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Dressed-atom approach to embedding and physisorption in metals
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A number of solid-state situations exhibit mainly atomic characteristics. Accordingly, for phe-
nomena involving metals, we have developed a "dressed-atom" approach which is implemented
computationally via a coupled Hartree-Fock procedure, and which incorporates the surrounding me-
tallic character self-consistently into the dressed-ground-state or excited-atomic-state wave function.
The systems which are studied here are He/Na(001), He/Al(001), and Ar/Na(001). The
correlation-energy contribution to the self-consistent metal-adatom interaction is considered in the
image-potential approximation. It is found that (i) argon binds on Na(001) with an energy of about
60 meV, and (ii) it is more likely for Ar/Na(001) to exhibit its ionic rather than its neutral configura-
tion during excitation from the ground 'S state.

I. INTRODUCTION

The studies which are reported in the present paper are
based on the following assumption: For many solid sys-
tems and for many spectroscopic phenomena, a good
description of the physical state and/or process can be ob-
tained by focusing not on the solid as a whole but on a
concept of a dressed atom (DA), i.e., an atom whose wave
functions and properties are perturbed by the surrounding
solid-state medium. The computational implementation
of this concept puts emphasis on the accurate description
of the isolated ground or excited atomic state and then on
its perturbation by the medium. ' The perturbation is
taken to be the result of a self-consistent interaction be-
tween the atom and the medium. The gross (zeroth-order)
description of electronic structure is done at the Hartree-
Fock level =specially for closed-shell systems. Once the
form of the perturbation is established from a reliable
theoretical model, its effect on the DA wave function is
taken into account by a self-consistent computation of
perturbed orbitals, in analogy with the coupled Hartree-
Fock theory (CHF), of induced moments due to external
electric or magnetic fields.

The DA approach to aspects of the physics of the solid
state can account for atomic electron correlation and rela-
tivistic effects in ground and excited states systematically
and accurately. This constitutes a definite advantage over
the standard solid-state approaches. On the other hand,
being an approximation to the solid state it makes sense
only when the experimental probing is such that the atom-
ic characteristics and effects on the phenomenon are ex-
pected to remain strong. For example, the whole field of
spectroscopy of inner electrons of chemisorbed or bulk
atoms can be understood to a high degree of accuracy in
this way. ' ' Similarly, even cases of optical spectros-
copy of the solid state can, in principle, be tackled, when-
ever there is evidence of enhanced atomic character. '

In fact, the present work is inspired by the second exam-
ple, which concerns the field of adsorbed noble gases on
metals. "-"

Regarding the degree of approximation in describing
the interaction between the atom and the medium, the
present approach may be considered as a generalization of
recent theoretical approaches to embedding or physisorp-
tion problems. In particular, it has been applied to the
case of physisorption of helium atoms on metal sur-
faces. ' ' These applications, within our CHF calculation
scheme, allowed a study of the factors which affect the
linear relationship' between the interaction energy of a
helium atom and the free-electron density of the metal
with which the helium atom interacts.

In the present work we have studied the following.
(1) The interaction of helium with the Na(001) and

Al(001) semi-infinite metals.
(2) The interaction of ground KL 3s 3p 'S and excited

(KL 3s 3p 4s P') argon and of singly ionized Ar+ (KL
3s 3p P') with the Na(001) semi-infinite metal. [Due to
the fact that the P' Hartree-Fock function of the excited
argon (KL 3s 3p 4s) is practically identical to the 'P'
one—their Hartree-Fock energies differ only by 0.17 eV
and the average radii of the 4s orbital differ only by
2%—we have employed the triplet state for convergence
reasons and computational efficiency. ]

II. COUPLED HARTREE-FOCK THEORY
FOR A NOBLE CJAS PHYSISORBED

ON A METAL SURFACE

Our DA approach first separates the problem into three
parts.

(i) The isolated atom in its ground or excited state.
(ii) The surrounding medium —be it the surface or the

bulk.
(iii) The self-consistent interaction between the atom

and the medium.
The calculation is carried out in the following way.
(I) The correlated atomic wave functions and properties

are obtained accurately from the state-specific theory of
atomic structure as developed and applied by Beck and
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where 0 is the volume of the system, and the notation
r=(p, z), k=(k~~, q) is used, which implies that k~~ and p
are vectors parallel to the metal surface. Although q is
determined from the branch of the band structure which
is specified by the (hkl) orientation, it is assumed that
the maximum (Fermi-level) kinetic energy of the metallic
electrons, EF, is given by

2EF =kF .

The single-electron wave functions g'~(z) and the single-
electron potential V,fr(z) for the metal substrate are ob-
tained by solving Schrodinger s equation self-
consistently. '

(III) The interaction between the atom and the sur-
rounding medium is described by V(r), which includes
the following.

(i) The Coulomb term, Vc,„], b(r), which is the
Coulombic contribution to the single-electron potential
V ff of the metal substrate.

(ii) The exchange interaction V (r) between the elec-
trons of the substrate and those of the adatom, i.e.,

where g, (r) denotes the single-electron orbitals of the ad-
atom, and the k summation includes the spin indices also.

(iii) The correlation potential V„„(r). In the present
calculations, this is approximated by the image potential
between the adatom and its own image with respect to the
image plane located at z =z; . In particular, we take

V„„(zp)= —g
8(zp —z; )

(4)

where r; =(p;,z;) is the position vector of the ith electron
of the adatom, whose nucleus is located at z =zo.

The form of V„„(r)given by Eq. (4) is based on the as-
sumption that each electron of the adatom "sees" only its

Nicolaides. " ' The reader is referred to these papers for
the presentation of the theory. One of its semiquantita-
tive results is the possibility of identifying a priori the
most important correlation effects which influence the
electronic spectra of atoms and solids.

(II) The surrounding medium is taken to be a semi-
infinite metal occupying the negative z space. Its surface
lattice plane is located at z=0.0 and it exhibits the (hkl )
orientation. The metal substrate is treated according to a
generalized jellium approach which is described else-
where. ' This approach has the advantage of incor-
porating part of the lattice effects, thus allowing the
specification of the crystal orientation (hkl ). On the oth-
er hand, it retains the simplicity of the usual jellium
model. In particular, the periodicity along the negative z
axis is considered explicitly but invariance is assumed
along the xy planes. For this system, the single-electron
wave functions have the form

1/2

]] k(r) = 2

0

Evdw(z) =— CzK

(z —zzx)

whose parameters CzK and zzK were given by Zaremba
and Kohn (or more recently by Persson and Zaremba ).

Given the several contributions to V(r), we take

V(r)= Vc,„], b(r)+ V„(r)+V„„(r)

as the external potential to the Hartree-Fock Hamiltonian
of the free adatom. Then, the perturbed Hamiltonian of
the adatom is solved self-consistently. The approach is
analogous to the coupled Hartree-Fock approximation
(CHF) for atoms and molecules in electromagnetic fields
and, for the solid state, it has the advantage that it allows,
in principle, the study of distortions of the ground as well
as of the excited states of physisorbed atoms or ions to all
orders —within the independent-particle model. The steps
followed in obtaining the CHF solution can be summa-
rized as follows.

The potential V(r) is added to the atomic Hartree-Fock
potential of the adatom and the resulting equations are
solved self-consistently at each distance z.

In proceeding with the self-consistent solution, the
single-electron atomic orbitals g, (r) are expanded in a
series of Gaussian-type orbitals (GTO's) g] (r), i.e.,

n, —1 —P, r. 2

g](r) =c;r ' e

where n; = I; + 1 and c; is a coefficient determined by
solving the coupled Hartree-Fock Hamiltonian of the ad-
atom. For the case of the ground state of the adatom the
exponents P; are taken from the literature. However, for
the excited cases, we had to enlarge the GTO basis set by
including one or two diffuse GTO's. The coefficients
were obtained by an energy-optimization procedure using
the analytic Hartree-Fock computational technique of
Roothaan.

own image and that the effect of the interaction between
the image charges can be neglected. Another assump-
tion which is implied by Eq. (4) is that only the leading
(van der Waals) term is retained in the expansion in in-
verse powers of zo —z; of the interaction between a di-
pole at zo and its own image with respect to the image
plane at z =z;

The form of the correlation contribution to the interac-
tion between the adatom and the metal surface which is
given by Eq. (4) has the disadvantage that it is singular
for zo ——z; . However, this disadvantage can be eliminat-
ed by taking the saturated form of the correlation poten-
tial, which has the asymptotic form —I/4(zp —z; ) at
large metal-adatom separations and tends to a saturation
value as the adatom approaches the metallic surface.
It is only for computational reasons that we have kept the
form given by Eq. (4) in the present calculations. This ap-
proximation is well justified at small-overlap regions. In
order to overcome the difficulty of defining the position
z;m of the image plane, we have chosen z;m so that the
potential V„,„(z) for a helium atom interacting with a
metal surface has approximately the same value as the
correlation potential
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The incorporation of the external interaction V(r) into
the integro-differential Hartree-Fock equations for the
adatom requires the calculation of the interaction in-
tegrals

'=&gI, YI;
I

I
V«) Ie, Yi,

I

which are associated with V(r). We have three types of
such integrals. The integrals which are associated with
the correlation potential V„„(r) can be easily obtained
analytically.

The Coulomb integrals JJ associated with the
Coulombic contribution Vc«~,mb(r), i.e.,

JJ —— dr r gI, (r)gi, (r). dP d@ si n@ Vc oulomb(l'cos& —zo)Yz, . m
I

5,P) YI, m.
are obtained by numerical integration.

Finally, the calculation of the exchange integrals E;J I, i.e.,

fq(r')g~ (r') YI (O', P')g~* (r) YI,
=&gI,. YI m I

V«) IR, &i m&= . —~ g ff,' ' drdr'
1 J /r —r'f

proceeds by first performing the integration over the kII component of the wave vector k. This yields

ALT(o~ AT IO~

2 i/2dz, dz2$, (z, )g, (z&) dp, dp&r&' r,' (k~ —q ) e ' 'e ' 'Y& m I(5, ,P, )

q

Ji [ I pi —p2 I

(kF' q')'"1—
I ImI( 24'2) (10)

where a is the area of the metal surface, and J&(x) is the
Bessel function of the first order. At this point we make
a numerical approximation. We assume that

~
r; —rz ~

=(p; —pz.
~

m the denominator of Eq. (10).
Then, some of the integrations in Eq. (10) may be per-
formed analytically and the rest are obtained numerically.
This approximation may overestimate the pole at p=p' of
the exchange integrals for short metal-adatom separations
and in cases where diffusive Gaussian basis functions are
employed to describe the adatom orbitals. However, at
metal-adatom separations where the free-electron density
of the metal substrate is low, compared to its bulk value,
our calculations indicated that the approximation we have
employed is satisfactory and has general application in the
small-overlap region. Thus, using this approximation, the
exchange integrals which involve s, p, p~, and p, types of
Gaussian basis functions take a form suitable for numeri-
cal integration.

Having obtained the one-electron integrals V~ we
proceed with the self-consistent-field (SCF) solution in the
Hartree-Fock approximation. For this purpose, we have
generalized, as necessary, existing codes of the POLYATOM
computer program.

III. THE METAL-ADATOM INTERACTIONS
WITHIN THE CHF APPROXIMATION

Previous theoretical studies on the interaction E(r), of
the noble-gas atom in its ground state with the metal sub-
strates, ' ' have anticipated that this interaction can be
decomposed into two contributions. One, E„z(r), is
repulsive and varies more or less linearly with the unper-
turbed free-electron density, p(r), of the metal substrate,

i.e.,

E„,~(r) =a,fao(r) .

The other, E„dw(r), is attractive and is mainly due to the
van der Waals interaction (correlation term) between the
metal and the adatom. Equation (11) is the generalization
of the result concerning the energy change upon embed-
ding a noble-gas atom into a jellium-like metal. ' '

Recently, it was shown that, in the case of embedding,
Eq. (11) constitutes the zeroth-order term, if E„,~(r) is ex-
pressed as a power series in po, the bulk electron density of
the metal, i.e., po

——kF/3~ . In the case of the interaction
of a helium atom with a metal surface, it was also
shown' that a,ff can be approximated analytically and
that a,ff depends on the characteristics of both the metal
substrate and the helium atom. The two terms E„,~(r)
and E„dw(r) constituting E(r) have been treated indepen-
dently. In particular, Zaremba and Kohn ' showed that

E.„(ro)= g leak(ro) —sk '1 (12)

where Ek(ro) are the single-electron eigenvalues of the met-
al substrate in the presence of the adatom at ro and c~

'

are the corresponding eigenvalues of the free-metal sub-
strate. Furthermore, they also obtained the asymptotic
form of E„dw(r) in the nonoverlap region: They showed
that when the metal substrate is approximated within the
jellium model the correlation potential takes the form
given by Eq. (5).

The evaluation of the right-hand side of Eq. (12) is a
very difficult calculational job. Harris and Liebsch
(HL), avoiding the scattering approach of Zaremba and
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Kohn, ' introduced the pseudopotential approach in order
to evaluate it in the case of helium atoms interacting with
a metal surface. According to the theory of HL, Ek(ro)
can be obtained within the first-order term of the pseudo-
potential associated with the presence of the adatom (He
atom) at the metal surface. In a recent paper, one of us'
has shown that, in the case of the He atom interacting
with metal surfaces, Eq. (12) reduces to Eq. (11) and a,fr
can be expressed in terms of quantities which characterize
both the metal substrate and the He atom.

The pseudopotential approach leads to an equation
similar to Eq. (11) and has the advantage of being nonlo-
cal. However, the calculated values for a,rr (of the order
of 1000 eVao) are much larger than the values (200
eV ao) found by other methods which employ the local-
density approximation (LDA) to the exchange and corre-
lation potentials. Takada and Kohn, reformulating
the theory of Zaremba and Kohn ' in terms of the S ma-
trix for evanescent wave functions, found cz,ff=490 eV ap
for the zeroth-order Fourier component (smooth part) of
E„„(r). Intermediate values for a,rr (362—383 eV ao de-
pending on the helium-metal distance) were also found by
Batra ' and by Batra et al. who employed a cluster
model with Hartree-Fock wave functions. A distance-
dependent a,f~ was reported recently by Rao et al. , who
also noted that the Hartree-Fock values of a,ff are slightly
changed by including correlation effects. Finally, An-
driotis' has shown that, within the first-order perturba-
tion term of the helium pseudopotential, o.',ff can be ex-
pressed as a functional of the free-electron density p(z)
and a, rr is a slightly varying function of p(z) (see Fig. 1 of
Ref. 17).

As proposed by Puska et al. , approximate experimen-
tal information for the value of a,f~ can be obtained from
the values of the scattering length of the electrons scat-
tered by a helium atom. ' It is interesting that the "ex-
perimental" values thus obtained seem to agree better with
the results of the methods which employ the LDA.

Two reasons may be responsible for the observed
discrepancy in the two theoretical approaches. First is the
omission of the correlation contribution to the metal-
adatom interaction by the pseudopotential method, and
second is the fact that the approximation of E„~(ro) by
the first-order term of the perturbation series in the heli-
um pseudopotential is not adequate. The latter explana-
tion is supported by the fact that the second-order contri-
bution of the He pseudopotential to E„~(ro) is quite im-
portant, even at intermediate values of the overlap in-
tegrals. To these, one can add the findings of Karicorpi
et al. , according to which the LDA underestimates the
repulsive interaction between the He atom and a metal
surface.

In the present work we attempt to eliminate one of the
two reasons which seem responsible for the stated
discrepancy. This is achieved by approximating the
many-body correlation term of the metal-adatom interac-
tion by its long-range, single-electron expression, i.e., the
image potential. This leads to the expression for V„,„(r)
given by Eq. (4), which is taken as an external field acting
on the adatom and is explicitly incorporated within the
CHF solution of the adatom. The limits of validity of Eq.

(4) and its possible corrections have been already dis-
cussed. Here we add that this is an adequate approxima-
tion as long as we confine ourselves to metal-adatom dis-
tances which involve small overlaps between the adatorn
and the substrate electron orbitals.

Our approach to E(r) utilizes the assumption of the
first-order pseudopotential theory, i.e., that the single-
electron wave functions

~
ko) of the unperturbed metal

substrate undergo the following change in the presence of
the adatom:

Ik&= Iko& —g'k, I'& (13)

where
~

k) and
~

a) stand for gz(r) and P, (r), respective-
ly, and

(14)

Under the assumption implied by Eq. (13), the right-hand
side (rhs) of Eq. (12) takes the form' '

E(zo)=E (zo) Ef-~ —3V—coU]omb(zo)+E„p(zo),

(15)

where

E-~(zo) = X I:Ek
' —E.—V.rf(zo)) i'.k, (zo) l'.

a, k
(16)

denotes the atomic number of the adatom, and
E "(zo) and Eq„", denote the total Hartree-Fock energies
of the perturbed (by the substrate) and unperturbed ad-
atoms, respectively. It is noted that E (zo) may or
may not include the correlation term V„„(r). In the
latter case the rhs of Eq. (15) will include the extra poten-
tial terms E„dw(zo) given by Eq. (5).

The first three terms of the rhs of Eq. (15) describe the
contribution of E(zo), which comes from the exchange
interactions between the metal and the adatom. This may
easily be seen by noting that'

E "(zo) EP,",—+5c.,—

'Vcoulo b(zo)+ g (a
~

V„~ a) . (17)

The last term on the rhs of Eq. (15) is the contribution to
E(zo) that comes from the perturbation which the single-
electron orbitals of the substrate feel in the presence of the
adatom. E„~(zo) is the dominant interaction term and is
repulsive. It is noted that our Eqs. (12)—(16) constitute
another proof' of the result initially obtained by Harris
and Liebsch, who treated the He pseudopotential as a
perturbation to first order acting on the metal states.

The second-order terms in the He pseudopotential
proved to be a significant factor of the first-order ones.
Also, it can be easily shown that if self-consistency is re-
quired with respect to the He pseudopotential, E„p(zp)
will be augmented by extra terms which are proportional
to

~

S,k ~

(as the second-order terms in the He pseudopo-
tential). Thus, self-consistency effects are expected to be
of relative significance in the calculation of E p(zp).
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In the next section we present numerical results based
on the Eqs. (12)—16). The effects of self-consistency, as
well as of the approximation described by Eq. (13), will be
discussed elsewhere.

O
O
CD

He/A I (100)

IV. NUMERICAL RESULTS

In Figs. 1 and 2 we present the numerical results, ob-
tained according to Eqs. (15) and (16), for the interaction
energy E(z) between a helium atom and the semi-infinite
metals Na(001) and Al(001), respectively. Huzinaga's 7s
set of GTO's was used to describe the ls state of the heli-
um atom. The metal surface is taken to be the first lattice
plane of the crystal near the vacuum region and assumed
to be located at z=O. The results shown by open circles
in Figs. 1 and 2 correspond to E(z), which does not in-
clude correlation (van der Waals) effects. Those shown by
triangles correspond to E(z), which includes correlation
effects according to Eq. (4}. The difference between these
two results for E(z) is termed the image-correlation po-
tential, E; (z). From Figs. 1 and 2 it is observed that in
the case for which correlation effects are included the in-
teraction energy exhibits a potential-well minimum of
about 4 meV for Na(001) and 7 meV for Al(001). These
values are in agreement with published values of other cal-
culations. ' ' However, the location of the potential
wells we found appears at larger metal-adatom separa-
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FIG. 2. The interaction energy E(z) between He and Al(001)
(see caption of Fig. 1).
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FIG. 1. The interaction E(z) between a helium atom and the
Na(001) semi-infinite metal as given by Eqs. (15) and (16) and
within the coupled Hartree-Fock approximation. The results
shown by open circles refer to the case of E(z) which does not
include the correlation (van der Waals) contribution to E(z).
The triangles exhibit the variation of E(z) when correlation ef-
fects are included according to Eq. (4) with z; =0.0. The metal
surface is taken to be the lattice plane nearest to the vacuum re-
gion and is located at z=0.0.

tions.
A better insight into the interaction-energy curves can

be achieved by examining the functional relationship
E(z)=f [p(z)]. When E(z) is plotted against the free-
electron density p(z) of the metal, it is found that, in the
absence of image-correlation effects, the graphs exhibit a
linear relationship between E(z) and p(z). In particular,
we found that a,qr= (980 eV) a 0 in the case of Na(001) and
for p(z) & 2X10 a.u. For p(z) &2X10 a.u. the func-
tion E(z) =E(p(z}}exhibits a variation which reflects the
functional relationship V,rr(z) = V,rr[p(z)]. In the case of
Al(001) a different picture is observed. Initially, a,rf is
about (1100 eV)ao, but for p(z)&1.4X10 a.u. , a,ff
starts dropping to much smaller values [of about (650
eV)ao]. It seems that the dependence of a,rr on the func-
tional V,rr(z) = V,rr[p(z)] in the LDA is more pronounced
in the case of Al(001). These observations are in agree-
ment with the relationship a,rr(z) =a,rr[p(z)] proposed re-
cently by Andriotis. ' '

Figure 3 shows the variation of a,rr(z) as a function of
the distance between the helium atom and the Na(001)
metal surface. Triangles denote the results of the present
numerical approach. The solid line exhibits the analytic
approximation given by Eq. (17) of Ref. 17. The dashed
curve exhibits the same analytic expression, ' but at a dif-
ferent level of approximation obtained by evaluating the
overlap integrals where g~(z) is replaced by g~(zo) (its
value at the position of the helium atom) over the whole
integration range.

The large difference (up to 50%) found in these two
sets of results indicates the sensitivity of the calculations
to the approximation employed for the computation of
the analytic expression. It seems that both approxima-
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FIG. 3. Dependence of a,ff on the distance between the metal
surface, located at z=0.0, and the helium atom. Triangles
denote the results of the present work. Solid and dashed curves
correspond to the analytic expression of a,ff (given in Ref. 17) in

two different levels of approximation (see text).

tions are inadequate as they tacitly imply that g&(z) and
g'q (z) have the same value over the whole z interval
( —oo, + oo ). For this reason, in the present calculations
we avoided the analytic approximation and we used the
exact single-electron wave functions obtained numerical-
ly

22

The values for o.,ff which were found are of the same
order of magnitude as the ones found by other workers
who employed the same method. Although these are
much larger than the results of other calculations, our re-
sults approximately exhibit the same z dependence found
by Rao et al. and by Batra et al. Thus, the present
work supports previous findings ' which indicated that
a,rr is a functional of the free-electron density p(z) of the
metal probed by the helium atom. ' For this reason, rath-
er than plotting o.,ff versus z, a more meaningful graph is
the one exhibiting the relation between E(z) and p(z).
From this graph one can, in principle, obtain the approxi-
mate value of a,rr over a limited region of p(z) values.

Our first computations used values for the parameter
z; given by Lang and Kohn (increased by half the in-

terplane distance between the lattice planes of the sub-
strate which are parallel to the surface). However, the
image-correlation potential E; (z) obtained with these
values was found to be much stronger than that given by
Eq. (5). Thus, in order to have a reasonable value for z;
which we could use along with our formalism, we have
proceeded as follows: We used the system He/Na(001) as
a test system and by trial and error we found the value of
z; which when used according to the present formalism
results in an image-correlation potential E; (z) which

Ar/Na (100)
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C)
LA

Q)

E o
C)

C3

C)
CD

I I

6.0 8.0

z (a. u. )

I

10.0

FIG. 4. The interaction energy E (z) between Ar (in its
ground state) with the Na(001) semi-infinite metal (see caption
of Fig. 1).

coincides approximately with the correlation potential
E,dw(z) given by Eq. (5). As for the parameters of
E„dw(z), i.e., the constants zzK and CzK, we tried those
given by Zaremba and Kohn as well as those given by
Persson and Zaremba, taking care to increase the given
zzK values by half the interplane distance of the parallel-
to-the-surface lattice planes. It was then found that a
good agreement between E; (z) and E„dw(z) can be ob-
tained by taking z; =0.0. Similarly, z; =0.0 was also
found in the case of the Al(001) substrate.

Having fixed the value of z; for the test systems and
assuming this to be a property of the substrate only, we
used the specified value of z; for adatoms other than the
He atoms.

In Fig. 4 we present results for the interaction energy
E(z) between an argon atom in its ground state and the
Na(001) semi-infinite metal. We have used the Gaussian
basis set of Roos and Siegbahn to describe the orbitals of
the ground state of the argon atom. For the excited argon
we had to enlarge this basis set by adding two diffuse
GTO's whose exponents were found by energy optimiza-
tion. From Fig. 4 it is observed that the interaction-
energy curve which includes correlation effects according
to Eq. (4) exhibits a potential well of about 60 meV. This
value is in good agreement with the well of 70 meV found
by Lang for argon onto silver, the latter approximated
by the jellium model.

Figure 5 exhibits the relative stability between two con-
figurations of the argon adatom onto the Na(001) semi-
infinite metal. In particular, b,E(z) is the difference be-
tween the interaction energy of the ionic configuration of
argon, namely Ar+:(KL 3s 3p P'), and the interaction
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an outer shell similar to that of the potassium atom.
When K interacts with the Na(001) metal, it is known to
lose its electron to Na(001) metal due to the difference in
the electropositivities between Na and K.

On the other hand, the results of Fig. 5 are the opposite
of those expected by using the &0 I" -criterion' (as
&N, =2.7 eV & IA, 4.14——eV).

Similar trends were found ' for Li/Al(001). On the
other hand, for Li/Na(001) the same method predicts '

that the neutral-Li-atom configuration is energetically
more favored than the ionic Li+(ls ) state.

In summary, it can be said that Eq. (18) offers an exten-
sion of the N-I* criterion. ' The advantages of the cri-
terion implied by Eq. (18) is that it includes significant
many-body interaction terms in the metal-adatom —adion
interaction which are ignored by the N- I' criterion. At
long metal-adatom separations, Eq. (18) reduces to the @-
I* criterion as b,E(z) becomes equal to I*.

Flynn and co-workers, "' in order to test the stability
of the excited (Ar*) or the ionic (Ar+) configuration onto
Al(001), checked if the difference

FIG. 5. The energy differences AE(z) given by Eq. (18) of
the text as a function of the distance z from the metal surface
for argon interacting with Na(001) semi-infinite metal. The hor-
izontal solid (dashed) line is drawn at the calculated (experimen-
tal) work function of the substrate.

energy of the excited argon, Ar*:(KL 3s 3p 4s P'), i.e.,

5E (z) =E + (z) E,"(z) +—E„~(Ar+;z)

AE, =I*—p+8 —6 (20)

is smaller or greater than zero. In Eq. (20), E refers to the
cohesive energy of K and 6 is the image potential calcu-
lated at a distance equal to the atomic radius of argon
(b, = 1.91 eV and v=0.93 eV). In this way they concluded
that Ar' is more stable on Al(001) than Ar+, in agree-
ment with the experiment.

Although some ambiguities remain concerning the ap-

E„„(Ar*;z)—+ V; (z;z; ), (18)

V; (zz; )=— 1

4(z —z; )
(19)

Two approximations for V; (z;z, ) are shown in Fig. 5.
The one shown with the solid line refers to the approxi-
mation z; =0.0; that shown by the dashed line refers to
z; =3.3 a.u. , which is the value given by Lang and
Kohn increased by half the interplane distance between
the (001) lattice planes of the sodium crystal. The hor-
izontal solid (dashed) line in Fig. 5 denotes the theoreti-
cal (experimental ) value of the work function of the
Na(001) semi-infinite metal. According to Fig. 5 and as-
suming that the electron which is transferred from the
adatom to the substrate takes the energy of the Fermi lev-
el of the metal (given by the negative of the work function
@), it is expected that the excited physisorbed argon atom
will exhibit its ionic configuration, as this state is energet-
ically more stable than the excited state Ar* [b,E(z) & N].

Additional support for this picture comes from the
known results of alkali-atom —metal interactions: Ar* has

where E + (E,") is the total energy of the interacting
adatom Ar+ (Ar*) within the present approach;
E„(Ar+;z) and E„, (Ar*;z) are given by Eq. (16) and
refer to Ar+ and Ar*, respectively; finally, V; (z;z; ) is
the image potential between the positive argon ion and the
metal in terms of the position z; of the image plane, i.e.,

Ionization
potential I
3p ~(3p')

Ionization
potential I
( P)3p 4s~(3p')+

Excitation
energy Ace,
3p6 3p54 (3P)

~ Na(001)

+AI(001 )

This work

14.71

3.91

10.80

3.08

4.05

Expt.

15.76'

4.14'

11.58'

2 70"

4.20'

Exact HFd

14.77

3.87

10.90

'C. E. Moore, Atomic Energy Levels (U.S. GPO, Washington,
D.C., 1949), Vol. I.
Reference 49 (polycrystalline sample).

'J. Holzl, in Solid Surface Physics, Vol. 85 of Springer Tracts in
Physics (Springer-Verlag, Berlin, 1979).
G. Aspromallis (private communication).

TABLE I. The ionization potentials I and I of the ground
and the first excited state of the free argon atom, its excitation
energy for the transition 3p ~3p'4s and the work functions
NN, (001) and NAI(001) found in the present calculations are com-
pared with the corresponding experimental values or the exact
numerical Hartree-Fock ones. All energies are given in eV.



2590 A. N. ANDRIOTIS AND C. A. NICOLAIDES 35

plicability of Eq. (20), this equation implies an extension
of the original 4-I* criterion which is analogous to Eq.
(18). Our main question about Eq. (20) is that AEt is dis-
tance independent. Besides that, the use of the cohesive-
energy term is a very poor approximation at long metal-
adatom separations. On the other hand, Eq. (18) does not
have these drawbacks, while it takes into account the
changes that the substrate electrons undergo in the pres-
ence of the adatom. Equation (20) applied to the case of
Ar/Na(001) gives b,E, =0.44 eV and therefore predicts
that the ionic configuration, Ar+, is more stable on
Na(001) than the excited one, Ar*. Thus, the prediction
of Eq. (20) about the stable excited configuration of argon
on Na(001) coincides with that given by Eq. (18) over
most of the interaction region, i.e., for z (7.0 a.u.

In Table I we give numerical results for different physi-
cal quantities in order to indicate the degree of accuracy
achieved in our calculations. It is worth mentioning that
our analytic Hartree-Fock (HF) results are in agreement
with the numerical HF results obtained using Froese
Fischer's code. '

Finally, it is assumed that the intra-atomic correlation
effects do not change upon going from a free to a phy-
sisorbed and/or chemisorbed atom and therefore they can
be obtained from calculations on free atoms. Thus Eq.

(18) can be completed by adding to the rhs a distance-
independent term which corrects for the intra-adsorbate
changes of the atomic correlation energy associated with
the configurational changes which may take place on the
adsorbate.

V. CONCLUSIONS

Based on the concept of a "dressed atom" and the cal-
culational scheme of the coupled Hartree-Fock approxi-
mation, we present an approach to a series of problems of
solid-state physics which exhibit strong characteristics of
atomic nature. This approach allows the use of sophisti-
cated numerical and many-body techniques of atomic
physics for the accurate description of atom-localized in-
terelectronic interactions. This holds for the ground as
well as for the excited states of the adsorbed or embedded
atoms.

In this work we have addressed the problem of phy-
sisorption on metallic surfaces. The lattice structure of
the surface as well as the metal-adatom interactions
beyond the simple image-potential approximation were
taken into account. The theory is suitable for the calcula-
tion of properties such as transition probabilities and
inner-electron binding energies.
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