this concentration. Furthermore, in the ordinary
quantum percolation limit, the width of distribution tends
to infinity in any dimensions and according to the conven-
tional argument all states are supposed to be localized.
However, it is generally believed that there exists a critical
value of the parameter x or p at which a localization tran-
sition takes place except for one and two dimensions
where arbitrary randomness causes states to localize.!® It
is thus clear that the distribution involved in quantum
percolation process should be considered as a class dif-
ferent from the standard Anderson model.

The coherent-potential approximation?® (CPA) and the
homomorphic-cluster ~ coherent-potential  approxima-
tion?"?? (HCPA) are used to obtain the average Green’s
functions for the site and bond problem, respectively. The
effective medium to be determined self-consistently is as-
sumed to be a lattice having a semielliptic unperturbed
density of states in three dimensions. The L (E) (Refs. 23
and 24) criterion is used to study the mobility edges for
the site problem. A modified criterion F*(E) is proposed
for the bond problem.

We will see that the percolation threshold is a decreas-
ing function of the tunneling strength and disappears at
certain tunneling strength.

In Sec. II of this paper, basic formalism of CPA and
HCPA is presented. Section III is devoted to a presenta-
tion of results for the bond and site problems. The final
section contains a discussion.

II. BASIC FORMALISM OF HOMOMORPHIC-CLUSTER
AND COHERENT-POTENTIAL APPROXIMATION

Consider a sample of diagonally disordered system
described by Hamiltonian (1.1). We may set ¢,,, =t, some
constant transfer energy. We approximate the tight-
binding Hamiltonian (1.1) by

Hy=H,+ |1)(g;—0){1|=H . +V, @.1)
where
H=3 |n)oln|+ X t|n)(m]| 2.2)

n£m

is called the coherent Hamiltonian. Physically speaking,
this means that the system behaves as if a coherent poten-
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tial o has been assigned to each lattice site except site 1
which has the random potential €,. ¥V can be treated as a
perturbation of the uniform medium and the scattering ¢
matrix is

T=V(1-GV)!, (2.3)

where G°¢ is the propagator for the uniform coherent
medium.

The coherent potential approximation says that the
Green’s function for the coherent medium is equal to the
ensemble average of the Green’s function for the approxi-
mate Hamiltonian, that is

(2.4)

=)
z—H, \z—H,/’

which turns out to be equivalent to (T)=0. (---)
denotes ensemble average over ;. Note that, due to the
form of the perturbing potential, all matrix elements of T’
except the (1,1) element are identically zero. Written out
in full, the CPA condition is

€1—0
(it o
1—-Gi,(e;—0)
where G§, is the diagonal element of the coherent-
medium propagator, and is given by
po(E)
z—o—FE

(2.5)

G (2)= dE . (2.6)
po(E) is the density of states for the regular system H,
with 0=0. The off-diagonal element of the coherent
medium propagator is given by

(z—0)G{—1

c
(Z)=—"""—"
12 nt >

2.7)

where 7 is the coordination number.

The above formalism works well for the average one-
particle Green’s function in disordered systems with diag-
onal disorder. For systems with purely off-diagonal disor-
der, the homomorphic-cluster coherent-potential approxi-
mation (HCPA) is used. We can set £, =0 in Eq. (1.1) so
that the Hamiltonian for the system is

H=3 |n)ty,{m]| .

n#m

(2.8)

The whole system except for a neighboring pair of sites
denoted by 1 and 2, is replaced by an effective medium
defined by

Heg= 2, ln>od<n + 3 n>ood(m | . (2.9)
n;’&m

The Hamiltonian (2.8) is approximated by

Hy=Heg+V, (2.10)
where

V=|cl{c |(H—Hes)|c}{c | 2.11)
and

ley=C[1),]2)). (2.12)
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To ensure analyticity of the approximation,?' we partition
both sites 1 and 2 into n subunits, one of which is con-
sidered to belong to the pair and others to the effective
medium. The self-consistent condition now reads as a
2 X 2 matrix equation

(VA-G V)~ ')Y=0 (2.13)
in which

& G Gp

T |G Gxn
and

_ n d 12— 0od

V= 1 . (2.14)

131 =04 =, %4

Analogous to the single-site CPA, the matrix elements of
G are given as

PO(E)
= E .
Gua)= [ pa———Y L (2.15)
and
Glz(Z)——_— 1 [(Z—O'd)G“—I] (2.16)
ROuq

with po(E) denoting the density of states for a regular lat-
tice of the same structure as the effective medium with
site energy O and nearest neighbor transfer energy ¢.

For the pairwise cluster under consideration, it is clear
that tip =15 and G]l :Gzz, Gg = G21 .~WC can then easi-
ly diagonalize the matrices G and V by a similarity
transformation, and the self-consistent condition reads

< >=o.

( -+ ) denotes average over the distribution of ;5.

1 —
—gadi%d”u

(2.17)

1 —
1—(G;+Gy2) *;Udi'aod‘*'tlz

III. RESULTS

In this section, we shall discuss the results of numerical
calculation for a three-dimensional system. The unper-
turbed density of states will be approximated by a semi-
elliptic Hubbard band in order to avoid the complication
of the numerical work involved in an exact treatment of a
simple-cubic band. To make the system reflect its three-
dimensional aspect, we shall take n =6 which corresponds
to the number of nearest neighbors in a simple cubic lat-
tice.

A. Bond problem

The diagonal Green’s function for the Hubbard band
satisfies

BGY
4
where B =no,y, and from Eq. (2.16), the off-diagonal

—(z—04)G1+1=0, (3.1)
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Green’s function is

G, . (3.2)

With the probability distribution Eq. (1.3), the self-
consistent condition Eq. (2.17) becomes

1+Gi}(,ai—1) 1+G1i(cfi—t)=1’ 3-3)
where

Gi=Gn*Gyy
and

aizoodilad .

n

The density of states is given by

p(E)=—$ImG“ . (3.4)

Figure 1 shows the density of states as a function of the
energy E and the concentration p when 7 =0.1 [Fig. 1(a)]
and 0.01 [Fig. 1(b)]. Note that spectral gaps appear near
E =+1 when p=0. This can be seen more clearly in Fig.
2 in which the band edges are shown. In fact, the impuri-
ty levels at p =0 due to a single impurity bond of strength

p(E)

P(E)

FIG. 1. Density of states for the quantum bond percolation
model with tunneling. States in the shaded part are localized.
The dashed lines are the mobility edges. (a) t =0.1, (b) t =0.01.
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E.—+ ‘5;"’ iilg\/BZ(S—b)z-H‘)b(b2+2b8+562) :

(3.5)

where 0=t —t, and b =6¢;, t; being the background
bond strength and is equal to unity in our case.

To locate the mobility edges, we employ a criterion
which is modified from F(E) function introduced for sys-
tems with only diagonal disorder prevails®?

60 od

F*(E)= (3.6)

_a-d

The trajectory F*(E)=1 separates the energy spectrum
into regions of localized (< 1) and extended (> 1) states.
Those states in the shaded area of the density of states in
Fig. 1 are localized, and the mobility edges are shown
with dashed lines.
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When the tunneling strength ¢ is reduced, the mobility
edges move inward and eventually merge at ¢ =0.03 [Fig.
2(b)]. For t <0.03, all states become localized for a limit-
ed range of p [Figs. 2(c) and 2(d)] which is far from the
range at which the variance of the distribution is largest.
It is, therefore, natural to regard the concentration at
which the state at E =0 becomes localized when p is re-
duced for a given ¢ as the percolation threshold for the
quantum percolation problem with tunneling. Thus the
percolation threshold p. exists only for ¢ <0.03. In Fig.
3, the percolation threshold p. is plotted against
—log |t |. The extrapolation of p. to t =0 corresponds
to the quantum percolation threshold for processes
without tunneling. This limiting value p*=0.252 is
larger than the classical one but smaller than other esti-
mates of the quantum percolation threshold.*'°

B. Site problem

For the case of a system with diagonal disorder, the
Hamiltonian treated is

6 —
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FIG. 2. Band edges (solid curve) and mobility edges (dashed curve) for the quantum bond percolation model with tunneling. (a)

t=0.1, (b) t =0.03, (c) t =0.01, (d) t =107
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FIG. 3. Critical concentration p. vs —logjo|? |.

H=2£,,|n)<n n>(n| , (3.7

+ X
n,m

n*=m

where €, has the probability distribution given in Eq.
(1.2).

The self-consistent equation (2.5) with distribution (1.2)
is reducible to a third-order polynomial equation for the
diagonal element of the Green’s function:

81 G}, +9(e—2E)G?,
+[E(E —€)+9]G | +(xe—E)=0. (3.8

We employ a localization function:

where K =4.6826 is the connectivity constant for the sim-
ple cubic lattice.?*

The parameter € measures the tunneling strength. The
limit where € goes to infinity corresponds to the usual
quantum percolation since the infinite potential barrier
forbids tunneling. In Fig. 4, the band edges and mobility
edges are shown. The energy band splits into two when
€=6.0. Only the lower band is shown in Fig. 4(c). No
substantial changes are observed in these diagrams for
€> 100.

We are primarily interested in the lower band associat-
ed with levels at E=0. When p is reduced from unity,
localized states first appear near the band edges and even-
tually coalesce near the band center. The corresponding
value of x is considered to be the percolation threshold for
the particular tunneling strength. When €<5.166, the
threshold cannot be defined.

In Fig. 5, the percolation threshold x. is plotted against
1/e. The limiting value of x, ~0.26 at e= « is the quan-
tum percolation threshold for processes without tunnel-
ing.

IV. DISCUSSION

We have studied the quantum percolation model with
tunneling. The homomorphic-cluster CPA and CPA are
used to study thd bond and site problems, respectively. A
major difference of the present work from others is the in-
clusion of tunneling effects. Tunneling is incorporated in
the site problem by considering a finite potential barrier
on a blocked site instead of an infinite one. Similarly,
nonvanishing transfer energy between a pair of sites
whose bond is broken is the corresponding tunneling ef-
fect in the bond problem. When tunneling is included, it
competes with the localization effect and enhances the
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FIG. 4. Band edges (solid curve) and mobility edges (dashed curve) for the quantum site percolation model with tunneling. The
shaded regions are band gaps. The mobility edges are obtained using L (E) criterion. (a) e=S5, (b) e=10, (c) e=100 (only the lower

band is shown).
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FIG. 5. Critical concentration x, vs 1/¢.

percolation probability. In fact, our result demonstrates
that the percolation threshold is a decreasing function of
the tunneling strength and disappears when the tunneling
is sufficiently strong.

Tunneling effects are important and interesting because
they greatly enhance the applicability of the percolation
theory. In the classical percolation picture, there are only
two phases, namely, percolated or nonpercolated, since we
are only concerned with geometrical connection. The
scenario is enriched when quantum percolation is con-
sidered. The present consensus that the classical and
quantum percolation thresholds are significantly different
immediately implies the existence of three phases: classi-
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cally localized, quantum localized, and extended. When
tunneling is neglected, the above three phases appear in
that order when the fraction of broken bonds or infinite
barriers is reduced. If the tunneling is sufficiently weak,
we would expect to have similar phases. As the tunneling
strength increases, the quantum percolation threshold de-
creases and will eventually cross over the classical percola-
tion threshold. In this case, the quantum percolation
threshold is smaller than its classical counterpart and now
the three phases are localized, quantum tunneling, and ex-
tended. Localization transition does not take place when
tunneling is sufficiently strong (¢ > 0.03 for bond problem
and € <5.166 for site problem in the present approxima-
tion). Certain experiments»?> that show more than two
phases near the classical percolation threshold may be ex-
plained in terms of the quantum percolation.

We can extrapolate our results to the limiting situation
where tunneling is neglected. Such limit is the ordinary
quantum percolation. Although the thresholds obtained
by extrapolation are somewhat smaller than those report-
ed in previous works, and in the case of the site problem it
is smaller than its classical counterpart, our result clearly
illustrates the qualitative behavior of electron localization
and the mobility edges correctly when tunneling effects
are included in the quantum percolation process.
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