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LoSurdo-Stark effect for a hydrogenic impurity in a thin layer: Two-dimensional model

Kazuyoshi Tanaka, Masahiro Kobashi, Tokushige Shichiri, and Tokio Yamabe
Department of Hydrocarbon Chemistry and Division of Molecular Engineering, Faculty of Engineering,

Kyoto University, Sakyo-ku, Kyoto 606, Japan

David M. Silver
Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20707

Harris J. Silverstone
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 2l218

(Received 22 Septetnber 1986)

The LoSurdo-Stark effect for a bound electron in a two-dimensional hydrogenic atom has been
studied as a tractable model for impurity states in a thin layer, such as in superlattices, with an
external electric field applied parallel to the layer. Energy shifts and splittings, obtained via per-
turbation theory, and field-induced ionization are discussed. The model calculation predicts a re-
duced dependence on the electric field of an electron in an impurity state in a two-dimensional
layer when compared with the field dependence of an electron in a corresponding three-
dimensional hydrogenic state.

The science and technology of superlattices, first pro-
posed by Esaki and Tsu, ' has received much attention with
a view to the development of new classes of electronic de-
vices. Several theoretical studies have been made of the
binding energies of hydrogenic impurity states in quantum
well systems, which model superlattices such as in the
GaAs-Ga) Al As system. s Dependence of the impuri-
ty energy levels on an electric field, or LoSurdo-Stark ef-
fect, applied in the direction of the growth axis of the su-
perlattice has also been studied6 7 to explain the strong de-
crease of photoluminescence intensity and the red shift of
its peak position as the field strength is increased. In ad-
dition, the high mobility of conduction carriers parallel to
the planes of a superlattice, generated by modulation dop-
ing, is of particular interest for application to high elec-
tron mobility transistor (HEMT) devices, and so forth.
The LoSurdo-Stark effect for electrons bound to impuri-
ties in a thin layer, with the external electric field parallel
to the layer, is a phenomenon fundamental to the analysis
of electronic properties of thin-layer systems as well as of
two-dimensional systems in general. 'o

In this Rapid Communication we discuss the LoSurdo-
Stark effect for a two-dimensional (2D) hydrogenic atom
as a model of an impurity state localized in a thin layer.
We derive the splitting and shift of the energy levels by
Rayleigh-Schrodinger perturbation theory (RSPT), which
for the 2D atom can be obtained directly from appropriate
RSPT formulas for the 3D case. We obtain the 2D
tunneling-ionization rate also from the corresponding 3D
formula. The main differences between the 2D and 3D
cases have to do with the values of quantum numbers, de-
generacies, and how the electric field dependence of the
energy shifts and ionization rates is affected by the various
quantum numbers.

The Hamiltonian for an electron of effective mass p
moving in the fields of an ion of charge Z I e I and of a
constant uniform electric field F pointing in the x direction

in a planar medium with dielectric constant tc is given by

H(o)+
I e I Fx,

H(o) h2 d2 ~ d2
(2)

2p dx dy

where r (xz+y2)'l2, the distance of the electron from
the impurity site. Toward simplification, we use atomic
units. The constants h, p', tr, e, and Z are dropped from
the above Hamiltonians. The units for energy, length, and
field strength are then p'e Z2/52x2, a lt x/p'e2Z, and
Z I e I /xa, respectively.

The Schrodinger equation for the unperturbed Hamil-
tonian H was solved 32 years ago by Kohn and Lut-
tinger" in a paper on donor states in n-type Si by separa-
tion in polar coordinates. The solution has some similarity
with hydrogen in three dimensions, which we exploit nota-
tionally:

E ~ 1~-2
n 2

(r,P) N„(2r/n )

xe ' "L„ I~I &l2(2r/n)e' e . (4)

Here N„denotes a normalization constant, and LP
)

denotes a generalized Laguerre polynomial. ' An impor-
tant difference between the 2D and 3D case is that the
analog of the 3D principal quantum number n here takes
on integer-plus-one-half values (rather than integer
values). The magnetic quantum number m takes on in-
tegral values from n —

2 to 2
—n:

Ze
vr

(3)

n 1 3 5
2~ 2~ 2

m 7l 2, 7l
1 3 7l+ 2

1

(5)

(6)

Although n+ —,
' could have been used above, so that the

symbol n could take on only integer values, the half-
integer-value usage has the advantage of preserving many
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relevant formulas of the 3D hydrogenic atom [such as Eq.
(3) for E„]. Note that because n starts with the value —,

'

in the 2D case (versus 1 in the 3D case), the energy of the
ground state is four times what it would be in the 3D case,
and the maximum in the radial probability density occurs
at —,

' the corresponding 3D radius. The degeneracy of the
"n"th level is the odd number 2n. These 2n states in a
sense arise from the "planar" 3D states for which the I and
3D im i quantum numbers are equal. The levels for
which I is greater than the 3D i m i are in that same sense
pushed (in energy) to infinity as the domain for the z coor-
dinate of the 3D atom is shrunk from ( —~, +~) to [0,01.

Both the perturbed and unperturbed Schrodinger equa-
tions are separable in parabolic coordinates, the natural
coordinate system for the Hamiltonian (1):

E {')
—,
' n(ki —kz) 0,
n4

E {~) [—14(k (+k)) —40k ikp —10+9(mfD —1)]

(10)

(It is of some interest that the separated 2D parabolic
equations are equivalent to the 1D anharmonic oscilla-
tor, ' while the separated 3D parabolic equations are
equivalent to the radially symmetric 2D anharmonie oscil-
lator. ) The RSPT energy coefficients can be obtained
from the earlier solution of the 3D LoSurdo-Stark effect in
hydrogen, ' for which the energy coefticients were given
(in Table II of Ref. 14) as polynomials in the quantities
M 4 (mfD —1), ki ni+ i m3D+ z, and kz nz+ i
xm3D+ i. For instance, for the 2D ground state for
which n —,

' and (n{,nz, m3D) (0,0, —z ), we have

&-(r+x), rt-(r —x) . (7) 21
256

n ni+ng+m3D+1 ni+ng ~
& +1,

xL ' (g/n)L ™~)(rt/n) (9)

The separated equations, moreover, are identical with the
corresponding separated equations in three dimensions
[see, in particular, Eqs. (8) and (9) of Ref. 13], except
that the 3D im i quantum number is replaced by the
values + —,

' . To aid in comparing the resulting 2D and 3D
equations (and also to avoid confusion in that there is no
"m" quantum number in 2D in the parabolic separation),
we replace i m i in the 3D equations by m3D. Then if the
equation pertains explicitly to a 3D state, m30 means

i m i, while for a 2D state it means ~ z . The parabolic
quantum numbers ni and nz take on the same set of values
0, 1, 2, . . . , and the relation to n is, mutatis mutandis, the
same as in 3D:'

Similarly, for the three states with n —', , i.e., (ni, nq,

m3D) (1,0, ——,
' ), (0,0,+ & ), and (0,1,—z ), one finds

that

E ' —', , E - —'~", (ni, nz, m3D) (1,0, —
~ ), (12)

E{"-0,E"'-—"„", , (n, ,n, ,m»)-(0, 0, +-,'), (13)

(14)

The energy change due to the 2D and the 3D LoSurdo-
Stark effects is depicted in Fig. 1 for the sake of com-
parison.

The field-induced tunneling-ionization rate of the 2D
hydrogen atom is related to —(2/fi) times the imaginary
part of the complex resonance eigenvalue. As for the case
of the RSPT expansion, the 2D result follows from the 3D
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FIG. 1. E E 0 +E ' F+E i F~ for the (a) ground and (b) first excited states of the 2D and 3D hydrogenic atoms with p
and Z being unity. For easy visualization the plots have been taken to very high F to exaggerate the differences between the 2D and

3D states. The units of variables in (b) are the same as those in (a).
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FIG. 2. Field-induced tunneling-ionization rate I/r for the (a) ground and (b) first excited states of the 2D and 3D hydrogenic
atoms with p, K, and Z being unity. Note the substantial difference in the values of the 2D and 3D cases. The units of variables in
(b) are the same as those in (a).

result' by substituting ~
z for the m3D quantum number

i
m i. (Compare Ref. 15, where this aspect of the 1D anhar-

monic oscillator is treated in detail. ) Although one can easily derive the full asymptotic series for ImE, '3'6 we shall be
content here with the leading term

+ + 1)i —1( 1 3F)
—(2nq+m3&+1) (3(n| —ni) —2/(3n F)l

For the ground and lowest excited levels, —ImE has the explicit asymptotic forms

—ImE —4x ' (F/32) ' e ', (n l,n2, m3D) (0,0, —2 ),
—~~~ gr

1 2(27F/32) 1 2e e ' sl (nl, n2, m3D) -(1,0, ——,
' )

~
—1 2(27F/32) —3/2e —16/81F (n n m ) ~(p p + 1 )

——'n ' '( / ) ' 'e 'e """ (nl, n2, m313) -(0,1, ——,
' )

(is)

(i6)
(i7)
(i8)
(i9)

Let us now compare E('), E(2), and ImE for the 2D
case with the 3D case.

For the ground state both cases have E ') 0, while
E2($~ —+2'„compared with E3$ —4. Thus the 2D
ground-state polarizability is ——,', times the 3D value.
The ratio of the 2D ImE to the 3D ImE[ ( —2/
F)e 3 ] ls (128/n) F e Thus, lonlzatlon ln
the 2D case is greatly suppressed over the 3D case (for
small F). The ionization rate I/i in the 2D and the 3D
cases is shown in Fig. 2.

For the first excited states (n -
2 ) of the 2D case, the

linear splitting (E2$ + —, ,0, ——', ) is reduced by a factor
over the first excited states (n-2) of the 3D case

(Eg +3,0, —3). Similarly, the ionization rates for the
2D states are suppressed for small F by the factors
k(8F/x)''e "'" where k- —'( —)'' ( —)'' or
(» ), depending whether (n l,n2) - (1,0), (0,0), or
(p, i).

In summary, the 2D hydrogenic atom has, in general, a
smaller response to an external electrostatic field than does
a 3D atom, with the greatest contrast between 2D and 3D
occurring with the ground state. These results for the 2D
model represent a limiting case—that of zero thickness—of an electron bound to an impurity in a thin layer, and
as such they suggest a behavior for the electric field depen-
dence of thin-layer systems of practical interest.
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